11 research outputs found

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Antenna sensing for wearable applications

    Get PDF
    As wearable technologies are growing fast, there is emerging trend to increase functionality of the devices. Antennas which are primarily component in communication systems can offer attractive route forward to minimize the number of components functioning as a sensing element for wearable and flexible electronics. Toward development of flexible antenna as sensing element, this thesis investigates the development of the flexible and printed sensing NFC RFID tag. In this approach, the sensor measurement is supported by the internal sensor and analog-to-digital convertor (ADC) of the NFC transponder. Design optimisation, fabrication and characterization of the printed antenna are described. Besides, the printed antenna, NFC transponder and two simple resistive sensors are integrated to form a fully flexible sensing RFID tag demonstrating applicability in food and health monitoring. This thesis also presents development of two antenna sensors by using functional materials: (i) An inductor-capacitor (LC) resonant tank based wireless pressure sensor on electrospun Poly-L-lactide (PLLA) nanofibers-based substrate. The screen-printed resonant tank (resonant frequency of ~13.56 MHz) consists of a planar inductor connected in parallel with an interdigitated capacitor. Since the substrates is piezoelectric, the capacitance of the interdigitated capacitor varies in response to the applied pressure. To demonstrate a potential application of developed pressure sensor, it was integrated on a compression bandage to monitor sub-bandage pressure. (ii) To investigate the realization of sensing antenna as temperature sensor simple loop antenna is designed and in this study unlike the first study that the sensing element was the substrate, the conductive body of the antenna itself is considered as a functional material. In this case, a small part of a loop antenna which originally was printed using silver paste is replaced by Poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT: PSS). The sensing mechanism is based on the resonant frequency shift by varying temperature. While using functional materials is useful for realization of antenna sensor, another approach also is presented by developing stretchable textile-based microstrip antennas on deformable substrate which can measure joint angles of a human limb. The EM characteristics of the meshed patch antenna were compared with its metallic counterpart fabricated with lithography technique. Moreover, the concept of stretchable UHF RFID-based strain sensor is touched in the final part of this thesis

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Additive Manufactured Antennas and Novel Frequency Selective Sensors

    Get PDF
    The research work carried out and reported in this thesis focuses on the application of additive manufacturing (AM) for the development antennas and novel frequency selective surfaces structures. Various AM techniques such as direct writing (DW), material extrusion, nanoparticle conductive inks are investigated for the fabrication of antennas and FSS based sensors. This research has two parts. The first involves the development of antennas at the microwave and millimetre wave bands using AM techniques. Inkjet printing of nanoparticle silver inks on paper substrate is employed in the fabrication of antennas for an origami robotic bird. This provides an exploration on the practicability of developing foldable antennas which can be integrated on expendable robots using low-cost household inkjet printers. This is followed using Aerosol jet printing in the fabrication of fingernail wearable antennas. The antennas are developed to operate at microwave and millimetre wave bands for potential use in 5G Internet of Things (IoT) or body-centric networks. The second part of the research work involves the development of frequency selective sensors. Trenches have been incorporated on an FSS structure to produce a new concept of liquid sensor. The sensor is fabricated using standard etching techniques and then using FDM method in conjunction with nanoparticle conductive ink. Finally, a new concept displacement sensor using an FSS coupled with a retracting substrate complement is introduced. The displacement sensor is a 3D structure which is conveniently fabricated using AM techniques

    Desenho de antenas para sensores passivos em materiais não convencionais

    Get PDF
    Doutoramento em Engenharia EletrotécnicaMotivado pela larga expansão dos sistemas RFID e com o desenvolvimento do conceito de Internet das Coisas, a evolução no desenho e métodos de produção de antenas em suportes de materiais alternativos tem tido uma exploração intensiva nos últimos anos. Isto permitiu, não só o desenvolvimento de produtos no campo da interação homem-máquina, mas também tornar estes produtos mais pequenos e leves. A procura de novas técnicas e métodos para produzir eletrónica impressa e antenas em materiais alternativos e, portanto, uma porta aberta para o aparecimento de novas tecnologias. Isto aplica-se especialmente no mercado dos sensores, onde o peso, o tamanho, o consumo energético, e a adaptabilidade a diversos ambientes, têm grande relevância. Esta tese foca-se no desenvolvimento de antenas com suporte em materiais não convenvionais, como os já testados papel e têxteis, mas também na exploração de outros, desconhecidos do ponto de vista eléctrico, como a cortiça e polímeros biodegradáveis usados em impressão 3D. Estes materiais são portanto usados como substrato, ou material de suporte, para diversas antenas e, como tal, as propriedades electromagnéticas destes materiais têm de ser determinadas. Assim, e apresentado neste documento uma revisão de métodos de caracterização de materiais, bem como a proposta de um método baseado em linhas de trasmissão impressas, e a respectiva caracterização electromagnética de diversos materiais. Além disso, são propostos desenhos de antenas para diversos cenários e aplicações utilizando os materiais anteriormente mencionados. Com esta tese concluiu-se que a utilização de materiais alternativos e hoje uma realidade e os resultados obtidos são muito encorajodares para o desenvolvimento de um conjunto de sensores para aplicações RFID com uma grande capacidade de integração.The advancement of the design and fabrication of antennas using textiles or paper as substrates has rapidly grown motivated by the boom of RFID systems and the developing concept of the Internet of Things. These advancements have allowed, not only the development of products for manmachine interaction, but also to make these products smaller and lighter. The search for new techniques and methods to produce printed electronics and antennas in alternative materials is therefore an open door for new technologies to emerge. Especially in the sensors market, where weight, size, power consumption and the adaptability to the target application, are of great importance. This thesis focuses on the development of antenna design approaches with alternative materials, such as the already tested paper and textiles, but also others relatively unknown, such as cork and biodegradable polymers used in 3D printing. These materials are applied to act as substrates, or support structures for the antennas. Therefore, their electromagnetic properties need to be determined. Due to that, a review of electromagnetic characterization methods, as well as the proposal of a custom method based on printed transmission lines, is presented in this document. Besides, several antenna designs, for di erent application scenarios, using the previously mentioned materials, are proposed. With this thesis it was proved that it is possible to develop passive sensors in di erent alternative materials for RFID applications and others, which shows great promise in the use of these materials to achieve higher integration in sensing and identi cation applications

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    corecore