325 research outputs found

    Applications of finite geometry in coding theory and cryptography

    Get PDF
    We present in this article the basic properties of projective geometry, coding theory, and cryptography, and show how finite geometry can contribute to coding theory and cryptography. In this way, we show links between three research areas, and in particular, show that finite geometry is not only interesting from a pure mathematical point of view, but also of interest for applications. We concentrate on introducing the basic concepts of these three research areas and give standard references for all these three research areas. We also mention particular results involving ideas from finite geometry, and particular results in cryptography involving ideas from coding theory

    A characterization of MDS codes that have an error correcting pair

    Full text link
    Error-correcting pairs were introduced in 1988 by R. Pellikaan, and were found independently by R. K\"otter (1992), as a general algebraic method of decoding linear codes. These pairs exist for several classes of codes. However little or no study has been made for characterizing those codes. This article is an attempt to fill the vacuum left by the literature concerning this subject. Since every linear code is contained in an MDS code of the same minimum distance over some finite field extension we have focused our study on the class of MDS codes. Our main result states that an MDS code of minimum distance 2t+12t+1 has a tt-ECP if and only if it is a generalized Reed-Solomon code. A second proof is given using recent results Mirandola and Z\'emor (2015) on the Schur product of codes

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    Entanglement-assisted Quantum Codes from Algebraic Geometry Codes

    Full text link
    Quantum error correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quantum error correcting codes to achieve higher rates than the one obtained via the traditional stabilizer formalism. Such codes are called entanglement-assisted quantum (QUENTA) codes. In this paper, we use algebraic geometry codes to construct several families of QUENTA codes via the Euclidean and the Hermitian construction. Two of the families created have maximal entanglement and have quantum Singleton defect equal to zero or one. Comparing the other families with the codes with the respective quantum Gilbert-Varshamov bound, we show that our codes have a rate that surpasses that bound. At the end, asymptotically good towers of linear complementary dual codes are used to obtain asymptotically good families of maximal entanglement QUENTA codes. Furthermore, a simple comparison with the quantum Gilbert-Varshamov bound demonstrates that using our construction it is possible to create an asymptotically family of QUENTA codes that exceeds this bound.Comment: Some results in this paper were presented at the 2019 IEEE International Symposium on Information Theor

    Codes and Curves

    Get PDF
    When information is transmitted, errors are likely to occur. Coding theory examines effi cient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed- Solomon codes, one can see how to defi ne new codes based on divisors on algebraic curves. For instance, using modular curves over fi nite fi elds, Tsfasman, Vladut, and Zink showed that one can defi ne a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting fi eld of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, including cyclic codes, and both bounds and asymptotic bounds on the parameters of codes. Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above is discussed

    The geometry of the plane of order nineteen and its application to error-correcting codes

    Get PDF
    In the projective space PG(k−1; q) over Fq, the finite field of order q, an (n; r)-arc K is a set of n points with at most r on a hyperplane and there is some hyperplane meeting K in exactly r points. An arc is complete if it is maximal with respect to inclusion. The arc K corresponds to a projective [n; k;n − r]q-code of length n, dimension k, and minimum distance n − r; if K is a complete arc, then the corresponding projective code cannot be extended. In this thesis, the n-sets in PG(1; 19) up to n = 10 and the n-arcs in PG(2; 19) for 4 B n B 20 in both the complete and incomplete cases are classified. The set of rational points of a non-singular, plane cubic curve can be considered as an arc of degree three. Over F19, these curves are classified, and the maximum size of the complete arc of degree three that can be constructed from each such incomplete arc is given
    corecore