1,110 research outputs found

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    A Compression Valve for Sanitary Control of Fluid-Driven Actuators

    Get PDF
    With significant research focused on integrating robotics into medical devices, sanitary control of pressurizing fluids in a precise, accurate, and customizable way is highly desirable. Current sanitary flow control methods include pinch valves which clamp the pressure line locally to restrict fluid flow; resulting in damage and variable flow characteristics over time. This article presents a sanitary compression valve based on an eccentric clamping mechanism. The proposed valve distributes clamping forces over a larger area, thereby reducing the plastic deformation and associated influence on flow characteristic. Using the proposed valve, significant reductions in plastic deformation (up to 96%) and flow-rate error (up to 98%) were found, when compared with a standard pinch valve. Additionally, an optimization strategy presents a method for improving linearity and resolution over the working range to suit specific control applications. The valve efficacy has been evaluated through controlled testing of a water jet-propelled low-cost endoscopic device. In this case, use of the optimized valve shows a reduction in the average orientation error and its variation, resulting in smoother movement of the endoscopic tip when compared to alternative wet and dry valve solutions. The presented valve offers a customizable solution for sanitary control of fluid-driven actuators

    Electro-pneumatic Pumps for Soft Robotics

    Get PDF

    Dynamic Modeling of Soft Robotic Dielectric Elastomer Actuator

    Get PDF
    Dielectric elastomers actuators (DEAs) are among the preferred materials for developing lightweight, high compliance and energy efficient driven mechanisms for soft robots. Simple DEAs consist mostly of a homogeneous elastomeric materials that transduce electrical energy into mechanical deformation by means of electrostatic attraction forces from coated electrodes. Furthermore, stacking multiple single DEAs can escalate the total mechanical displacement performed by the actuator, such is the case of multilayer DEAs. The presented research proposes a model for the dynamical characterization of multilayer DEAs in the mechanical and electrical domain. The analytical model is derived by using free body diagrams and lumped parameters that recreate an analogous system representing the multiphysics dynamics within the DEA. Hyperelasticity in most elastomeric materials is characterized by a nonlinear spring capable of undergoing large deformation; thus, defining the isostatic nonlinear relationship between stress and stretch. The transient response is added by employing the generalize Kelvin-Maxwell elements model of viscoelasticity in parallel with the hyperplastic spring. The electrostatic pressure applied by the electrodes appears as an external mechanical pressure that compress the material; thus, representing the bridge between the electrical and mechanical domain. Moreover, DEAs can be represented as compliant capacitors that change their capacitance as it keeps deforming; consequently, this feature can be used for purposes of self-sensing since there is always a capacitance value that can be mapped into the actual displacement. Therefore, an analytical model of an equivalent circuit of the actuator is also derived to analyze the changes in the capacitance while the actuator is under duty. The models presented analytically are then cross-validated by finite element methods using COMSOL Multiphysics® as the software tool. The results from both models, the analytical and FEM model, were compared by virtually recreating the dynamics of a multilayer DEA with general circular cross section and material parameters from VHB4905 3M commercially available tape. Furthermore, this research takes the general dynamical framework built for DEAs and expand it to model the dynamical system for helical dielectric elastomer actuators (HDEAs) which is a novel configuration of the classical stack that increases the nonlinearity of the system. Finally, this research present a complementary study on enhancing the dielectric permittivity for DEAs, which is an electrical material property that can be optimized to improve the relationship between voltage applied and deformation of the actuator

    HydroDog: A Quadruped Robot Actuated by Soft Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot
    • …
    corecore