1,312 research outputs found

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    A Bayesian Network Approach for the Interpretation of Cyber Attacks to Power Systems

    Get PDF
    The focus of this paper is on the analysis of the cyber security resilience of digital infrastructures deployed by power grids, internationally recognized as a priority since several recent cyber attacks targeted energy systems and in particular the power service. In response to the regulatory framework, this paper presents an analysis approach based on the Bayesian Networks formalism and on real world threat scenarios. Our approach enables analyses oriented to planning of security measures and monitoring, and to forecasting of adversarial behaviours

    Model-based Safety and Security Co-analysis: a Survey

    Full text link
    We survey the state-of-the-art on model-based formalisms for safety and security analysis, where safety refers to the absence of unintended failures, and security absence of malicious attacks. We consider ten model-based formalisms, comparing their modeling principles, the interaction between safety and security, and analysis methods. In each formalism, we model the classical Locked Door Example where possible. Our key finding is that the exact nature of safety-security interaction is still ill-understood. Existing formalisms merge previous safety and security formalisms, without introducing specific constructs to model safety-security interactions, or metrics to analyze trade offs

    Modeling Information System Availability by using Bayesian Belief Network Approach

    Get PDF
    Modern information systems are expected to be always-on by providing services to end-users, regardless of time and location. This is particularly important for organizations and industries where information systems support real-time operations and mission-critical applications that need to be available on 24 x 7 x 365 basis. Examples of such entities include process industries, telecommunications, healthcare, energy, banking, electronic commerce and a variety of cloud services. This article presents a modified Bayesian Belief Network model for predicting information system availability, introduced initially by Franke, U. and Johnson, P. (in article “Availability of enterprise IT systems – an expert based Bayesian model”. Software Quality Journal 20(2), 369-394, 2012) based on a thorough review of several dimensions of the information system availability, we proposed a modified set of determinants. The model is parameterized by using probability elicitation process with the participation of experts from the financial sector of Bosnia and Herzegovina. The model validation was performed using Monte Carlo simulation

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Security Risk Assessments: Modeling and Risk Level Propagation

    Get PDF
    Security risk assessment is an important task in systems engineering. It is used to derive security requirements for a secure system design and to evaluate design alternatives as well as vulnerabilities. Security risk assessment is also a complex and interdisciplinary task, where experts from the application domain and the security domain have to collaborate and understand each other. Automated and tool-supported approaches are desired to help manage the complexity. However, the models used for system engineering usually focus on functional behavior and lack security-related aspects. Therefore, we present our modeling approach that alleviates communication between the involved experts and features steps of computer-aided modeling to achieve consistency and avoid omission errors. We demonstrate our approach with an example. We also describe how to model impact rating and attack feasibility estimation in a modular fashion, along with the propagation and aggregation of these estimations through the model. As a result, experts can make local decisions or changes in the model, which in turn provides the impact of these decisions or changes on the overall risk profile. Finally, we discuss the advantages of our model-based method

    A Survey on Trust Metrics for Autonomous Robotic Systems

    Full text link
    This paper surveys the area of Trust Metrics related to security for autonomous robotic systems. As the robotics industry undergoes a transformation from programmed, task oriented, systems to Artificial Intelligence-enabled learning, these autonomous systems become vulnerable to several security risks, making a security assessment of these systems of critical importance. Therefore, our focus is on a holistic approach for assessing system trust which requires incorporating system, hardware, software, cognitive robustness, and supplier level trust metrics into a unified model of trust. We set out to determine if there were already trust metrics that defined such a holistic system approach. While there are extensive writings related to various aspects of robotic systems such as, risk management, safety, security assurance and so on, each source only covered subsets of an overall system and did not consistently incorporate the relevant costs in their metrics. This paper attempts to put this prior work into perspective, and to show how it might be extended to develop useful system-level trust metrics for evaluating complex robotic (and other) systems
    corecore