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Abstract
For a family of graphs F , an n-vertex graph G, and a positive integer k, the F-Deletion problem
asks whether we can delete at most k vertices from G to obtain a graph in F . F-Deletion
generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set,
and Odd Cycle Transversal. A (multi) graph G = (V,∪αi=1Ei), where the edge set of G
is partitioned into α color classes, is called an α-edge-colored graph. A natural extension of
the F-Deletion problem to edge-colored graphs is the Simultaneous (F1, . . . ,Fα)-Deletion
problem. In the latter problem, we are given an α-edge-colored graph G and the goal is to find a
set S of at most k vertices such that each graph Gi − S, where Gi = (V,Ei) and 1 ≤ i ≤ α, is in
Fi. Recently, a subset of the authors considered the aforementioned problem with F1 = . . . = Fα
being the family of all forests. They showed that the problem is fixed-parameter tractable when
parameterized by k and α and can be solved in O?(2O(αk)) time1. In this work, we initiate the
investigation of the complexity of Simultaneous (F1, . . . ,Fα)-Deletion with different families
of graphs. In the process, we obtain a complete characterization of the parameterized complexity
of this problem when one or more of the F ′is is the class of bipartite graphs and the rest (if any) are
forests. We show that if F1 is the family of all bipartite graphs and each of F2 = F3 = . . . = Fα
is the family of all forests then the problem is fixed-parameter tractable parameterized by k

and α. However, even when F1 and F2 are both the family of all bipartite graphs, then the
Simultaneous (F1,F2)-Deletion problem itself is already W[1]-hard.
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9:2 On the Parameterized Complexity of Simultaneous Deletion Problems

1 Introduction

Given their tremendous modelling power, graphs have become an integral part of theoretical
computer science in general, and of algorithm design in particular. One graph problem
which encapsulates many problems of both practical and theoretical interest is F-Deletion.
For a family of graphs F , an n-vertex graph G, and a positive integer k, the F-Deletion
problem asks whether we can delete at most k vertices from G to obtain a graph in F . To
state a few, F-Deletion generalizes problems such as Vertex Cover [6], Feedback
Vertex Set (FVS) [5, 8, 17], Vertex Planarization [15], Odd Cycle Transversal
(OCT) [22, 14, 18], Interval Vertex Deletion [3], Chordal Vertex Deletion [4],
and Planar F-Deletion [11, 16].

A graph G = (V,∪αi=1Ei), where the edge set of G is partitioned into α color classes,
is called an α-edge-colored graph. Edge-colored graphs are fundamental in graph theory
and have been extensively studied in the literature, especially for alternating cycles and
monochromatic subgraphs [2]. A natural extension of the F-Deletion problem to edge-
colored graphs is the Simultaneous (F1, . . . ,Fα)-Deletion problem. In the latter problem,
we are given an α-edge-colored graph G and the goal is to find a set S of at most k vertices
such that each graph Gi − S is in Fi, where Gi = (V,Ei) and 1 ≤ i ≤ α. Recently, Cai
and Ye [2] studied several problems restricted to 2-edge-colored graphs, where edges are
colored either red or blue. They asked, as an open question, whether the Simultaneous
(F1, . . . ,Fα)-Deletion problem parameterized by k, with α = 2 and F1 = F2 being the
family of all forests, is fixed-parameter tractable (FPT), i.e. whether the problem can be
solved in O?(f(k)) time [10] (for some computable function f). Agrawal et al. [1] and Ye [24]
answered this question in the affirmative. In particular, it was shown in [1] that the problem
can be solved by an algorithm running in O?(2O(αk)) time. This work pointed to a few natural
further directions for research. For instance, does Simultaneous (F1, . . . ,Fα)-Deletion
remain fixed-parameter tractable when the family of all forests is replaced by the family of
all bipartite graphs? What is the complexity of the problem when not all families are equal?

The results in this work allow us to take a significant step towards a better understanding
of simultaneous deletion problems in general. To that end, we investigate the complexity of
Simultaneous (F1, . . . ,Fα)-Deletion in two settings. First, we consider the problem with
F1 being the family of all bipartite graphs and F2 = F3 = . . . = Fα being the family of all
forests. We call this problem Simultaneous FVS/OCT and define it as follows.

Simultaneous FVS/OCT Parameter(s): k and α

Input: An α-edge-colored graph G = (V,∪αi=1Ei) and an integer k.
Question: Is there a set S ⊆ V of size at most k such that G1 − S is a bipartite graph
and G2 − S, . . ., Gα − S are acyclic, where Gi = (V,Ei) and 1 ≤ i ≤ α?

We call a solution S to the Simultaneous FVS/OCT problem a sim-fvs-oct. Our first
contribution is an algorithm that, given an instance (G = (V,∪αi=1Ei), k) of Simultaneous
FVS/OCT, runs in time O?(kpoly(α,k)) and either computes a sim-fvs-oct in G of size at
most k or correctly concludes that such a set does not exist.

In the second setting, we consider the Simultaneous (F1, . . . ,Fα)-Deletion problem
where F1 = . . . = Fα is the family of all bipartite graphs. We call this problem Simultaneous
OCT and define it as follows.
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Simultaneous OCT Parameter(s): k and α

Input: An α-edge-colored graph G = (V,∪αi=1Ei) and an integer k.
Question: Is there a set S ⊆ V of size at most k such that Gi − S is bipartite, where
Gi = (V,Ei) and 1 ≤ i ≤ α?

We refer to a solution S to the Simultaneous OCT problem as a sim-oct. Our second
(and rather surprising) contribution is a negative answer to the first open question of Agrawal
et al. [1]. We show that, even for α = 2, the Simultaneous OCT problem is W[1]-hard.
To prove this result, we first reduce the well-known Multicolored Clique problem [7]
to an auxiliary problem we call Simultaneous Cut. Simultaneous Cut is a natural
generalization of the classical (s, t)-CUT problem to edge-colored graphs. Finally, we show
that Simultaneous Cut can be reduced to Simultaneous OCT. Notice that W[1]-hardness
of Simultaneous OCT implies that Simultaneous (F1, . . . ,Fα)-Deletion problem with
at least two of the families being the family of all bipartite graphs is W[1]-hard.

Overview of the algorithm. Note that for any fixed k and α, our algorithm for solving the
Simultaneous FVS/OCT problem runs in polynomial time. The said algorithm can be
broken down into four stages, three of which are reductions to auxiliary problems. Initially,
as was first proposed by Ye [24], we use the notion of compact representations of feedback
vertex sets (see Section 2 for formal definitions) to reduce Simultaneous FVS/OCT into
2O(αk) instances of the Colorful OCT problem, which is formally defined as follows. We
note that, in any reduced instance, ` will be bounded from above by αk.

Colorful OCT Parameter(s): k and `

Input: A graph G = (V,E), integers k and `, and a grouping P of the vertices of G into
(not necessarily distinct) sets {P1, . . . , P`}.
Question: Is there a set S ⊆ V of size at most k such that G− S is a bipartite graph
and S ∩ Pi 6= ∅, for i ∈ {1, . . . , `}?

Intuitively, compact representations give us a partition of a vertex subset of the graph
into sets such that picking one vertex from each part is “guaranteed” to constitute a feedback
vertex set of each graph Gi, 2 ≤ i ≤ α. As such, we are able to encode the feedback vertex
set “side” of the Simultaneous FVS/OCT problem (via the reduction) as colors on the
vertices (i.e. different sets in P represent different colors for each vertex) and focus on a
“colored” variant of Odd Cycle Transversal. Naturally, the second stage is to solve
the Colorful OCT problem within the claimed running time. To do so, we reduce an
instance of Colorful OCT to an instance of the compression variant of the problem, i.e.
Colorful OCT Compression. This problem assumes an odd cycle transversal of size at
most k as part of the input. Note that finding an odd cycle transversal of a graph G = (V,E)
of size at most k can be accomplished using the fixed-parameter tractable algorithms for
OCT parameterized by solution size [14, 22], both of which run in O?(2O(k)) time.

Colorful OCT Compression Parameter(s): k and `

Input: A graph G = (V,E), integers k and `, a grouping P of the vertices of G into (not
necessarily distinct) sets {P1, . . . , P`}, and a set O ⊆ V (G) of size at most k such that
G−O is bipartite.
Question: Is there a set S ⊆ V of size at most k such that G− S is a bipartite graph
and S ∩ Pi 6= ∅, for i ∈ {1, . . . , `}?

Now, to solve an instance of Colorful OCT Compression, we reduce it into 2O(k)

instances of yet another problem, namely Colorful Separator. This reduction is in
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many ways similar to the iterative compression algorithm for solving the Odd Cycle
Transversal problem [7, 13, 23].

Colorful Separator Parameter(s): k and `

Input: A graph G = (V,E), integers k and `, a grouping P of the vertices of G into (not
necessarily distinct) sets {P1, . . . , P`}, and vertices s and t in V (G).
Question: Is there an (s,t)-separator S ⊆ V \ {s, t} such that |S| ≤ k and S ∩ Pi 6= ∅,
for each i ∈ {1, . . . , `}?
Finally, and arguably the most technical part of our algorithm, is to show how to solve

an instance of Colorful Separator. We will in fact solve a much more general problem,
which we define in Section 4 (to keep the presentation clear). Our two main ingredients
are a dynamic programming routine and a generalization of the concept of important
separators, which has been recently defined to design parameterized algorithms for several
“cut” problems [12, 19, 20]. We note that an alternative algorithm for solving Colorful
Separator can be obtained by applying the treewidth reduction result of Marx et al. [21].
However, a “simple” application of this result would give an algorithm with a worse running
time (double exponential).

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] denote the set {1, 2, . . . , n}.
Given a universe U , a set S ⊆ U , and a family of sets F = {F1, . . . , F`} over U , we let F

∣∣
S

denote the restriction of F to S, i.e. F
∣∣
S

= {F1∩S, . . . , F`∩S}. We use standard terminology
from the book of Diestel [9] for the graph-related terms which are not explicitly defined here.
For a graph G, we use V (G) and E(G) to denote the vertex and edge sets of G, respectively.
For S ⊆ V (G), by NG(S) we denote the set {u ∈ V (G) \ S | (u, v) ∈ E(G) ∧ v ∈ S}. We
drop the subscript G from NG(S) when the context is clear. For a vertex subset S ⊆ V (G),
by G[S] we denote the graph with vertex set S and edge set {(u, v) ∈ E(G) | u, v ∈ S}. By
G− S we denote the graph G[V (G) \ S]. For X,Y ⊆ V (G), an (X,Y )-path in G is a path
v1, v2, . . . , v` such that v1 ∈ X and v` ∈ Y . We say that X and Y are linked in G if there
exists an (X,Y )-path in G. We say that vertices in Y are reachable from X if, for all y ∈ Y ,
there exists x ∈ X such that there is a path from x to y.

A vertex subset S ⊆ V (G) is a feedback vertex set (fvs) in G if G− S is a forest. If there
is no S′ ⊂ S such that G−S′ is a forest then S is a minimal feedback vertex set (minimal fvs)
in G. A vertex subset S ⊆ V (G) is an odd cycle transversal (oct) in G if G− S is bipartite.
If there is no S′ ⊂ S such that G − S′ is a bipartite graph then S is a minimal odd cycle
transversal (minimal oct) in G. For a graph G and set X ⊆ V (G), we refer to a partition
(A,B) of X as a valid bipartition of G[X] if G[A] and G[B] are both edgeless graphs. We
refer to a valid bipartition of V (G) as a valid bipartition of the graph G.

I Definition 2.1. Let G be a graph and X and Y be disjoint subsets of V (G). A vertex set
S disjoint from X ∪ Y is called an (X,Y )-separator if there is no (X,Y )-path in G− S. We
denote by RG(X,S) the set of vertices of G− S reachable from vertices of X via paths and
by NRG(X,S) the set of vertices of G− S not reachable from vertices of X.

I Definition 2.2. [13] A compact representation of a set S of minimal feedback vertex sets
of a graph G is a collection C of pairwise disjoint subsets of V (G) such that choosing exactly
one vertex from every set in C results in a minimal feedback vertex set for G that is in S.

I Lemma 2.3. [13] The set of all minimal feedback vertex sets of size at most k can be
represented by a collection of compact representations of size 2O(k). Furthermore, given a
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graph G = (V,E) and a feedback vertex set F for G of size k + 1, we can enumerate the
compact representations of all minimal feedback vertex sets for G having size at most k in
O?(2O(k)) time.

3 From Simultaneous FVS/OCT to Colorful OCT

We first describe how to reduce an instance of Simultaneous FVS/OCT to 2O(αk) instances
of Colorful OCT. Note that since both Feedback Vertex Set [20] and Odd Cycle
Transversal [22, 14] can be solved in O?(2O(k)) time, we assume that, along with an
instance (G = (V,∪αi=1Ei), k), we are given sets O,F2, . . . , Fα ⊆ V (G) of size at most k such
that G1 − O is a bipartite graph and Gi − Fi, 2 ≤ i ≤ α, is acyclic (as otherwise we can
safely conclude that the given instance is a no-instance).

I Lemma 3.1. There is an algorithm that, given an instance (G = (V,∪αi=1Ei), k) of
Simultaneous FVS/OCT, runs in time O?(2O(αk)) and returns a set of 2O(αk) instances
of Colorful OCT such that the original instance is a yes-instance if and only if at least
one of the returned instances is a yes-instance.

Proof. Armed with the sets Fi which are of size at most k, we apply the algorithm of
Lemma 2.3 to each graph Gi, 2 ≤ i ≤ α, to obtain a set of compact representations
Ci = {C1

i , C2
i , . . .}, 2 ≤ i ≤ α. Note that each Ci is of size 2O(k) and each Cji is of size

at most k. The said algorithm runs in O?(2O(k)) time for each graph Gi. For each tuple
{Cj2

2 , . . . , Cjαα } ∈ C2 × . . .×Cα, we construct an instance (G′,P, k′, `) of Colorful OCT
as follows. We let G′ = (V,E1), k′ = k, and ` =

∑α
i=2 |C

j
i | ≤ αk.

For each C ∈ {Cj2
2 , . . . , Cjαα } and for each set C ∈ C, we add a set P ∈ P and we let

P = C. In other words, all vertices in C are added to P . Observe that |C| ≤ k. Since each
Ci is of size 2O(k), it is easy to verify that the number of instances is in fact 2O(αk). We now
prove the correctness of the algorithm.

Assume that (G = (V,∪αi=1Ei), k) is a yes-instance and let S be a solution of size at most
k. Note that S need not be a minimal fvs in Gi, 2 ≤ i ≤ α. However, for each i ∈ {2, . . . , α},
there exists a set S′ ⊆ S such that S′ is a minimal fvs for Gi. Hence, by Definition 2.2 and
Lemma 2.3, for every i ∈ {2, . . . , α}, there exists a Cji ∈ Ci such that for all C ∈ Cji we have
S′ ∩C 6= ∅. Since we enumerate all compact representations and create one instance for each,
we know that at least one instance (G′,P, k′, `) of Colorful OCT will correspond to the
correct choice. The fact that S is a solution for (G′,P, k′, `) follows from the fact that S
contains a minimal oct for G1.

For the other direction, let S′ be a solution for an instance (G′,P, k′, `) of Colorful
OCT. Since S′ is of size at most k, it is clearly an oct for G1. Moreover, since S′ must
intersect every P ∈ P, it follows from the definition of compact representations and our
construction that S′ is an fvs for Gi, 2 ≤ i ≤ α, as needed. J

We now focus on solving an instance (G,P, k, `) of Colorful OCT. Recall that we also
have access to the set O which is an oct of G of size at most k. Our next step is to reduce
(G,P, k, `) to an instance (G,P, O, k, `) of Colorful OCT Compression. The correctness
of this reduction is immediate. The final piece in our sequence of reductions is to reduce
(G,P, O, k, `) to 2O(k) instances of Colorful Separator.

I Lemma 3.2. There is an algorithm that, given an instance (G,P, O, k, `) of Colorful
OCT Compression, runs in time O?(2O(k)) and returns a set of 2O(k) instances of Col-
orful Separator such that the original instance is a yes-instance if and only if at least
one of the returned instances is a yes-instance.

FSTTCS 2017



9:6 On the Parameterized Complexity of Simultaneous Deletion Problems

To summarize, given an instance (G = (V,∪αi=1Ei), k) of Simultaneous FVS/OCT, we
first compute an odd cycle transversal of G1 and a feedback vertex set of Gi, i ∈ [α] \ {1},
in O?(2O(k)) time. Then, we generate 2O(αk) instances of Colorful OCT, of the form
(G,P, k, ` ≤ αk), in O?(2O(αk)) time. Each instance of Colorful OCT is converted into an
instance (G,P, O, k, `) of Colorful OCT Compression in polynomial time. Finally, for
each instance of Colorful OCT Compression we generate 2O(k) instances of Colorful
Separator, with parameters k and ` ≤ αk, in O?(2O(k)) time. Lemmas 3.1 and 3.2 together
imply that if we can solve an instance of Colorful Separator in O?(kpoly(α,k)) time then
the algorithm for Simultaneous FVS/OCT follows.

4 An FPT algorithm for finding colorful separators

We in fact give an algorithm for a more general problem, which we call Colorful Multiway
Cut (or CMWC for short). Before we proceed, we need a few definitions.

I Definition 4.1. Given a graph G, a set T ⊆ V (G), and a partition T of T into (pairwise
disjoint) sets {T1, . . . , Tr}, we say that S ⊆ V (G) \ T is a T -multiway cut if, in G− S, no
vertex in Ti \ S can reach a vertex in Tj \ S, for all i, j ∈ [r], such that i 6= j. We say that T
is an edge-free partition of T if there are no edges (u, v) in G[T ] where u and v belong to
different sets of T .

Given a grouping {P1, . . ., P`} of the vertices of a graph G, we define a partial coloring
function col : V (G)→ 2[`]. That is, we have i ∈ col(v) if and only if v ∈ Pi, for some i ∈ [`].
In this context, for a set C ⊆ [`], a subset S of vertices of G is called C-colorful if, for each
i ∈ C, there is a vertex v in S such that i ∈ col(v). For a subset S ⊆ V (G), we denote by
col(S) the set {j | v ∈ S ∩ (

⋃`
i=1 Pi) ∧ j ∈ col(v)}, i.e. the set of colors appearing in S. The

CMWC can now be defined as follows.
Colorful Multiway Cut (CMWC) Parameter(s): k, |T |, and `

Input: A graph G = (V,E), a set T ⊆ V (G), a partition T of T into (pairwise disjoint)
sets {T1, . . . , Tr}, a grouping P of the vertices of G into (not necessarily distinct) sets
{P1, . . . , P`}, a set C ⊆ [`], and an integer k.
Question: Is there a set S ⊆ V (G) \ T such that |S| ≤ k, S is a T -multiway cut in G,
and S is C-colorful?

4.1 Setting up the algorithm
Let (G,T, T ,P, C, k) be an instance of CMWC. We start by stating a few simple reduction
rules (which are applied in the order they are stated).

I Reduction Rule 1. If k < 0 then return false, i.e. (G,T, T ,P, C, k) is a no-instance.

I Reduction Rule 2. If k = 0 and ∅ is a solution to (G,T, T ,P, C, k) then return true, i.e.
(G,T, T ,P, C, k) is yes-instance. If k = 0 and ∅ is not a solution then return false.

I Reduction Rule 3. If there exists i ∈ C such that Pi ⊆ T then return false.

I Reduction Rule 4. If there exists i ∈ C such that Pi ∩ T 6= ∅ then set Pi = Pi \ T .

I Reduction Rule 5. If there exists i ∈ C such that Pi = ∅ then return false.

I Reduction Rule 6. If T is not an edge-free partition then return false.
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It is easy to see that Reduction Rules 1 to 6 are safe and can be applied in polynomial
time. When k > 0 and ∅ is a T -multiway cut, we can solve the corresponding instance in
time O?(2O(`)). The following observation describes how.

I Observation 1. Let I = (G,T, T ,P, C, k) be an instance of Colorful Multiway Cut.
If k > 0 and ∅ is a T -multiway cut then I can be solved in O(2O(`)n2) time, where n = |V (G)|.

Proof. If k > 0 and ∅ is a T -multiway cut then we are left with the problem of finding a set
S ⊆ V (G) \ T of size at most k such that S ∩ Pi 6= ∅, for each i ∈ C. Hence, we construct a
family F consisting of a set fPi = Pi for each for each i ∈ C and we let U = ∪i∈CPi. Note
that |F| ≤ ` ≤ αk and |U| ≤ |V (G)|. Since Reduction Rules 3, 4, and 5 are not applicable,
for each i ∈ C, we have fPi 6= ∅ and Pi ∩ T = ∅. If we can find a subset U ⊆ U which
intersects all the sets in F , such that |U | ≤ k, then U is the required solution. Otherwise,
we have a no-instance. It is known that the Hitting Set problem parameterized by the size
of the family F is fixed-parameter tractable and can be solved in O(2O(|F|)|U|2) time [7]. In
particular, we can find an optimum hitting set U ⊆ U , hitting all the sets in F . Therefore,
we have a subset of vertices that intersects all sets Pi, for i ∈ C. J

Before proceeding with the description of the algorithm, we first recall the notion of
tight separator sequences introduced in [19]. However, the definition and structural lemmas
regarding tight separator sequences used in this paper are from [20]. Note that although [20]
contains Definition 4.2 and Lemma 4.3 in terms of directed graphs, the same holds true for
undirected graphs because one can represent any undirected graph as a directed graph by
adding bidirectional edges between every pair of adjacent vertices.

I Definition 4.2. Let X and Y be two subsets of V (G) and let k ∈ N. A tight (X,Y )-
reachability sequence of order k is an ordered collection H = {H0, H1, . . . ,Hq, Hq+1} of sets
in V (G) satisfying the following properties:

X ⊆ Hi ⊆ V (G) \N [Y ] for any 0 ≤ i ≤ q;
X = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hq ⊂ Hq+1 = V (G) \ Y ;
Hi is reachable from X in G[Hi] and every vertex in N(Hi) can reach Y in G−Hi

(implying that N(Hi) is a minimal (X,Y )-separator in G);
|N(Hi)| ≤ k for every 1 ≤ i ≤ q;
N(Hi) ∩N(Hj) = ∅ for all 1 ≤ i, j ≤ q and i 6= j;
For any 0 ≤ i ≤ q − 1, there is no (X,Y )-separator S of size at most k where S ⊆
Hi+1 \N [Hi] or S ∩N [Hq] = ∅ or S ⊆ H1.

We let Q0 = X, Qi = N(Hi), for 1 ≤ i ≤ q, Qq+1 = Y , and Q = {Q0, Q1, . . . , Qq, Qq+1}.
We call Q a tight (X,Y )-separator sequence of order k.

I Lemma 4.3. (see [20]) There is an algorithm that, given a graph G on n vertices and
m edges, subsets X,Y ⊆ V (G) and k ∈ N, runs in time O(k2nm) and either correctly
concludes that there is no (X,Y )-separator of size at most k in G or returns the sets
H0, H1, H2\H1, . . . ,Hq\Hq−1, Hq+1\Hq corresponding to a tight (X,Y )-reachability sequence
H = {H0, H1, . . . ,Hq, Hq+1} of order k.

Our algorithm will be a combination of dynamic programming over the sets Qi, 0 ≤ i ≤
q + 1, and recursive calls for solving “smaller” instances of the same problem. Below we
state some observations that help understand the structure of a solution and are crucial for
achieving the stated running time.
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Algorithm 1: Pseudocode for ALG1
Input: (G,T, T ,P, C, k)
Output: true or false

1 Apply all reduction rules (in order) and return true/false appropriately (if applicable).
2 if k > 0 and ∅ is a T -multiway cut then
3 return true/false appropriately (Observation 1)
4 Let T1 ∈ T such that T1 is linked to some Tj ∈ T , where j 6= 1.
5 Let H = {H0, H1, . . . ,Hq, Hq+1} be a (T1,T \ T1)-reachability sequence of order k;
6 Let Q = {Q0, Q1, . . . , Qq, Qq+1} be the corresponding (T1,T \ T1)-separator sequence;
7 if Q = ∅ then
8 return false;
9 return ALG2(G,T, T ,P, C, k,Q);

I Observation 2. Let (G,T, T ,P, C, k) be an instance of Colorful Multiway Cut and let
T1 be a set in T which is linked to some set in T \ {T1}. Moreover, let H = {H0, H1, . . . ,Hq,
Hq+1} be a tight (T1,T \ T1)-reachability sequence of order k and let Q = {Q0, Q1, . . . , Qq,
Qq+1} be the corresponding tight separator sequence. Assume (G, T , T , P, C, k) is a
yes-instance and let S be one of its solution. Then, S can be partitioned into the following
(pairwise-disjoint) sets.

Z1 = S ∩ (H1 \Q0).
Si = S ∩Qi for 1 ≤ i ≤ q.
Zi = (S ∩ (Hi \N [Hi−1])) \Qq+1 for 2 ≤ i ≤ q + 1.

I Observation 3. |Zi| ≤ k − 1 for each i ∈ [q + 1].

To keep the presentation clean, we shall define two routines ALG1 and ALG2. ALG1
(Algorithm 1) delegates most of the “heavy lifting” to ALG2. That is, ALG1 simply checks
if any of the reduction rules are applicable and solves the instance if it corresponds to one of
the base cases. When this is not the case, ALG1 proceeds by computing a tight separator
sequence and calls ALG2. Note that we can safely return false when the algorithm fails to
construct such a sequence (Lines 7 and 8 of Algorithm 1). We now move to the description
of ALG2, which takes as additional input the newly constructed tight separator sequence.
Roughly speaking, ALG2 will recursively solve a “large” number of instances restricted
to graphs that “reside” between two consecutive separators of a separator sequence. The
number of instances will be bounded by the number of possible “interactions” between the
two consecutive separators and a hypothetical solution. However, due to Observation 3, each
one of those recursive calls can be made with a strictly smaller value of k. Having solved all
such instances (and stored the outcomes in tables), ALG2 then proceeds using a dynamic
programming routine which computes the answer in a left-to-right manner, i.e. starting from
Q0 all the way to Qq+1. We now give a formal description.

I Definition 4.4. For a graph G and a tight separator sequence Q = {Q0, Q1, . . . , Qq, Qq+1},
we let Gi = G−RG(Qq+1, Qi), i.e. the graph obtained after removing the vertices that are
reachable from Qq+1 after deleting Qi, and we let Ĝi = Gi − (V (Gi−1) \Qi−1).

For each graph Gi, i ∈ [q + 1], we maintain a table Γi, where each entry is indexed by a
tuple (X,A, C, p). For each graph Ĝi, i ∈ [q + 1], we maintain a table Λi, where each entry
is indexed by a tuple (L,R,B, Ĉ, p̂). The tuples are described below.
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Algorithm 2: Pseudocode for ALG2
Input: (G,T, T ,P, C, k,Q)
Output: true or false

1 Initialize all entries in Γi to false, for i ∈ [q + 1];
2 Initialize all entries in Λi to false, for i ∈ [q + 1];
3 for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} do
4 for each L ⊆ Qi−1 \ T and each each R ⊆ Qi \ T do
5 for each edge-free partition B of (Qi−1 ∪Qi) \ (L ∪R) do
6 for each Ĉ ⊆ [`] and each 0 ≤ p̂ ≤ k −max{1, |L ∪R|} do
7 I = (Ĝi − (L ∪R), (Qi−1 ∪Qi) \ (L ∪R),B,P

∣∣
V (Gi−(L∪R)), p̂);

8 Λi(L,R,B, Ĉ, p̂) = ALG1(I);

9 Copy table entries for Γ1, i.e. Γ1(X,A, C, p) = Λ1(∅, X,A, C, p);
10 for each Gi ∈ {G2, . . . , Gq+1} (in order) do
11 for each X ⊆ Qi \ T do
12 for each edge-free partition A of (Qi ∪Q0) \X do
13 for each C ⊆ [`] and each 0 ≤ p ≤ k − |X| do
14 τ1 = (X,A, C, p);
15 for each tuple τ2 = (L,R,B, Ĉ, p̂) ∈ Λi do
16 for each tuple τ3 = (X ′,A′, C ′, p′) ∈ Γi−1 do
17 if τ1, τ2, and τ3 are compatible then
18 Γi(τ1) = Γi(τ1) ∨ [Γi−1(τ3) ∧ Λi(τ2)];

19 if Γq+1(∅, T , C, p) = true (for some p ≤ k) then
20 return true;
21 return false;

X ⊆ Qi \ T and L ⊆ Qi−1 \ T and R ⊆ Qi \ T ;
A is an edge-free partition of (Qi ∪Q0) \X;
B is an edge-free partition of (Qi−1 ∪Qi) \ (L ∪R);
C, Ĉ ⊆ [`] and p ≤ k − |X| and p̂ ≤ k − |L ∪R| if L ∪R 6= ∅ and p̂ ≤ k − 1, otherwise.

I Definition 4.5. For a tuple τ = (X,A, C, p), we denote by Iτ the instance (Gi −X, (Qi ∪
Q0) \X,A,P

∣∣
V (Gi−X), C, p) of CMWC. Similarly, for a tuple τ = (L,R,B, Ĉ, p̂), we denote

by Iτ the instance (Ĝi − (L ∪R), (Qi−1 ∪Qi) \ (L ∪R),B,P
∣∣
V (Gi−(L∪R)), Ĉ, p̂) of CMWC.

Finally, we define Γi(τ) (or Λi(τ))= true if and only if Iτ is a yes-instance of CMWC.

I Definition 4.6. Given three tuples τ1 = (X,A, C, p), τ2 = (L,R,B, Ĉ, p̂), and τ3 =
(X ′,A′, C ′, p′), we say that they are compatible if all of the following conditions hold.

τ1 ∈ Γi and τ2 ∈ Λi and τ3 ∈ Γi−1, where i ∈ [q + 1];
X ′ = L and X = R;
A
∣∣
Qi\X

= B
∣∣
Qi\R

and B
∣∣
Qi−1\L

= A′
∣∣
Qi−1\X′

and A
∣∣
Q0

= A′
∣∣
Q0

;
p′ + p̂+ |L| ≤ p and C ′ ∪ Ĉ ∪ col(L) = C.

The complete description of ALG2 is given in Algorithm 2. Initially, we set all table
entries to false (Lines 1 and 2). Then, for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} and for each possible
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tuple (L,R,B, Ĉ, p̂) ∈ Λi, we solve the corresponding CMWC instance I = (Ĝi − (L ∪
R), (Qi−1 ∪Qi) \ (L∪R),B,P

∣∣
V (Gi−(L∪R)), p̂). That is, we set Λi(L,R,B, Ĉ, p̂) if I is a yes-

instance (Lines 3 to 8). Having computed all those values, we then proceed to filling table Γ1.
Since G0 is a subgraph of G1, and G1 = Ĝ1, we simply set Γ1(X,A, C, p) = Λ1(∅, X,A, C, p)
(for all tuples). This is justified by the fact that a solution is not allowed to delete any vertex
in Q0. To complete table Γi, i > 1, we simply use the following:

Γi(X,A, C, p) =
∨

[Γi−1(X ′,A′, C ′, p′) ∧ Λi(L,R,B, Ĉ, p̂)],

where tuples (X,A, C, p), (X ′,A′, C ′, p′), and (L,R,B, Ĉ, p̂) are compatible. Finally,
ALG2 returns true whenever there exists a tuple Γq+1(∅, T , C, p) = true (for some p ≤ k).

4.2 Correctness and runtime analysis

We are now ready to prove our main structural lemma which reduces the computation of
the entries in Γi (when i > 1) to those in Γi−1 and Λi. The lemma is proved in a purely
existential setting and serves as the proof of correctness of the algorithm.

I Lemma 4.7. For any i ∈ [q+ 1] and tuple τ1 = (X,A, C1, p1) ∈ Γi, Iτ1 is a yes-instance if
and only if there is a tuple τ2 = (L,R,B, C2, p2) ∈ Λi and a tuple τ3 = (X ′,A′, C3, p3) ∈ Γi−1
such that Iτ2 and Iτ3 are both yes-instances and all three tuples are compatible.

I Theorem 4.8. Colorful Multiway Cut can be solved in O?((k + t)O(kt+k3)2O(`k))
time, where t = |T |.

I Corollary 4.9. Simultaneous FVS/OCT can be solved in O?(kpoly(α,k)) time.

Proof. Recall that Lemmas 3.1 and 3.2 together imply that if we can solve an instance
of Colorful Separator in O?(kpoly(α,k)) time then the algorithm for Simultaneous
FVS/OCT follows. Any instance of Colorful Separator can be reduced to an instance
of Colorful Multiway Cut with |T | = 2. From Theorem 4.8, such an instance can be
solved in time O?(kO(k3)2O(αk)). J

5 W[1]-hardness of Simultaneous OCT

In this section we show that Simultaneous OCT is W[1]-hard. For notational convenience,
we shall use a different encoding of α-edge-colored graphs. Given a graph G with vertex set
V (G) and edge set E(G), we define a coloring function col(e) ⊆ 2[α]. In particular, when
α = 2, we have col(e) ⊆ 2{1,2}. We start by establishing W[1]-hardness of Simultaneous
Cut, which is formally defined below.

Simultaneous Cut Parameter(s): k and α

Input: A graph G, two vertices s, t ∈ V (G), an integer k, and a coloring function
col : E(G)→ 2[α].
Question: Is thereX ⊆ V (G)\{s, t} of size at most k such that, for all i ∈ [α], Gi−X has
no (s,t)-paths? Here, for i ∈ [α], Gi = (V (G), Ei), where Ei = {e ∈ E(G) | i ∈ col(e)}.

We give a parameterized reduction from Multicolored Clique which is known to be
W[1]-hard [7]. The Multicolored Clique problem is formally defined below.
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Multicolored Clique Parameter(s): k
Input: A k-partite graph G with a partition V1, V2, . . . , Vk of V (G) such that for all
i, j ∈ [k], |Vi| = |Vj |.
Question: Is there X ⊆ V (G) such that, for all i ∈ [k], |X ∩ Vi| = 1 and G[X] is a
clique?
Given an instance (G,V1, V2, . . . , Vk) of Multicolored Clique, we proceed by creating

an instance (G′, s, t, k′, col′ : E(G′)→ 2{1,2}) of Simultaneous Cut such that (G, V1, V2,
. . ., Vk) is a yes-instance of Multicolored Clique if and only if (G′, s, t, k′, col′ : E(G′)→
2{1,2}) is a yes-instance of Simultaneous Cut.

The intuitive description of the parameterized reduction is as follows. Let (G,V1, V2, . . . ,

Vk) be an instance of Multicolored Clique. Since |Vi| = |Vj |, for all i, j ∈ [k], we assume
that |Vi| = |Vj | = n. Furthermore, we assume that for every i, j ∈ [k], i 6= j, there is at least
one edge between Vi and Vj , otherwise, the instance is a trivial no-instance of Multicolored
Clique and our reduction will simply output a trivial no-instance of Simultaneous Cut
with α = 2. For each i ∈ [k] we assume an arbitrary (but fixed) ordering on the vertices in
Vi. For each i ∈ [k], we will have a vertex selection gadget Si that will be responsible for
selecting a vertex in Vi. To achieve this, Si will have k − 1 copies of each vertex in Vi, so
that each vertex in Vi has a copy corresponding to every j ∈ [k] \ {i}. For each j ∈ [k] \ {i},
we have an (s,t)-path with all edges having color 1. Each path contains exactly one copy of
every vertex in Vi. Furthermore, these vertices appear in the order given by the ordering we
already fixed on the vertices of Vi.

The jth copy of the vertex set Vi will be used to ensure that there is an edge between
the selected vertex in Vi and a vertex in Vj . The copies of any single vertex will form an
(s,t)-separator of size k − 1. Furthermore, the size of minimum (s,t)-separator in Si will be
k − 1 and there will be exactly n distinct minimum separator each of which will correspond
to a set comprising of k − 1 copies of a vertex in Vi. By construction of the gadget and by
setting budget constraints appropriately we will ensure that we must select a vertex from
each of the k − 1 copies of Vi, for each i ∈ [k] and the selected k − 1 vertices correspond to
copies of the same vertex, i.e. we select a minimum separator. This will ensure that we have
selected exactly one vertex from each Vi, for i ∈ [k].

For i, j ∈ [k], i 6= j, we will have edge selection gadgets Eij which will ensure that there
is an edge selected between Vi and Vj , and the selected edge is incident to the vertex selected
from the vertex selection gadget. Finally, we will have a compatibility gadget which will
ensure that the edges selected by Eij and Eji correspond to the same edge in G. We need to
differentiate between gadgets Eij and Eji for technical reasons that will become clear later.
We will now move to the formal description of the reduction.

Construction. Initially, V (G′) = ∅ and E(G′) = ∅. We add two special vertices s and t
to V (G′), which are the vertices we want to separate, and which will be common to all
the gadgets. For i ∈ [k] we let vij be the jth vertex in Vi. We now formally describe the
construction of the various gadgets. We note that the gadgets are not necessarily vertex or
edge disjoint (in addition to intersecting with {s, t}).

Vertex Selection Gadget. For each i ∈ [k] we have a vertex selection gadget Si defined
as follows. For each j ∈ [k] \ {i}, Si contains vertices in Vij = {vij1, vij2, . . . , vijn}. Here, the
vertices vij1, vij2, . . . , vijn corresponds to one copy of the vertices vi1, vi2, . . . vin in Vi. Note that
for j, j′ ∈ [k] \ {i} vertices vij`, vij′` correspond to copies of the same vertex, namely vi` ∈ Vi.
For i ∈ [k] and ` ∈ [n], we let V i` = {vij` | j ∈ [k] \ {i}}, i.e. V i` denotes the set comprising of
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k − 1 copies of the vertex vi` ∈ Vi. For i ∈ [k], ` ∈ [n− 1], and for each u ∈ V i` and u′ ∈ V i`+1
we add the edge (u, u′) ∈ E(G′) and set col′((u, u′)) = {1}. Note that G′[V i` ∪ V i`+1] is a
complete bipartite graph with all edges having the color 1 in their color set. For i ∈ [k],
u ∈ V i1 we add the edge (s, u) ∈ E(G′) and set col′((s, u)) = {1}. Similarly, for i ∈ [k],
u ∈ V in we add the edge (u, t) ∈ E(G′) and set col′((u, t)) = {1}.

Edge Selection Gadget. For i ∈ [k] and j ∈ [k] \ {i} the edge selection gadget Eij is
constructed as follows. The vertex set of Eij contains a vertex euu′ , for each edge (u, u′) ∈ E(G)
with u ∈ Vi and u′ ∈ Vj . We note here that Eij and Eji denote distinct gadgets. For ` ∈ [n],
we let Eij` = {evi

`
u′ | u′ ∈ Vj , (vi`, u) ∈ E(G)}, i.e. Eij` contains vertices corresponding to

those edges between Vi and Vj that are incident to the vertex vi` ∈ Vi. We let Eij = ∪`∈[n]E
ij
` .

For ` ∈ [n] and each u ∈ Eij` , we add the edge (u, vij`) to Eij . We add an induced path
P ij` on the vertices in Eij` (where the vertices appear in the natural order implied by the
ordering of the vertices in Vj) and add these edges to E ij` . For each edge e ∈ E(P ij` ), we let
col′(e) = {2}. For ` ∈ [n + 1], we let Kij

` denote a K3,3 (complete bipartite graph with 3
vertices on both side) with vertex bipartition ({pij` , q

ij
` , r

ij
` }, {p̄

ij
` , q̄

ij
` , r̄

ij
` }) and add it to Eij .

We will refer to Kij
` s as barrier blocks of Eij . Finally, we join s, t and Eij` , for ` ∈ [n] using

the barrier blocks. This is done as follows.
For ` ∈ [n], let aij` , b

ij
` be the first and the last vertex respectively, in the path P ij` . We add

the edges (aij` , p̄
ij
` ), (aij` , q̄

ij
` ), (aij` , r̄

ij
` ) and (bij` , p

ij
`+1), (bij` , q

ij
`+1), (bij` , r

ij
`+1) to E(Eij). Also,

for ` ∈ [n], we add the edges (vij`, p̄
ij
` ), (vij`, q̄

ij
` ), (vij`, r̄

ij
` ) and (vij`, p

ij
`+1), (vij`, q

ij
`+1), (vij`, r

ij
`+1)

to E(Eij). In addition, we add the edges (s, pij1 ), (s, qij1 ), (s, r̄ij1 ), (p̄ijn+1, t), (q̄
ij
n+1, t), (r̄

ij
n+1, t)

to Eij . For each e ∈ E(Eij), we set col′(e) = {2}. This completes the description of the edge
selection gadget.

Edge Compatibility Gadget. This gadget is used to ensure that the edge selected by Eij and
Eji corresponds to the same edge of G. For i, j ∈ [k], i < j, the edge compatibility gadget Cij
is constructed as described below. Basically, Cij comprises of a set of edges between vertices in
Eij and vertices in Eji. Recall that Eij and Eji contains vertices corresponding to the same
edges, namely the edges between Vi and Vj inG. Hence, we can think of Eji as a set comprising
of a copy of the vertices in Eij . We fix a lexicographic ordering on vertices in Eij which we
obtain as follows. For evia,vjx , evib,vjy ∈ Eij , evia,vjx < evi

b
,vjy

if (i) a < b or (ii) a = b and x < y.
We denote the ordering of vertices in Eij by eij1 , e

ij
2 , . . . , e

ij
m. Note this also fixes an ordering of

vertices in Eji which we denote by eji1 , e
ji
2 , . . . , e

ji
m. Here, m is the number of edges between Vi

and Vj in G. For ` ∈ [m− 1], we add the edges (eij` , e
ij
`+1), (eij` , e

ji
`+1), (eji` , e

ij
`+1), (eji` , e

ji
`+1) to

Cij . That is we add all the edges in the bipartition between each consecutive pair of vertices
in the ordered sets Eij and Eji. We add edges (s, eij1 ), (s, eji1 )(eijm, t), (ejim, t) to Cij . For each
edge e ∈ Cij , we set col′(e) = {1}. We note here that in case we have created multiple edges
say e, e′ between vertices u, v then we delete e′ and set col′(e) := col′(e) ∪ col′(e′).

We finally set k′ = k(k − 1) + 2
(
k
2
)
. We denote the graph constructed above by G′ with

the coloring function on the edge set denoted by col′.
I Lemma 5.1. (G,V1, V2, . . . , Vk) is a yes-instance of Multicolored Clique if and only
if (G′, s, t, k′, col′ : E(G′)→ 2{1,2}) is a yes-instance of Simultaneous OCT.

I Theorem 5.2. For all α ≥ 2, Simultaneous Cut is W[1]-hard when parameterized by k.
Here, α is the number of colors in the coloring function of the edge set.

We give a parameterized reduction from Simultaneous Cut to Simultaneous OCT,
which implies the following theorem.
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I Theorem 5.3. For all α ≥ 2, Simultaneous OCT is W[1]-hard when parameterized by
k. Here, α is the number of colors in the coloring function of the edge set.

6 Conclusion

In light of Theorem 4.8, it is natural to ask whether one can improve the running time of our
algorithm for Colorful Multiway Cut. In particular, is it possible to solve the problem
in O?(kO(k)) time when the number of terminals is constant and the number of colors is at
most k? Another interesting question which remains open is whether the Simultaneous
FVS/OCT problem admits a (randomized) polynomial kernel. Finally, we would also like to
point out another interesting consequence of Theorem 5.3, i.e. the fact that Simultaneous
OCT is W[1]-hard when parameterized by k. If we replace minimal feedback vertex sets by
minimal odd cycle transversals in Lemma 2.3 then Theorem 5.3 implies that such a lemma
cannot be true.
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