1,148 research outputs found

    Smooth Subdivision Surfaces: Mesh Blending and Local Interpolation

    Get PDF
    Subdivision surfaces are widely used in computer graphics and animation. Catmull-Clark subdivision (CCS) is one of the most popular subdivision schemes. It is capable of modeling and representing complex shape of arbitrary topology. Polar surface, working on a triangle-quad mixed mesh structure, is proposed to solve the inherent ripple problem of Catmull-Clark subdivision surface (CCSS). CCSS is known to be C1 continuous at extraordinary points. In this work, we present a G2 scheme at CCS extraordinary points. The work is done by revising CCS subdivision step with Extraordinary-Points-Avoidance model together with mesh blending technique which selects guiding control points from a set of regular sub-meshes (named dominative control meshes) iteratively at each subdivision level. A similar mesh blending technique is applied to Polar extraordinary faces of Polar surface as well. Both CCS and Polar subdivision schemes are approximating. Traditionally, one can obtain a CCS limit surface to interpolate given data mesh by iteratively solving a global linear system. In this work, we present a universal interpolating scheme for all quad subdivision surfaces, called Bezier Crust. Bezier Crust is a specially selected bi-quintic Bezier surface patch. With Bezier Crust, one can obtain a high quality interpolating surface on CCSS by parametrically adding CCSS and Bezier Crust. We also show that with a triangle/quad conversion process one can apply Bezier Crust on Polar surfaces as well. We further show that Bezier Crust can be used to generate hollowed 3D objects for applications in rapid prototyping. An alternative interpolating approach specifically designed for CCSS is developed. This new scheme, called One-Step Bi-cubic Interpolation, uses bicubic patches only. With lower degree polynomial, this scheme is appropriate for interpolating large-scale data sets. In sum, this work presents our research on improving surface smoothness at extraordinary points of both CCS and Polar surfaces and present two local interpolating approaches on approximating subdivision schemes. All examples included in this work show that the results of our research works on subdivision surfaces are of high quality and appropriate for high precision engineering and graphics usage

    Subdivision Surface based One-Piece Representation

    Get PDF
    Subdivision surfaces are capable of modeling and representing complex shapes of arbi-trary topology. However, methods on how to build the control mesh of a complex surfaceare not studied much. Currently, most meshes of complicated objects come from trian-gulation and simplification of raster scanned data points, like the Stanford 3D ScanningRepository. This approach is costly and leads to very dense meshes.Subdivision surface based one-piece representation means to represent the final objectin a design process with only one subdivision surface, no matter how complicated theobject\u27s topology or shape. Hence the number of parts in the final representation isalways one.In this dissertation we present necessary mathematical theories and geometric algo-rithms to support subdivision surface based one-piece representation. First, an explicitparametrization method is presented for exact evaluation of Catmull-Clark subdivisionsurfaces. Based on it, two approaches are proposed for constructing the one-piece rep-resentation of a given object with arbitrary topology. One approach is to construct theone-piece representation by using the interpolation technique. Interpolation is a naturalway to build models, but the fairness of the interpolating surface is a big concern inprevious methods. With similarity based interpolation technique, we can obtain bet-ter modeling results with less undesired artifacts and undulations. Another approachis through performing Boolean operations. Up to this point, accurate Boolean oper-ations over subdivision surfaces are not approached yet in the literature. We presenta robust and error controllable Boolean operation method which results in a one-piecerepresentation. Because one-piece representations resulting from the above two methodsare usually dense, error controllable simplification of one-piece representations is needed.Two methods are presented for this purpose: adaptive tessellation and multiresolutionanalysis. Both methods can significantly reduce the complexity of a one-piece represen-tation and while having accurate error estimation.A system that performs subdivision surface based one-piece representation was im-plemented and a lot of examples have been tested. All the examples show that our ap-proaches can obtain very good subdivision based one-piece representation results. Eventhough our methods are based on Catmull-Clark subdivision scheme, we believe they canbe adapted to other subdivision schemes as well with small modifications

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR DOO-SABIN SUBDIVISION SURFACES

    Get PDF
    This thesis presents a new technique for the reconstruction of a smooth surface from a set of 3D data points. The reconstructed surface is represented by an everywhere -continuous subdivision surface which interpolates all the given data points. And the topological structure of the reconstructed surface is exactly the same as that of the data points. The new technique consists of two major steps. First, use an efficient surface reconstruction method to produce a polyhedral approximation to the given data points. Second, construct a Doo-Sabin subdivision surface that smoothly passes through all the data points in the given data set. A new technique is presented for the second step in this thesis. The new technique iteratively modifies the vertices of the polyhedral approximation 1CM until a new control meshM, whose Doo-Sabin subdivision surface interpolatesM, is reached. It is proved that, for any mesh M with any size and any topology, the iterative process is always convergent with Doo-Sabin subdivision scheme. The new technique has the advantages of both a local method and a global method, and the surface reconstruction process can reproduce special features such as edges and corners faithfully

    PARALLEL √3-SUBDIVISION with ANIMATION in CONSIDERATION of GEOMETRIC COMPLEXITY

    Get PDF
    We look at the broader field of geometric subdivision and the emerging field of parallel computing for the purpose of creating higher visual fidelity at an efficient pace. Primarily, we present a parallel algorithm for √3-Subdivision. When considering animation, we find that it is possible to do subdivision by providing only one variable input, with the rest being considered static. This reduces the amount of data transfer required to continually update a subdividing mesh. We can support recursive subdivision by applying the technique in passes. As a basis for analysis, we look at performance in an OpenCL implementation that utilizes a local graphics processing unit (GPU) and a parallel CPU. By overcoming current hardware limitations, we present an environment where general GPU computation of √3-Subdivision can be practical

    Point-Normal Subdivision Curves and Surfaces

    Full text link
    This paper proposes to generalize linear subdivision schemes to nonlinear subdivision schemes for curve and surface modeling by refining vertex positions together with refinement of unit control normals at the vertices. For each round of subdivision, new control normals are obtained by projections of linearly subdivided normals onto unit circle or sphere while new vertex positions are obtained by updating linearly subdivided vertices along the directions of the newly subdivided normals. Particularly, the new position of each linearly subdivided vertex is computed by weighted averages of end points of circular or helical arcs that interpolate the positions and normals at the old vertices at one ends and the newly subdivided normal at the other ends. The main features of the proposed subdivision schemes are three folds: (1) The point-normal (PN) subdivision schemes can reproduce circles, circular cylinders and spheres using control points and control normals; (2) PN subdivision schemes generalized from convergent linear subdivision schemes converge and can have the same smoothness orders as the linear schemes; (3) PN C2C^2 subdivision schemes generalizing linear subdivision schemes that generate C2C^2 subdivision surfaces with flat extraordinary points can generate visually C2C^2 subdivision surfaces with non-flat extraordinary points. Experimental examples have been given to show the effectiveness of the proposed techniques for curve and surface modeling.Comment: 30 pages, 17 figures, 22.5M

    Smooth Splines Over Irregular Meshes Built From Few Polynomial Pieces of Low Degree

    Get PDF

    Discrete B-splines and subdivision techniques in compter-aided geometric design and computer graphics

    Get PDF
    Journal ArticleThe relevant theory of discrete 5-sphnes with associated new algorithms is extended to provide a framework for understanding and implementing general subdivision schemes for nonuniform B-splines. The new derived polygon corresponding to an arbitrary refinement of the knot vector for an existing .B-spline curve, including multiplicities, is shown to be formed by successive evaluations of the discrete B-spline defined by the original vertices, the original knot vector, and the new refined knot vector. Existing subdivision algorithms can be seen as proper special cases. General subdivision has widespread applications in computer-aided geometric design, computer graphics, and numerical analysis. The new algorithms resulting from the new theory lead to a unification of the display model, the analysis model, and other needed models into a single geometric model from which other necessary models are easily derived. New sample algorithms for interference calculation, contouring, surface rendering, and other important calculations are presented
    corecore