57,637 research outputs found

    Cut finite element methods for coupled bulk–surface problems

    Get PDF
    We develop a cut finite element method for a second order elliptic coupled bulk-surface model problem. We prove a priori estimates for the energy and L2L2 norms of the error. Using stabilization terms we show that the resulting algebraic system of equations has a similar condition number as a standard fitted finite element method. Finally, we present a numerical example illustrating the accuracy and the robustness of our approach

    A cut finite element method for coupled bulk-surface problems on time-dependent domains

    Full text link
    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh

    Cut Finite Elements for Convection in Fractured Domains

    Full text link
    We develop a cut finite element method (CutFEM) for the convection problem in a so called fractured domain which is a union of manifolds of different dimensions such that a dd dimensional component always resides on the boundary of a d+1d+1 dimensional component. This type of domain can for instance be used to model porous media with embedded fractures that may intersect. The convection problem can be formulated in a compact form suitable for analysis using natural abstract directional derivative and divergence operators. The cut finite element method is based on using a fixed background mesh that covers the domain and the manifolds are allowed to cut through a fixed background mesh in an arbitrary way. We consider a simple method based on continuous piecewise linear elements together with weak enforcement of the coupling conditions and stabilization. We prove a priori error estimates and present illustrating numerical examples

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject

    A trace finite element method for a class of coupled bulk-interface transport problems

    Get PDF
    In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp interface between two fluids and their transport and diffusion in both fluid phases and along the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations and introduces a finite element method for its numerical solution. The finite element method is unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a standard finite element space both on the bulk domains and the embedded surface. The numerical approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal order error estimates are proved for the finite element method both in the bulk-surface energy norm and the L2L^2-norm. The analysis is not restricted to linear finite elements and a piecewise planar reconstruction of the surface, but also covers the discretization with higher order elements and a higher order surface reconstruction

    An adaptive octree finite element method for PDEs posed on surfaces

    Full text link
    The paper develops a finite element method for partial differential equations posed on hypersurfaces in RN\mathbb{R}^N, N=2,3N=2,3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. The cartesian structure of the bulk mesh leads to easy and efficient adaptation process, while the trace finite element method makes fitting the mesh to the surface unnecessary. The number of degrees of freedom involved in computations is consistent with the two-dimension nature of surface PDEs. No parametrization of the surface is required; it can be given implicitly by a level set function. In practice, a variant of the marching cubes method is used to recover the surface with the second order accuracy. We prove the optimal order of accuracy for the trace finite element method in H1H^1 and L2L^2 surface norms for a problem with smooth solution and quasi-uniform mesh refinement. Experiments with less regular problems demonstrate optimal convergence with respect to the number of degrees of freedom, if grid adaptation is based on an appropriate error indicator. The paper shows results of numerical experiments for a variety of geometries and problems, including advection-diffusion equations on surfaces. Analysis and numerical results of the paper suggest that combination of cartesian adaptive meshes and the unfitted (trace) finite elements provide simple, efficient, and reliable tool for numerical treatment of PDEs posed on surfaces
    • …
    corecore