14,779 research outputs found

    Reviews

    Get PDF
    Successful Instructional Diagrams by Ric Lowe, London, Kogan Page, 1993. ISBN: 0–7494–0711–5

    Making a case for interactive texts in language learning and teaching

    Get PDF
    Hypertext has become a common reference point for CALL applications and hyperfiction is on the verge of becoming one too, it might be useful to briefly point out some of the major critical aspects of our current understanding of those terms

    Reviews

    Get PDF

    Narrative and Hypertext 2011 Proceedings: a workshop at ACM Hypertext 2011, Eindhoven

    No full text

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    "Revolution? What Revolution?" Successes and limits of computing technologies in philosophy and religion

    Get PDF
    Computing technologies like other technological innovations in the modern West are inevitably introduced with the rhetoric of "revolution". Especially during the 1980s (the PC revolution) and 1990s (the Internet and Web revolutions), enthusiasts insistently celebrated radical changes— changes ostensibly inevitable and certainly as radical as those brought about by the invention of the printing press, if not the discovery of fire.\ud These enthusiasms now seem very "1990s�—in part as the revolution stumbled with the dot.com failures and the devastating impacts of 9/11. Moreover, as I will sketch out below, the patterns of diffusion and impact in philosophy and religion show both tremendous success, as certain revolutionary promises are indeed kept—as well as (sometimes spectacular) failures. Perhaps we use revolutionary rhetoric less frequently because the revolution has indeed succeeded: computing technologies, and many of the powers and potentials they bring us as scholars and religionists have become so ubiquitous and normal that they no longer seem "revolutionary at all. At the same time, many of the early hopes and promises instantiated in such specific projects as Artificial Intelligence and anticipations of virtual religious communities only have been dashed against the apparently intractable limits of even these most remarkable technologies. While these failures are usually forgotten they leave in their wake a clearer sense of what these new technologies can, and cannot do

    A framework for the contextual analysis of computer-based learning environments

    Get PDF

    Courseware in academic library user education: a literature review from the GAELS Joint Electronic Library project

    Get PDF
    The use of courseware for information skills teaching in academic libraries has been growing for a number of years. The GAELS project was required to create a set of learning materials to support Joint Electronic Library activity at Glasgow and Strathclyde Universities and conducted a literature review of the subject. This review discovered a range of factors common to successful library courseware implementations, such as the need for practitioners to feel a sense of ownership of the medium, a need for courseware customization to local information environments, and an emphasis on training packages for large bodies of undergraduates. However, we also noted underdeveloped aspects worthy of further attention, such as treatment of pedagogic issues in library CAL implementations and use of hypertextual learning materials for more advanced information skills training. We suggest ways of improving library teaching practice and further areas of research

    Improving instructional effectiveness with computer‐mediated communication

    Get PDF
    This study explores the use of asynchronous Computer‐Mediated Communication (CMC) in the delivery of instructional content, and points up the interaction among learners, as well as between learners and instructors. The instructional content in the project described was available to learners online as Microsoft Word documents, with email being used for communicating within the student group. Many students, as well as some of the instructors, felt uncomfortable with the flexibility and openness that a CMC environment allowed. However, once familiar with this process of instruction and interaction, learners were able to work consistently at their own pace, and understand that instructors are interested in every individual learner's opinion and in the collective views of the group. It was evident that a CMC‐based instructional delivery system, when carefully planned, has the potential to facilitate that outcome, and to improve instructional effectiveness
    corecore