23 research outputs found

    Cyber-Physical Modeling of Implantable Cardiac Medical Devices

    Get PDF
    The design of bug-free and safe medical device software is challenging, especially in complex implantable devices that control and actuate organs in unanticipated contexts. Safety recalls of pacemakers and implantable cardioverter defibrillators between 1990 and 2000 affected over 600,000 devices. Of these, 200,000 or 41%, were due to firmware issues and their effect continues to increase in frequency. There is currently no formal methodology or open experimental platform to test and verify the correct operation of medical device software within the closed-loop context of the patient. To this effect, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning and malfunctioning (i.e., during arrhythmia) heart. By extracting the timing properties of the heart and pacemaker device, we present a methodology to construct a timed-automata model for functional and formal testing and verification of the closed-loop system. The VHM\u27s capability of generating clinically-relevant response has been validated for a variety of common arrhythmias. Based on a set of requirements, we describe a closed-loop testing environment that allows for interactive and physiologically relevant model-based test generation for basic pacemaker device operations such as maintaining the heart rate, atrial-ventricle synchrony and complex conditions such as pacemaker-mediated tachycardia. This system is a step toward a testing and verification approach for medical cyber-physical systems with the patient-in-the-loop

    An intracardiac electrogram model to bridge virtual hearts and implantable cardiac devices

    Full text link
    Virtual heart models have been proposed to enhance the safety of implantable cardiac devices through closed loop validation. To communicate with a virtual heart, devices have been driven by cardiac signals at specific sites. As a result, only the action potentials of these sites are sensed. However, the real device implanted in the heart will sense a complex combination of near and far-field extracellular potential signals. Therefore many device functions, such as blanking periods and refractory periods, are designed to handle these unexpected signals. To represent these signals, we develop an intracardiac electrogram (IEGM) model as an interface between the virtual heart and the device. The model can capture not only the local excitation but also far-field signals and pacing afterpotentials. Moreover, the sensing controller can specify unipolar or bipolar electrogram (EGM) sensing configurations and introduce various oversensing and undersensing modes. The simulation results show that the model is able to reproduce clinically observed sensing problems, which significantly extends the capabilities of the virtual heart model in the context of device validation

    Improve Performance of FLASE Alarm Detection by using CFAR and Low Pass Filter

    Full text link
    Cyber –Physical System (CPS) is an integration of physical systems with computation, communication and controlling. CPS has various applications such as power networks, transportation networks, healthcare applications, infrastructures and industrial process. CPS connects the virtual world with the physical world. Wireless Sensor Networks (WSN) are the vital part of CPS because they have the strong sensing capabilities. In CPS healthcare application various sensors are used to collect the data from patients. Many times these sensors generate a large number of false alarms. Due to these false alarms confusion is created and it reduces the efficiency of overall healthcare services. There are still a lot of challenges in healthcare such as intoperability, security and privacy, autonomy and device verifiability. In this paper, we improve the performance of false alarm detection by using CFAR (constant false alarm rate) and the low pass filter. Thus we are using low pass filter here because our actual values will be present in the lower frequency region. The noise has higher frequency thus we tend to remove them by using a low pass filter

    Modelling the pacemaker in event-B: towards methodology for reuse

    No full text
    The cardiac pacemaker is one of the system modelling problems posed to the Formal Methods community by the {\it Grand Challenge for Dependable Systems Evolution} \cite{JOW:06}. The pacemaker is an intricate safety-critical system that supports and moderates the dysfunctional heart's intrinsic electrical control system. This paper focusses on (i) the problem (requirements) domain specification and its mapping to solution (implementation) domain models, (ii) the significant commonality of behaviour between its many operating modes, emphasising the potential for reuse, and (iii) development and verification of models.We introduce the problem and model three of the operating modes in the problem domain using a state machine notation. We then map each of these models into a solution domain state machine notation, designed as shorthand for a refinement-based solution domain development in the Event-B formal language and its RODIN toolki

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    A domain specific language for performance evaluation of medical imaging systems

    Get PDF
    We propose iDSL, a domain specific language and toolbox for performance evaluation of Medical Imaging Systems. iDSL provides transformations to MoDeST models, which are in turn converted into UPPAAL and discrete-event MODES models. This enables automated performance evaluation by means of model checking and simulations. iDSL presents its results visually. We have tested iDSL on two example image processing systems. iDSL has successfully returned differentiated delays, resource utilizations and delay bounds. Hence, iDSL helps in evaluating and choosing between design alternatives, such as the effects of merging subsystems onto one platform or moving functionality from one platform to another

    Verification and Validation in Cyber Physical Systems: Research Challenges and a Way Forward

    Full text link
    Abstractā€”It is widely held that debugging cyber-physical sys-tems (CPS) is challenging; to date, empirical studies investigating research challenges in CPS verification and validation have not been done. As a result, the exact challenges facing CPS developers in the real world remain at best unquantified and at worst unknown, and the research directions the community should undertake are not clearly identified. In this paper, we review our recent empirical study of real-world CPS developers. This position paper then uses the findings from this study to highlight the discovered key challenges and to present a research trajectory to address these challenges. I
    corecore