31 research outputs found

    Sparsification of Directed Graphs via Cut Balance

    Get PDF

    Improved guarantees for vertex sparsification in planar graphs

    Get PDF

    Spectral Sparsification via Bounded-Independence Sampling

    Get PDF
    We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph GG on nn vertices described by a binary string of length NN, an integer klognk\leq \log n, and an error parameter ϵ>0\epsilon > 0, our algorithm runs in space O~(klog(Nwmax/wmin))\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}})) where wmaxw_{\mathrm{max}} and wminw_{\mathrm{min}} are the maximum and minimum edge weights in GG, and produces a weighted graph HH with O~(n1+2/k/ϵ2)\tilde{O}(n^{1+2/k}/\epsilon^2) edges that spectrally approximates GG, in the sense of Spielmen and Teng [ST04], up to an error of ϵ\epsilon. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by kk above, and the resulting sparsity that can be achieved.Comment: 37 page

    Constant Congestion Routing of Symmetric Demands in Planar Directed Graphs

    Get PDF
    We study the problem of routing symmetric demand pairs in planar digraphs. The input consists of a directed planar graph G = (V, E) and a collection of k source-destination pairs M = {s_1t_1, ..., s_kt_k}. The goal is to maximize the number of pairs that are routed along disjoint paths. A pair s_it_i is routed in the symmetric setting if there is a directed path connecting s_i to t_i and a directed path connecting t_i to s_i. In this paper we obtain a randomized poly-logarithmic approximation with constant congestion for this problem in planar digraphs. The main technical contribution is to show that a planar digraph with directed treewidth h contains a constant congestion crossbar of size Omega(h/polylog(h))

    The Predicted-Deletion Dynamic Model: Taking Advantage of ML Predictions, for Free

    Full text link
    The main bottleneck in designing efficient dynamic algorithms is the unknown nature of the update sequence. In particular, there are some problems, like 3-vertex connectivity, planar digraph all pairs shortest paths, and others, where the separation in runtime between the best partially dynamic solutions and the best fully dynamic solutions is polynomial, sometimes even exponential. In this paper, we formulate the predicted-deletion dynamic model, motivated by a recent line of empirical work about predicting edge updates in dynamic graphs. In this model, edges are inserted and deleted online, and when an edge is inserted, it is accompanied by a "prediction" of its deletion time. This models real world settings where services may have access to historical data or other information about an input and can subsequently use such information make predictions about user behavior. The model is also of theoretical interest, as it interpolates between the partially dynamic and fully dynamic settings, and provides a natural extension of the algorithms with predictions paradigm to the dynamic setting. We give a novel framework for this model that "lifts" partially dynamic algorithms into the fully dynamic setting with little overhead. We use our framework to obtain improved efficiency bounds over the state-of-the-art dynamic algorithms for a variety of problems. In particular, we design algorithms that have amortized update time that scales with a partially dynamic algorithm, with high probability, when the predictions are of high quality. On the flip side, our algorithms do no worse than existing fully-dynamic algorithms when the predictions are of low quality. Furthermore, our algorithms exhibit a graceful trade-off between the two cases. Thus, we are able to take advantage of ML predictions asymptotically "for free.'
    corecore