131 research outputs found

    Efficient Regularization of Squared Curvature

    Full text link
    Curvature has received increased attention as an important alternative to length based regularization in computer vision. In contrast to length, it preserves elongated structures and fine details. Existing approaches are either inefficient, or have low angular resolution and yield results with strong block artifacts. We derive a new model for computing squared curvature based on integral geometry. The model counts responses of straight line triple cliques. The corresponding energy decomposes into submodular and supermodular pairwise potentials. We show that this energy can be efficiently minimized even for high angular resolutions using the trust region framework. Our results confirm that we obtain accurate and visually pleasing solutions without strong artifacts at reasonable run times.Comment: 8 pages, 12 figures, to appear at IEEE conference on Computer Vision and Pattern Recognition (CVPR), June 201

    Enhanced iris recognition: Algorithms for segmentation, matching and synthesis

    Get PDF
    This thesis addresses the issues of segmentation, matching, fusion and synthesis in the context of irises and makes a four-fold contribution. The first contribution of this thesis is a post matching algorithm that observes the structure of the differences in feature templates to enhance recognition accuracy. The significance of the scheme is its robustness to inaccuracies in the iris segmentation process. Experimental results on the CASIA database indicate the efficacy of the proposed technique. The second contribution of this thesis is a novel iris segmentation scheme that employs Geodesic Active Contours to extract the iris from the surrounding structures. The proposed scheme elicits the iris texture in an iterative fashion depending upon both the local and global conditions of the image. The performance of an iris recognition algorithm on both the WVU non-ideal and CASIA iris database is observed to improve upon application of the proposed segmentation algorithm. The third contribution of this thesis is the fusion of multiple instances of the same iris and multiple iris units of the eye, i.e., the left and right iris at the match score level. Using simple sum rule, it is demonstrated that both multi-instance and multi-unit fusion of iris can lead to a significant improvement in matching accuracy. The final contribution is a technique to create a large database of digital renditions of iris images that can be used to evaluate the performance of iris recognition algorithms. This scheme is implemented in two stages. In the first stage, a Markov Random Field model is used to generate a background texture representing the global iris appearance. In the next stage a variety of iris features, viz., radial and concentric furrows, collarette and crypts, are generated and embedded in the texture field. Experimental results confirm the validity of the synthetic irises generated using this technique

    MODELING AND ANALYSIS OF WRINKLES ON AGING HUMAN FACES

    Get PDF
    The analysis and modeling of aging human faces has been extensively studied in the past decade. Most of this work is based on matching learning techniques focused on appearance of faces at different ages incorporating facial features such as face shape/geometry and patch-based texture features. However, we do not find much work done on the analysis of facial wrinkles in general and specific to a person. The goal of this dissertation is to analyse and model facial wrinkles for different applications. Facial wrinkles are challenging low-level image features to analyse. In general, skin texture has drastically varying appearance due to its characteristic physical properties. A skin patch looks very different when viewed or illuminated from different angles. This makes subtle skin features like facial wrinkles difficult to be detected in images acquired in uncontrolled imaging settings. In this dissertation, we examine the image properties of wrinkles i.e. intensity gradients and geometric properties and use them for several applications including low-level image processing for automatic detection/localization of wrinkles, soft biometrics and removal of wrinkles using digital inpainting. First, we present results of detection/localization of wrinkles in images using Marked Point Process (MPP). Wrinkles are modeled as sequences of line segments in a Bayesian framework which incorporates a prior probability model based on the likely geometric properties of wrinkles and a data likelihood term based on image intensity gradients. Wrinkles are localized by sampling the posterior probability using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. We also present an evaluation algorithm to quantitatively evaluate the detection and false alarm rate of our algorithm and conduct experiments with images taken in uncontrolled settings. The MPP model, despite its promising localization results, requires a large number of iterations in the RJMCMC algorithm to reach global minimum resulting in considerable computation time. This motivated us to adopt a deterministic approach based on image morphology for fast localization of facial wrinkles. We propose image features based on Gabor filter banks to highlight subtle curvilinear discontinuities in skin texture caused by wrinkles. Then, image morphology is used to incorporate geometric constraints to localize curvilinear shapes of wrinkles at image sites of large Gabor filter responses. We conduct experiments on two sets of low and high resolution images to demonstrate faster and visually better localization results as compared to those obtained by MPP modeling. As a next application, we investigate the user-drawn and automatically detected wrinkles as a pattern for their discriminative power as a soft biometrics to recognize subjects from their wrinkle patterns only. A set of facial wrinkles from an image is treated as a curve pattern and used for subject recognition. Given the wrinkle patterns from a query and gallery images, several distance measures are calculated between the two patterns to quantify the similarity between them. This is done by finding the possible correspondences between curves from the two patterns using a simple bipartite graph matching algorithm. Then several metrics are used to calculate the similarity between the two wrinkle patterns. These metrics are based on Hausdorff distance and curve-to-curve correspondences. We conduct experiments on data sets of both hand drawn and automatically detected wrinkles. Finally, we apply digital inpainting to automatically remove wrinkles from facial images. Digital image inpainting refers to filling in the holes of arbitrary shapes in images so that they seem to be part of the original image. The inpainting methods target either the structure or the texture of an image or both. There are two limitations of existing inpainting methods for the removal of wrinkles. First, the differences in the attributes of structure and texture requires different inpainting methods. Facial wrinkles do not fall strictly under the category of structure or texture and can be considered as some where in between. Second, almost all of the image inpainting techniques are supervised i.e. the area/gap to be filled is provided by user interaction and the algorithms attempt to find the suitable image portion automatically. We present an unsupervised image inpainting method where facial regions with wrinkles are detected automatically using their characteristic intensity gradients and removed by painting the regions by the surrounding skin texture

    3D Shape Modeling Using High Level Descriptors

    Get PDF

    Patch-based graphical models for image restoration

    Get PDF

    Higher-order Losses and Optimization for Low-level and Deep Segmentation

    Get PDF
    Regularized objectives are common in low-level and deep segmentation. Regularization incorporates prior knowledge into objectives or losses. It represents constraints necessary to address ill-posedness, data noise, outliers, lack of supervision, etc. However, such constraints come at significant costs. First, regularization priors may lead to unintended biases, known or unknown. Since these can adversely affect specific applications, it is important to understand the causes & effects of these biases and to develop their solutions. Second, common regularized objectives are highly non-convex and present challenges for optimization. As known in low-level vision, first-order approaches like gradient descent are significantly weaker than more advanced algorithms. Yet, variants of the gradient descent dominate optimization of the loss functions for deep neural networks due to their size and complexity. Hence, standard segmentation networks still require an overwhelming amount of precise pixel-level supervision for training. This thesis addresses three related problems concerning higher-order objectives and higher-order optimizers. First, we focus on a challenging application—unsupervised vascular tree extraction in large 3D volumes containing complex ``entanglements" of near-capillary vessels. In the context of vasculature with unrestricted topology, we propose a new general curvature-regularizing model for arbitrarily complex one-dimensional curvilinear structures. In contrast, the standard surface regularization methods are impractical for thin vessels due to strong shrinking bias or the complexity of Gaussian/min curvature modeling for two-dimensional manifolds. In general, the shrinking bias is one well-known example of bias in the standard regularization methods. The second contribution of this thesis is a characterization of other new forms of biases in classical segmentation models that were not understood in the past. We develop new theories establishing data density biases in common pair-wise or graph-based clustering objectives, such as kernel K-means and normalized cut. This theoretical understanding inspires our new segmentation algorithms avoiding such biases. The third contribution of the thesis is a new optimization algorithm addressing the limitations of gradient descent in the context of regularized losses for deep learning. Our general trust-region algorithm can be seen as a high-order chain rule for network training. It can use many standard low-level regularizers and their powerful solvers. We improve the state-of-the-art in weakly-supervised semantic segmentation using a well-motivated low-level regularization model and its graph-cut solver

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF
    • …
    corecore