research

Cut distance identifying graphon parameters over weak* limits

Abstract

The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology. Dole\v{z}al and Hladk\'y [Cut-norm and entropy minimization over weak* limits, J. Combin. Theory Ser. B 137 (2019), 232-263] showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from subgraph densities, t(H,*). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Kr\'al, Martins, Pach and Wrochna [The step Sidorenko property and non-norming edge-transitive graphs, J. Combin. Theory Ser. A 162 (2019), 34-54]. We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the "pumping property", and thus can be used in the proof of the the Frieze-Kannan regularity lemma.Comment: 48 pages, 3 figures. Correction when treating disconnected norming graphs, and a new section 3.2 on index pumping in the regularity lemm

    Similar works

    Full text

    thumbnail-image