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1. The Promise and Challenges of Medical Devices 
Medical devices play an essential role in the care of patients around the world, and can have a 

life-saving effect. To cite one example, an estimated 3 million people worldwide have implanted 

pacemakers (a heart rate adjustment device), with ~600,000 added annually. In the United 

States, 800,000 people have an implanted defibrillator (another heart rhythm management 

device), with 10,000 added monthly. Clinical trials have presented evidence that patients 

implanted with defibrillators have a mortality rate reduced by up to 31%.  

The medical device market is worth $289 billion with $110 billion within the US. Examples 

include everything from adhesive bandages to drug infusion pumps, surgical robots, deep brain 

stimulation systems and physiological closed-loop control systems like the artificial pancreas [1] 

which are in development. These are safety-critical technologies combining hardware and 

software, each of which must be rigorously verified to be efficacious and safe. 

According to the US Food and Drug Administration, in 1996, 10% of all medical device recalls 

were caused by software-related issues. This percentage rose to an average of 15% of recalls 

from 2008 to 2012. Implanted cardiac pacemakers and defibrillators have approximately 80,000-

100,000 lines of software code [2] which essentially makes all sensing, control and actuation 

decisions autonomously within the human body, over the 5-7 year device lifetime. The primary 

challenge of high-confidence medical device software is to guarantee the device will never drive 

the patient into an unsafe condition even though we do not have complete understanding of 

the controlled physiology. 

Fig. 1. Pacemaker operating in a closed-loop with the heart. The leads sense cardiac 

electrophysiological activity from inside the heart tissue (AS/VS = Atrial/Ventricular Sense 

event) and actuate the heart (AP/VP = Atrial/Ventricular Pacing event to maintain a desired 

heart rate. 

1.1 Human-in-the-loop Medical Devices 
Medical devices can be classified as open-loop or closed-loop. A closed-loop device like a 

pacemaker is in a feedback loop with the organ(s) it affects (see Fig. 1): it monitors certain 

physiological variables like heart rate, and delivers therapy, in the form of low-energy electrical 

pulses, to maintain a healthy heart rate. Another example is the artificial pancreas, which 

monitors blood glucose levels and delivers therapy, in the form of insulin, to maintain safe 

glucose levels. An open loop device on the other hand, either, (a) like a drug infusion pump, does 

not measure any physiological variables: the therapy it delivers is pre-programmed and non-



reactive; or (b) as in the case of a blood pressure monitor, only measures physiological signals 

but does not deliver therapy.  

 

Open-loop devices are operated by professionals to ensure the safety of the patient. Closed-

loop devices require very little physician intervention after the discharge visit, and hence permit 

a better lifestyle. Because they are constantly monitoring the physiological variables, they 

permit a more timely delivery of therapy. The complex run-time diagnoses needed for closed 

loop performance, and the intricate therapy delivered, has driven most diagnosis and therapy 

functions into software. This software is life-critical and verification methods should provide a 

high confidence in its correctness. 

Validating the safety and efficacy of closed-loop software, by definition, requires that the device 

be connected to the organ(s) it is affecting. For example, in the case of a pacemaker, that would 

be the heart of a living patient. But with the advent of computer models of physiological 

functions, such as those encompassed by the Physiome project or presented later in this article, 

the model-based design (MBD) of closed-loop medical devices presents efficient complementary 

approaches that are actively researched in various disciplines of engineering and computer 

science. In MBD, the device (or a model thereof) is connected to a model of the ``controlled 

physiology" it interacts with. By high confidence verification we mean that under all possible 

behaviors of the physiological models (known or unknown), the device will satisfy its safety 

properties and not adversely affect the organ. 

There are two major differences between modeling physiology and modeling man-made 

systems: first, physiology is much more complex and less well-understood than man-made 

systems like cars and airplanes, and spans several scales from the molecular to the entire human 

body. Secondly, the variability between humans is significantly larger than that between two 

cars coming off the assembly line. Using the cardiac pacemaker as an example of closed-loop 

device, and the heart as the organ to be modeled, we present several of the challenges and 

early results in model-based verification. 

2. Life-critical Closed-loop Software 
The heart is a specialized muscle that pumps oxygenated blood to the rest of the body. It is 

composed of four chambers: two upper chambers called the left and right atrium, and two 

lower chambers called the left and right ventricle, which contract synchronously. In a healthy 

resting adult, the heart rate is 60 to 100 beats per minute (each ventricular contraction is a beat). 

The contractions of the heart are controlled by the waves of spontaneous electric depolarization 

that traverse it regularly. A spontaneous electric current originates in the Sino-Atrial (SA) node in 

the right atrium and propagates throughout the atria, causing them to contract. It then 

propagates down to the ventricles along well-defined conduction pathways, causing the 

ventricles to contract in turn. The SA node is thus termed the natural pacemaker of the heart. 

Under certain diseased conditions, the heart rate drops below what is needed to maintain 

adequate blood flow to the body. This clinical condition is called bradycardia. When such a heart 

rate drop is due to abnormalities in the electrical conduction system, an implanted pacemaker 



might be recommended as treatment. A pacemaker is implanted near the left collar of the 

patient as shown in Fig. 1, and has two leads: one connects to the right atrium, the other to the 

right ventricle.  

 

The leads act as both sensors and effectors: if the pacemaker fails to sense electric activity on 

either lead within certain time constraints, indicative of a delayed/missed contraction, it will 

send an electric pulse to the corresponding chamber to provoke contraction, thus acting as an 

artificial pacemaker. The algorithms for detecting missed beats are complex and implemented in 

software which runs within the pacemaker itself. Part of the difficulty of performing that 

detection comes from the great variability in heart rates between patients and even within a 

single patient across time. Moreover, because the pacemaker is limited to sensing electrical 

activity through its two leads, different phenomena can manifest themselves identically to the 

pacemaker, thus making detection even harder. 

For example, in Endless Loop Tachycardia (ELT), this ambiguity causes the pacemaker to actually 

induce dangerously elevated heart rates (tachycardia), which would not have arisen had the 

heart been operating on its own. This is an example of an adverse closed-loop condition: a 

dangerous situation that arises as a result of the interaction between device and heart. No 

amount of open-loop device testing and verification can reveal this condition - hence the need 

for closed-loop validation of medical devices, and for physiological heart models that enable 

early and affordable closed-loop validation. 

Fig. 2. Modelling different phenomena in the heart 

3. Choosing the right model for the job 
Heart models of different kinds have been developed for a range of applications and Fig. 2 

shows four heart modeling approaches that emphasize the electric, mechanical, cellular and 

fluid flow mechanisms of cardiac function. Several of these modeling approaches employ over 4 

million finite elements or 100,000 ordinary differential equations to describe the dynamics and 

take several hours to simulate a single cardiac cycle.  

Cellular models describe the generation and spread of electrical action potentials (i.e., voltages) 

at the molecular-cellular level [3]. At the cellular level, the flow of charged ions into and out of 

the cardiac cell is responsible for the change in voltage across the cell membrane. Cellular 

models of electrical activity are used to study how activity across ion channels affect the relation 

between electrical and mechanical behaviors of heart tissue, as well as to study drug therapies 

that affect the ion channels properties.  

Anatomical models are developed using imaging technologies like MRI, and seek to re-create 

detailed anatomical structures like fiber orientations and the distribution and extent of scar 

tissue. These structures affect the heart's operation by determining muscle contraction and 

modifying the speed and paths of electrical conduction throughout the heart. Thus anatomical 

models provide a foundation for whole heart modeling efforts that we cover next. They are also 

used to simulate the effects of certain medical devices like stents and artificial valves.  



Whole heart models use a continuum approximation of the cellular models of electrical 

propagation with the structure obtained from anatomical models. Researchers have developed 

Partial Differential Equations models of electrical activity in the whole heart to analyze the 

mechanisms of various arrhythmias. Researchers at Johns Hopkins [4] further used these models 

to predict the onset of arrhythmias and propose potential therapies. Such electro-mechanical 

models help evaluate the mechanical effects of different arrhythmias on blood flow. 

Electrophysiological (EP) heart models help study the timing properties of the generation and 

propagation of electrical signals through the electrical conduction system, and can accurately 

diagnose most arrhythmias. Unlike the aforementioned heart models which are built from the 

cellular level on up, EP models are developed by conducting a clinical EP testing procedure 

which is a type or timing analysis of the heart rhythm across the myocardium. EP models are 

amenable to model checking [5], a powerful verification technique pioneered in the 

semiconductor industry. EP testing is a common method to diagnose arrhythmias: a physician 

inserts catheters with electrodes into the patient's heart through the veins and measures the 

local electrical activity around the electrodes. The physician uses the patterns of electrical 

activity and its timing characteristics to diagnose the heart's condition in terms of arrhythmias, 

which are derangements to normal timing patterns. In particular, electrical timing parameters of 

action potentials in a tissue region like conduction delay, rest period and refractory period are 

measured, and any abnormal conduction paths are detected. 

Fig. 3. Timing of electrical behaviors of the heart are modeled by a network of (1) node and (2) 

path automata. Each circle is a node automaton which models the generation and blocking of 

electrical events. Each line is a path automata which models conduction delays between 

nodes. 

In [6], researchers from the University of Pennsylvania developed a heart model based on 

clinical EP testing. Since the pacemaker only looks at the timing of events as input from only two 

locations of the heart, this EP model only seeks to model the correct timing of electrical activity 

in select tissue of the heart. Specialized tissue like the SA node generates electric events 

spontaneously and is modeled by Timed Automata known as node automaton as shown at 

Marker 1 in Fig. 3. The node automaton models the timing of signal generation, blocking and 

transmission in heart structures like the AV node. The rest of the tissue is abstracted as variable 

conduction delays as path automata between node automata (Marker 2 in Fig. 3). Different 

heart conditions can be modeled by a network of node/path automata with different topologies 

and parameters (Fig. 3). Moreover, pacing applied to the heart can be represented as an 

external activation signal to the node automata. EP models have been validated by physicians, 

and have been used for model checking pacemaker software.  

Finally, data-driven models such as [7] fit (fractional) differential equations directly to measured 

heart rate without modeling the underlying mechanisms, and are used for optimal control. 

4. Closed-loop model checking of device software 
Short of clinical trials (which we cover later in this article), current validation practice for closed-

loop medical devices focuses on open-loop testing and reviews of the design process. In such 

open-loop testing, a set of input sequences is fed to the device, and the device's output is 



checked for correctness, typically by comparing it to a pre-defined expected output. Such testing 

does not evaluate the effect of the device on the organ: e.g., we can't test how the heart rate 

changes following a pacing by the pacemaker. Thus, we need a heart model that can interact 

with the device. If we use, say, a high-fidelity PDE-based model such as the electro-mechanical 

models described earlier to react to the device and generate input sequences, there are an 

infinite number of heart rhythms that such a model can generate, and testing only uses a finite 

subset of those. Thus, testing (whether open-loop or closed-loop with a heart model) is 

necessarily an incomplete technique, and safety violations of the device may be missed during 

testing. 

The timed automata-based EP models are amenable to model checking, a technique that 

mathematically explores all possible executions of the heart model and device software 

combination against specified requirements (e.g. the pacemaker will not pace the heart beyond 

an upper rate limit). Model checking is widely used in the semiconductor industry to verify chip 

designs at various levels of abstraction, in particular at the Register Transfer Level (RTL). 

Violations of the requirements are returned by the model checking tool as an execution trace, 

which can be analyzed and used to improve the system. To capture the variability in the heart's 

behavior (more generally, in the physiological phenomena of interest), the heart model is non-

deterministic: for example, rather than specifying that the conduction delay in the AV node is 

always 0.14 second, we allow it to be any value in the correct physiological range [0.12, 0.2] 

second. The model checker will symbolically explore all executions corresponding to all values in 

this range (rather than select a few) in search for requirements violations. Subtle errors in the 

design of safety-critical systems that often elude conventional simulation and testing techniques 

can be (and have been) found in this way. Because it has been proven cost-effective and 

integrates well with conventional design methods, model checking has been adopted as a 

standard procedure for the quality assurance of automotive and avionics systems, but has yet to 

enter the world of medical devices. 

Fig. 4. Endless-loop Tachycardia (ELT) with backward conduction (red arrows) and a healthy 

heart condition mapped to the same input-output execution of the pacemaker (middle 

sequence). The heart model should have the details to resolve this ambiguity. 

Endless Loop Tachycardia (ELT) is one example of a safety hazard that arises in the interaction 

between pacemaker and heart, shown in Fig. 4. The ELT starts with an early ventricular 

contraction (PVC), which is a common scenario even in a healthy person. The electrical signal 

travels from the ventricle to the atrium (red arrows in Fig. 4), triggering an atrial sense (AS), i.e. 

the pacemaker senses an event in the right atrium. As a result, the pacemaker paces the 

ventricle (VP) after a pre-programed delay (AVI), which triggers ventricle to atrium conduction 

again and this VP → AS → VP positive feedback loop persists. The ventricular rate during ELT is 

determined by the conduction delay from the ventricle to the atrium and the programed delay 

in the pacemaker, which is very fast. The healthy condition in Fig. 4 demonstrates the same 

input-output sequence as ELT. In it, the pacemaker paces the ventricle after each atrial event 

(AS) generated by the SA node (as opposed to an AS conducted from the ventricle as in ELT). 

This is correct pacing at an appropriate (and relatively much slower) rate than ELT, and 

consequently maintains adequate blood flow. Failing to distinguish these two conditions in the 



heart model may introduce false-positive when checking whether ELT exists, i.e. the healthy 

case returned as evidence for ELT. 

Fig. 5. Multi-scale modeling of the heart. The heart model at a higher level (further to the right) 

contains all possible inputs to the pacemaker from the heart models at previous levels. 

5. Physiological Model Abstraction and Refinement 
From the example above, we can see that in order to perform model checking on the closed-

loop system, the heart model should not only cover all possible inputs to the pacemaker 

specified in the requirements, but also have enough details to resolve ambiguities of executions 

that may introduce false-positives and/or false-negatives. The left column of Fig. 5 shows a 

collection of heart models each modeling a particular heart condition.  However, these models 

do not cover all possible heart conditions, thus model checking the pacemaker with each of 

these heart models will not guarantee absolute safety. Physiological abstraction rules (R1-R7 in 

Fig. 5) are defined to increase the behaviors of the original model(s), while guaranteeing new 

behaviors introduced can still be physiologically valid. As an example, abstraction rule R4 merges 

parameter ranges for heart models with the same node and path topologies. Imagine two node 

automata N1, N2 can self-activate within [0.3, 0.4] second and [0.5, 0.6] second, respectively. By 

applying R4, the new node automaton N3 can self-activate within [0.3, 0.6] second. N3 covers all 

behaviors of N1, N2, plus new behaviors which are mostly physiologically valid. If the 

physiologically-invalid behaviors introduced into N3 are returned by the model checker as 

evidence, they can be eliminated by refining N3 back to N1, N2. 

By systematically applying the abstraction rules on the initial set of heart models, we get an 

abstraction tree (Fig. 5). The root of the abstraction tree is a heart model 𝐻𝑎𝑙𝑙 with only two 

node automata corresponding to the inputs to the pacemaker. By allowing both node automata 

to be able to send inputs to the pacemaker [0,∞] second after the last input, the heart model 

𝐻𝑎𝑙𝑙 covers all possible inputs to the pacemaker. However, 𝐻𝑎𝑙𝑙 cannot distinguish the ELT 

condition from the healthy condition due to the lack of representation of ventricle to atrium 

conduction. The heart model 𝐻𝑐𝑜𝑛𝑑 (Fig. 5) models the electrical conduction between the atria 

and the ventricles with a path automaton, thus is the appropriate heart model to evaluate ELT. 

Similarly, more complex properties will lead to appropriately detailed models along the Model 

Abstraction Tree. 

Fig. 6. Model translation framework. The pacemaker design is verified using model checking 

and automatically translated into code implementation. Heart models are available at all 

levels. 

6. From Verified Models to Verified Code 
During model checking, the abstract model of the pacemaker is verified against safety 

requirements. The abstract pacemaker model is then automatically synthesized into simulation 

models and into a code implementation (Fig. 6) using the UPP2SF model translation tool we 

developed. Each automaton in a network of timed automata is mapped to a parallel state (called 

parent state) in Stateflow and each location in the automaton is mapped to an exclusive state 

within the parent state. Along with mapping all the edges in the UPPAAL model to the Stateflow 



model, the behaviors of the Stateflow model is a subset of the corresponding UPPAAL model, 

thus properties verified in the UPPAAL model still hold in the Stateflow model. This automatic 

synthesis provides rigorous traceability throughout the development process and ensures that 

the verified model is translated into verified code using the Stateflow model of the pacemaker 

with the Simulink embedded coder. Similarly the heart model is translated from timed automata 

to Simulink and also synthesized into a Heart-on-a-Chip for platform level testing. 

Fig. 7. Model-based Clinical Trials. The synthetic cohort is generated by randomizing a 

parametrized model from an appropriate distribution whose bounds are inferred from clinical 

data. The parameters are sampled within their physiological ranges, thus generating a large 

synthetic cohort. Each such model instance is connected to the device and simulated. 

7. Model-based Clinical Trials 
The final step before the introduction of a new high-risk medical device to market is the clinical 

trial. The randomized controlled trial (RCT) is the ``gold standard'' for guaranteeing that a 

medical intervention is safe and efficacious [8]. It is in general a major effort involving patients, 

medical investigators, biostatisticians, ethics boards, regulators and companies, costing several 

millions of dollars and running for 4-6 years on average. Yet technical errors can arise at almost 

every step of the trial planning, jeopardizing the validity of the results. Even if the trial is well-

planned, poor execution, unexpected events or even just pure chance can lead to the wrong 

conclusions. The applications of computer models to the medical domain presented above have 

largely centered on the design and verification of a given device, and have mostly eschewed 

matters related to the clinical trial. There is however now an opportunity to use these computer 

models to assist in the planning and conduct of RCTs, as will be presented in this section. 

(Another application of modeling to trials is the UVA/PADOVA diabetes model, which replaces 

animal trials for evaluating diabetes control algorithms [1].  

Suppose that a manufacturer of medical devices is designing a new implantable defibrillator for 

the treatment of certain abnormal cardiac rhythms, or arrhythmias. Both the hardware and 

software are tested by the company to ensure they satisfy their specifications. The device may 

then be implanted and tested on animals. But up to this point, the effect of the device on 

humans has not been observed. The RCT compares the efficacy and safety of the device on two 

groups of patients: the treatment group which is implanted with the new investigational device, 

and the control group which is on standard medical care, e.g. one or more devices already on 

the market [8]. Both treatment and control groups are monitored for a pre-determined amount 

of time, at the end of which the rate of treated arrhythmias is evaluated in each group. The 

results are analyzed to determine whether the difference in rates between the groups, if any, is 

significant, i.e. is unlikely to be due to chance alone. 

We can design a Model-Based Clinical Trial (MBCT) to test a number of assumptions made by 

the trial investigators, before the trial starts (Fig. 7). In an MBCT, we start by modeling the 

physiological phenomenon of interest, in this case the spread of electrical activity in the human 

heart. The model should be valid of course (i.e., not produce too many non-physiological signals). 

For an MBCT the model must also be rich: it should be capable of simulating a large variety of 

arrhythmias that are targeted by the new defibrillator. Once such a parametrized model is 



created, we can generate a large number of model instances by sampling the parameter space 

from appropriate distributions, which may be inferred from previous trials' data. This constitutes 

our synthetic cohort.  

We can now analyze the effect of the device in ways not possible or impractical with a clinical 

trial, so as to guide the RCT investigators when designing the trial's protocol. For example, we 

may vary the distribution of arrhythmias in our synthetic cohort and analyze how this affects the 

device's performance. This is equivalent to running multiple trials on different populations in 

which the arrhythmias appear in different proportions. The investigators can then use these 

results to confirm or revise their confidence in the superiority of the new device to standard 

medical care across populations. We can also study the sensitivity of the trial's outcome to 

device settings: by running the trial multiple times with the same synthetic cohort but with 

different device settings every time, we get solid estimates for how different settings affect the 

MBCT's outcome. This in turn can inform the investigators whether they need to correct for 

different settings when drawing the trial protocol and when analyzing the results. Further, by 

breaking down the MBCT results by arrhythmia (or other interesting criteria) the investigators 

can make informed decisions, before trial start, on which classes of arrhythmias are most or 

least susceptible to treatment by the device. This in turn helps refine the eligibility criteria and 

focus the trial's efforts on certain classes of patients.  

This and other experiments possible in an MBCT increase the probability of success of an RCT by 

providing early, fast and rigorous testing of various assumptions and hypotheses made by the 

trial investigators. 

8. Conclusion 
This article has surveyed the challenges of bringing new medical devices and their software to 

market from early verification to late-stage clinical trials, and gives an outlook to how modeling 

and formal methods can play a role in facilitating this process. Complexity, limited observability 

and variability stand out as three major challenges. The complexity of the physiological 

phenomena that the device is meant to control stems partially from the multi-scale nature of 

human physiology, where an organ's operation is affected by both molecular factors and 

patient's lifestyle. Moreover, the devices have limited observability on these complex 

physiological phenomena because increased observability usually requires increased 

invasiveness of the surgical procedures, with all the attending risks. Coupled together, 

complexity and limited observability imply that the detection and therapy algorithms of devices 

must deal, safely and reliably, with a lot of uncertainty. By explicitly allowing for non-

determinism in the systems they study, formal methods are well-suited for dealing with 

uncertainty. The major challenge for formal methods is the development of appropriate 

physiological models and abstraction-and-refinement frameworks for addressing the complexity 

of the phenomena, and abstraction trees take a step in this direction in the domain of 

electrophysiology. Variability arises as the third major challenge: how to verify that a device 

works well in a population of patients that varies greatly in its characteristics and medical 

history? Clinical trials remain the standard and legally accepted way to answer that question. 

While models cannot substitute for observations in a human patient, they promise to alleviate 

the burden of conducting trials by early and rigorous testing of their assumptions. These 



applications usher a new era of exciting research challenges at the intersection of computer 

science, statistics and medicine. 
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