8,890 research outputs found

    Enhancing Smart Grid Resilience : An Educational Approach to Smart Grid Cybersecurity Skill Gap Mitigation

    Get PDF
    Cybersecurity competencies are critical in the smart grid ecosystem, considering its growing complexity and expanding utilization. The smart grid environment integrates different sensors, control systems, and communication networks, thus augmenting the potential attack vectors for cyber criminals. Therefore, interdisciplinary competencies are required from smart grid cybersecurity specialists. In the meantime, there is a lack of competence models that define the required skills, considering smart grid job profiles and the technological landscape. This paper aims to investigate the skill gaps and trends in smart grid cybersecurity and propose an educational approach to mitigate these gaps. The educational approach aims to provide guidance for competence-driven cybersecurity education programs for the design, execution, and evaluation of smart grids.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Development of smart grid testbed with low-cost hardware and software for cybersecurity research and education

    Get PDF
    Smart Grid, also known as the next generation of the power grid, is considered as a power infrastructure with advanced information and communication technologies (ICT) that will enhance the efficiency and reliability of power systems. For the essential benefits that come with Smart Grid, there are also security risks due to the complexity of advanced ICT utilized in the architecture of Smart Grid to interconnect a huge number of devices and subsystems. Cybersecurity is one of the emerging major threats in Smart Grid that needs to be considered as the attack surface increased. To prevent cyber-attacks, new techniques and methods need to be evaluated in a real-world environment or in a testbed. However, the costs for setting-up Smart Grid testbed is extensive. In this article, we focused on the development of a smart grid testbed with a low-cost hardware and software for cybersecurity research and education. As a case study, we evaluated the testbed with most common cyber-attack such as denial of service (DoS) attack. In addition, the testbed is a useful resource for cybersecurity research and education on different aspects of SCADA systems such as protocol implementation, and PLC programming

    Security Challenges in Smart-Grid Metering and Control Systems

    Get PDF
    The smart grid is a next-generation power system that is increasingly attracting the attention of government, industry, and academia. It is an upgraded electricity network that depends on two-way digital communications between supplier and consumer that in turn give support to intelligent metering and monitoring systems. Considering that energy utilities play an increasingly important role in our daily life, smart-grid technology introduces new security challenges that must be addressed. Deploying a smart grid without adequate security might result in serious consequences such as grid instability, utility fraud, and loss of user information and energy-consumption data. Due to the heterogeneous communication architecture of smart grids, it is quite a challenge to design sophisticated and robust security mechanisms that can be easily deployed to protect communications among different layers of the smart grid-infrastructure. In this article, we focus on the communication-security aspect of a smart-grid metering and control system from the perspective of cryptographic techniques, and we discuss different mechanisms to enhance cybersecurity of the emerging smart grid. We aim to provide a comprehensive vulnerability analysis as well as novel insights on the cybersecurity of a smart grid

    ELECTRON: An Architectural Framework for Securing the Smart Electrical Grid with Federated Detection, Dynamic Risk Assessment and Self-Healing

    Get PDF
    The electrical grid has significantly evolved over the years, thus creating a smart paradigm, which is well known as the smart electrical grid. However, this evolution creates critical cybersecurity risks due to the vulnerable nature of the industrial systems and the involvement of new technologies. Therefore, in this paper, the ELECTRON architecture is presented as an integrated platform to detect, mitigate and prevent potential cyberthreats timely. ELECTRON combines both cybersecurity and energy defence mechanisms in a collaborative way. The key aspects of ELECTRON are (a) dynamic risk assessment, (b) asset certification, (c) federated intrusion detection and correlation, (d) Software Defined Networking (SDN) mitigation, (e) proactive islanding and (f) cybersecurity training and certification

    Cyber Hygiene Maturity Assessment Framework for Smart Grid Scenarios

    Get PDF
    Cyber hygiene is a relatively new paradigm premised on the idea that organizations and stakeholders are able to achieve additional robustness and overall cybersecurity strength by implementing and following sound security practices. It is a preventive approach entailing high organizational culture and education for information cybersecurity to enhance resilience and protect sensitive data. In an attempt to achieve high resilience of Smart Grids against negative impacts caused by different types of common, predictable but also uncommon, unexpected, and uncertain threats and keep entities safe, the Secure and PrivatE smArt gRid (SPEAR) Horizon 2020 project has created an organization-wide cyber hygiene policy and developed a Cyber Hygiene Maturity assessment Framework (CHMF). This article presents the assessment framework for evaluating Cyber Hygiene Level (CHL) in relation to the Smart Grids. Complementary to the SPEAR Cyber Hygiene Maturity Model (CHMM), we propose a self-assessment methodology based on a questionnaire for Smart Grid cyber hygiene practices evaluation. The result of the assessment can be used as a cyber-health check to define countermeasures and to reapprove cyber hygiene rules and security standards and specifications adopted by the Smart Grid operator organization. The proposed methodology is one example of a resilient approach to cybersecurity. It can be applied for the assessment of the CHL of Smart Grids operating organizations with respect to a number of recommended good practices in cyber hygiene.This project has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 787011 (SPEAR

    Emerging Challenges in Smart Grid Cybersecurity Enhancement: A Review

    Get PDF
    In this paper, a brief survey of measurable factors affecting the adoption of cybersecurity enhancement methods in the smart grid is provided. From a practical point of view, it is a key point to determine to what degree the cyber resilience of power systems can be improved using cost-effective resilience enhancement methods. Numerous attempts have been made to the vital resilience of the smart grid against cyber-attacks. The recently proposed cybersecurity methods are considered in this paper, and their accuracies, computational time, and robustness against external factors in detecting and identifying False Data Injection (FDI) attacks are evaluated. There is no all-inclusive solution to fit all power systems requirements. Therefore, the recently proposed cyber-attack detection and identification methods are quantitatively compared and discusse

    Cyber Infrastructure Protection: Vol. III

    Get PDF
    Despite leaps in technological advancements made in computing system hardware and software areas, we still hear about massive cyberattacks that result in enormous data losses. Cyberattacks in 2015 included: sophisticated attacks that targeted Ashley Madison, the U.S. Office of Personnel Management (OPM), the White House, and Anthem; and in 2014, cyberattacks were directed at Sony Pictures Entertainment, Home Depot, J.P. Morgan Chase, a German steel factory, a South Korean nuclear plant, eBay, and others. These attacks and many others highlight the continued vulnerability of various cyber infrastructures and the critical need for strong cyber infrastructure protection (CIP). This book addresses critical issues in cybersecurity. Topics discussed include: a cooperative international deterrence capability as an essential tool in cybersecurity; an estimation of the costs of cybercrime; the impact of prosecuting spammers on fraud and malware contained in email spam; cybersecurity and privacy in smart cities; smart cities demand smart security; and, a smart grid vulnerability assessment using national testbed networks.https://press.armywarcollege.edu/monographs/1412/thumbnail.jp

    Smart Metering Communication Protocols and Performance Under Cyber Security Vulnerabilities

    Get PDF
    The communication process is the key that characterizes the modern concept of smart grid, a new technology that introduced a “two-way communication” in energy measurement systems and can be best represented through the smart meters. Hence, the goal of smart metering communication is to ensure a secure and reliable transmission of information that can only be accessed by end users and energy supplying companies. With the goal of improving the information security in smart energy grids, the research presented in this work focused on studying different advanced metering infrastructure communication protocols and, it showcases a series of experiments performed on smart meters to evaluate their defenses against a set of cybersecurity attacks. A small-scale simulation of a smart metering system was performed in the cybersecurity laboratory in the department of Electrical and Computer Engineering at the University of Texas - Rio Grande Valley; and specialized software applications were developed to retrieve data in real time. Our experimental results demonstrated that security attacks have a considerable impact on the communication aspect of smart meters. This could help making smart meter manufacturing companies aware of the dangers caused by cyber-attacks and develop robust defenses against security attacks and enhance overall efficiency and reliability of the smart grid power delivery

    Cybersecurity Vulnerabilities in Smart Grids with Solar Photovoltaic: A Threat Modelling and Risk Assessment Approach

    Get PDF
    Cybersecurity is a growing concern for smart grids, especially with the integration of solar photovoltaics (PVs). With the installation of more solar and the advancement of inverters, utilities are provided with real-time solar power generation and other information through various tools. However, these tools must be properly secured to prevent the grid from becoming more vulnerable to cyber-attacks. This study proposes a threat modeling and risk assessment approach tailored to smart grids incorporating solar PV systems. The approach involves identifying, assessing, and mitigating risks through threat modeling and risk assessment. A threat model is designed by adapting and applying general threat modeling steps to the context of smart grids with solar PV. The process involves the identification of device assets and access points within the smart grid infrastructure. Subsequently, the threats to these devices were classified utilizing the STRIDE model. To further prioritize the identified threat, the DREAD threat-risk ranking model is employed. The threat modeling stage reveals several high-risk threats to the smart grid infrastructure, including Information Disclosure, Elevation of Privilege, and Tampering. Targeted recommendations in the form of mitigation controls are formulated to secure the smart grid’s posture against these identified threats. The risk ratings provided in this study offer valuable insights into the cybersecurity risks associated with smart grids incorporating solar PV systems, while also providing practical guidance for risk mitigation. Tailored mitigation strategies are proposed to address these vulnerabilities. By taking proactive measures, energy sector stakeholders may strengthen the security of their smart grid infrastructure and protect critical operations from potential cyber threats

    Development of a Smart Grid Course in an Electrical Engineering Technology Program

    Get PDF
    Electric power systems courses have been traditionally offered by electrical engineering technology programs for a long time, with the main objective to introduce students to the fundamental concepts in the field of electric power systems and electrical to mechanical energy conversion. A typical electric power systems course covers a variety of topics, such as general aspects of electric power system design, electric generators, components of transmission and distribution systems, power flow analysis, system operation, and performance measures. In the last decades, electric power systems have significantly modernized alongside with requirement of improvement in system efficiency, reliability, cybersecurity, and environmental sustainability. The current modernized grid is called “Smart Grid,” which integrates advanced sensing technologies, control methods using machine learning approaches, and integrated communications into current electric power systems. Consequently, offered electric power systems courses are required to update in electrical engineering technology as well, to meet the industry needs of a workforce prepared to integrate smart grid technologies, such as advanced sensing, control, monitoring, communication, renewable energy, storage, computing, cybersecurity, etc. However, such updates of the course content are not always easy to implement due to the complexity of smart grid technologies and the limited number of instructors having knowledge of those technologies. In addition, smart grid courses should include a hands-on component aligned with the theoretical upgrades introduced in the course in the form of term projects. Such projects can be on a variety of topics, such as smart home/building, smart meter, smart distribution system, microgrid, communication infrastructure, Distributed energy resources (DERs) (e.g., rooftop solar photovoltaics (PV), wind), electric vehicle (EV), customer engagement, energy generation forecasting, load forecasting, and others. This paper will discuss the details of introducing a new course on smart grids in an electrical engineering technology program, including detailed examples of project selection
    • …
    corecore