8,302 research outputs found

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Vulnerability Assessment of Large-scale Power Systems to False Data Injection Attacks

    Full text link
    This paper studies the vulnerability of large-scale power systems to false data injection (FDI) attacks through their physical consequences. Prior work has shown that an attacker-defender bi-level linear program (ADBLP) can be used to determine the worst-case consequences of FDI attacks aiming to maximize the physical power flow on a target line. This ADBLP can be transformed into a single-level mixed-integer linear program, but it is hard to solve on large power systems due to numerical difficulties. In this paper, four computationally efficient algorithms are presented to solve the attack optimization problem on large power systems. These algorithms are applied on the IEEE 118-bus system and the Polish system with 2383 buses to conduct vulnerability assessments, and they provide feasible attacks that cause line overflows, as well as upper bounds on the maximal power flow resulting from any attack.Comment: 6 pages, 5 figure

    Efficient and Risk-Aware Control of Electricity Distribution Grids

    Get PDF
    This article presents an economic model predictive control (EMPC) algorithm for reducing losses and increasing the resilience of medium-voltage electricity distribution grids characterized by high penetration of renewable energy sources and possibly subject to natural or malicious adverse events. The proposed control system optimizes grid operations through network reconfiguration, control of distributed energy storage systems (ESSs), and on-load tap changers. The core of the EMPC algorithm is a nonconvex optimization problem integrating the ESSs dynamics, the topological and power technical constraints of the grid, and the modeling of the cascading effects of potential adverse events. An equivalent (i.e., having the same optimal solution) proxy of the nonconvex problem is proposed to make the solution more tractable. Simulations performed on a 16-bus test distribution network validate the proposed control strategy
    • …
    corecore