5,053 research outputs found

    Cut distance identifying graphon parameters over weak* limits

    Full text link
    The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology. Dole\v{z}al and Hladk\'y [Cut-norm and entropy minimization over weak* limits, J. Combin. Theory Ser. B 137 (2019), 232-263] showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from subgraph densities, t(H,*). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Kr\'al, Martins, Pach and Wrochna [The step Sidorenko property and non-norming edge-transitive graphs, J. Combin. Theory Ser. A 162 (2019), 34-54]. We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the "pumping property", and thus can be used in the proof of the the Frieze-Kannan regularity lemma.Comment: 48 pages, 3 figures. Correction when treating disconnected norming graphs, and a new section 3.2 on index pumping in the regularity lemm

    Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests

    Get PDF
    We present a procedure to solve the inverse Ising problem, that is to find the interactions between a set of binary variables from the measure of their equilibrium correlations. The method consists in constructing and selecting specific clusters of variables, based on their contributions to the cross-entropy of the Ising model. Small contributions are discarded to avoid overfitting and to make the computation tractable. The properties of the cluster expansion and its performances on synthetic data are studied. To make the implementation easier we give the pseudo-code of the algorithm.Comment: Paper submitted to Journal of Statistical Physic

    Reflection methods for user-friendly submodular optimization

    Get PDF
    Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our method is a formulation of the discrete submodular minimization problem as a continuous best approximation problem that is solved through a sequence of reflections, and its solution can be easily thresholded to obtain an optimal discrete solution. This method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we illustrate the benefits of our method on two image segmentation tasks.Comment: Neural Information Processing Systems (NIPS), \'Etats-Unis (2013

    Systems of Points with Coulomb Interactions

    Full text link
    Large ensembles of points with Coulomb interactions arise in various settings of condensed matter physics, classical and quantum mechanics, statistical mechanics, random matrices and even approximation theory, and give rise to a variety of questions pertaining to calculus of variations, Partial Differential Equations and probability. We will review these as well as "the mean-field limit" results that allow to derive effective models and equations describing the system at the macroscopic scale. We then explain how to analyze the next order beyond the mean-field limit, giving information on the system at the microscopic level. In the setting of statistical mechanics, this allows for instance to observe the effect of the temperature and to connect with crystallization questions.Comment: 30 pages, to appear as Proceedings of the ICM201

    Matrix product states and variational methods applied to critical quantum field theory

    Get PDF
    We study the second-order quantum phase-transition of massive real scalar field theory with a quartic interaction (ϕ4\phi^4 theory) in (1+1) dimensions on an infinite spatial lattice using matrix product states (MPS). We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle (TDVP) for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related DMRG method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate non-critical quantum field theories under certain conditions.Comment: 24 pages, 21 figures, with a minor improvement to the QFT sectio
    corecore