3,250 research outputs found

    A 900 MHz, 0.9 V low-power CMOS downconversion mixer

    Get PDF
    A low-voltage, low-power mixer operating at a supply voltage of 0.9 V while consuming 4.7 mW is presented. The circuit achieves the multiplication using current mode processing. Moreover, non-conventional differential pairs that do not require current tail generators are utilized. The circuit has been fabricated in a standard double-poly, triple-metal 0.35 /spl mu/m CMOS process having a threshold voltage of 0.6 V. Measurement results for 900 MHz and 800 MHz input signals indicate that the circuit has an IIP3 of 3.5 dBm, a 1 dB compression point of -8 dBm and a noise figure of 13.5 dB.peer-reviewe

    Guest Editorial 2020 Custom Integrated Circuits Conference

    Get PDF
    THIS Special Issue of the IEEE JOURNAL OF SOLIDSTATE CIRCUITS features expanded versions of key articles presented at the 2020 Custom Integrated Circuits Conference (CICC), one of IEEE’s first conferences to go fully virtual due to the corona virus pandemic, from March 22 to March 25, 2020. Originally planned to be held at Hyatt Boston Harbor, Boston, MA, USA, growing concerns related to COVID-19 and the impact on the community’s ability to travel to the conference lead the conference organization to make the tough decision in January 2020 to go for a fully virtual format

    Stochastic Testing Simulator for Integrated Circuits and MEMS: Hierarchical and Sparse Techniques

    Get PDF
    Process variations are a major concern in today's chip design since they can significantly degrade chip performance. To predict such degradation, existing circuit and MEMS simulators rely on Monte Carlo algorithms, which are typically too slow. Therefore, novel fast stochastic simulators are highly desired. This paper first reviews our recently developed stochastic testing simulator that can achieve speedup factors of hundreds to thousands over Monte Carlo. Then, we develop a fast hierarchical stochastic spectral simulator to simulate a complex circuit or system consisting of several blocks. We further present a fast simulation approach based on anchored ANOVA (analysis of variance) for some design problems with many process variations. This approach can reduce the simulation cost and can identify which variation sources have strong impacts on the circuit's performance. The simulation results of some circuit and MEMS examples are reported to show the effectiveness of our simulatorComment: Accepted to IEEE Custom Integrated Circuits Conference in June 2014. arXiv admin note: text overlap with arXiv:1407.302

    Fully integrated millimeter-wave CMOS phased arrays

    Get PDF
    A decade ago, RF CMOS, even at low gigahertz frequencies, was considered an oxymoron by all but the most ambitious and optimistic. Today, it is a dominating force in most commercial wireless applications (e.g., cellular, WLAN, GPS, BlueTooth, etc.) and has proliferated into areas such as watt level power amplifiers (PA) [1] that have been the undisputed realm of compound semiconductors. This seemingly ubiquitous embracement of silicon and particularly CMOS is no accident. It stems from the reliable nature of silicon process technologies that make it possible to integrated hundreds of millions of transistors on a single chip without a single device failure, as evident in today’s microprocessors. Applied to microwave and millimeter wave applications, silicon opens the door for a plethora of new topologies, architectures, and applications. This rapid adoption of silicon is further facilitated by one’s ability to integrate a great deal of in situ digital signal processing and calibration [2]. Integration of high-frequency phased-array systems in silicon (e.g., CMOS) promises a future of low-cost radar and gigabit-per-second wireless communication networks. In communication applications, phased array provides an improved signal-to-noise ratio via formation of a beam and reduced interference generation for other users. The practically unlimited number of active and passive devices available on a silicon chip and their extremely tight control and excellent repeatability enable new architectures (e.g., [3]) that are not practical in compound semiconductor module-based approaches. The feasibility of such approaches can be seen through the discussion of an integrated 24GHz 4-element phased-array transmitter in 0.18μm CMOS [2], capable of beam forming and rapid beam steering for radar applications. On-chip power amplifiers (PA), with integrated 50Ω output matching, make this a fully-integrated transmitter. This CMOS transmitter and the 8-element phased-array SiGe receiver in [5], demonstrate the feasibility of 24GHz phased-array systems in silicon-based processes

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    High Current Matching over Full-Swing and Low-Glitch Charge Pump Circuit for PLLs

    Get PDF
    A high current matching over full-swing and low-glitch charge pump (CP) circuit is proposed. The current of the CP is split into two identical branches having one-half the original current. The two branches are connected in source-coupled structure, and a two-stage amplifier is used to regulate the common-source voltage for the minimum current mismatch. The proposed CP is designed in TSMC 0.18µm CMOS technology with a power supply of 1.8 V. SpectreRF based simulation results show the mismatch between the current source and the current sink is less than 0.1% while the current is 40 µA and output swing is 1.32 V ranging from 0.2 V to 1.52 V. Moreover, the transient output current presents nearly no glitches. The simulation results verify the usage of the CP in PLLs with the maximum tuning range from the voltage-controlled oscillator, as well as the low power supply applications
    corecore