21,675 research outputs found

    On the Parameterized Complexity of Simultaneous Deletion Problems

    Get PDF
    For a family of graphs F, an n-vertex graph G, and a positive integer k, the F-Deletion problem asks whether we can delete at most k vertices from G to obtain a graph in F. F-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A (multi) graph G = (V, cup_{i=1}^{alpha} E_{i}), where the edge set of G is partitioned into alpha color classes, is called an alpha-edge-colored graph. A natural extension of the F-Deletion problem to edge-colored graphs is the Simultaneous (F_1, ldots, F_alpha)-Deletion problem. In the latter problem, we are given an alpha-edge-colored graph G and the goal is to find a set S of at most k vertices such that each graph G_i - S, where G_i = (V, E_i) and 1 leq i leq alpha, is in F_i. Recently, a subset of the authors considered the aforementioned problem with F_1 = ldots = F_alpha being the family of all forests. They showed that the problem is fixed-parameter tractable when parameterized by k and alpha, and can be solved in O(2^{O(alpha k)}n^{O(1)}) time. In this work, we initiate the investigation of the complexity of Simultaneous (F_1, ldots, F_alpha)-Deletion with different families of graphs. In the process, we obtain a complete characterization of the parameterized complexity of this problem when one or more of the F_i\u27s is the class of bipartite graphs and the rest (if any) are forests. We show that if F_1 is the family of all bipartite graphs and each of F_2 = F_3 = ldots = F_alpha is the family of all forests then the problem is fixed-parameter tractable parameterized by k and alpha. However, even when F_1 and F_2 are both the family of all bipartite graphs, then the Simultaneous (F_1, F_2)-Deletion} problem itself is already W[1]-hard

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Color-blind index in graphs of very low degree

    Get PDF
    Let c:E(G)[k]c:E(G)\to [k] be an edge-coloring of a graph GG, not necessarily proper. For each vertex vv, let cˉ(v)=(a1,,ak)\bar{c}(v)=(a_1,\ldots,a_k), where aia_i is the number of edges incident to vv with color ii. Reorder cˉ(v)\bar{c}(v) for every vv in GG in nonincreasing order to obtain c(v)c^*(v), the color-blind partition of vv. When cc^* induces a proper vertex coloring, that is, c(u)c(v)c^*(u)\neq c^*(v) for every edge uvuv in GG, we say that cc is color-blind distinguishing. The minimum kk for which there exists a color-blind distinguishing edge coloring c:E(G)[k]c:E(G)\to [k] is the color-blind index of GG, denoted dal(G)\operatorname{dal}(G). We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if dal(G)2\operatorname{dal}(G) \leq 2 is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when dal(G)\operatorname{dal}(G) is finite for a class of 3-regular graphs.Comment: 10 pages, 3 figures, and a 4 page appendi

    Coloring Sums of Extensions of Certain Graphs

    Get PDF
    Recall that the minimum number of colors that allow a proper coloring of graph GG is called the chromatic number of GG and denoted by χ(G).\chi(G). In this paper the concepts of χ\chi'-chromatic sum and χ+\chi^+-chromatic sum are introduced. The extended graph GxG^x of a graph GG was recently introduced for certain regular graphs. We further the concepts of χ\chi'-chromatic sum and χ+\chi^+-chromatic sum to extended paths and cycles. The paper concludes with \emph{patterned structured} graphs.Comment: 12 page

    To Prove Four Color Theorem

    Full text link
    In this paper, we give a proof for four color theorem(four color conjecture). Our proof does not involve computer assistance and the most important is that it can be generalized to prove Hadwiger Conjecture. Moreover, we give algorithms to color and test planarity of planar graphs, which can be generalized to graphs containing Kx(x>5)K_x(x>5) minor. There are four parts of this paper: Part-1: To Prove Four Color Theorem Part-2: An Equivalent Statement of Hadwiger Conjecture when k=5k=5 Part-3: A New Proof of Wagner's Equivalence Theorem Part-4: A Geometric View of Outerplanar GraphComment: The paper is further reduced, and each part is more self-contained, is the fina
    corecore