1,560 research outputs found

    Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier

    Get PDF
    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz

    A low-offset low-voltage CMOS Op Amp with rail-to-rail input and output ranges

    Get PDF
    A low voltage CMOS op amp is presented. The circuit uses complementary input pairs to achieve a rail-to-rail common mode input voltage range. Special attention has been given to the reduction of the op amp's systematic offset voltage. Gain boost amplifiers are connected in a special way to provide not only an increase of the low-frequency open-loop gain but also a significant reduction of the systematic offset voltag

    High-frequency two-input CMOS OTA for continuous-time filter applications

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A high-frequency fully differential CMOS operational transconductance amplifier (OTA) is presented for continuous-time filter applications in the megahertz range. The proposed design technique combines a linear cross-coupled quad input stage with an enhanced folded-cascode circuit to increase the output resistance of the amplifier. SPICE simulations show that DC-gain enhancement can be obtained without significant bandwidth limitation. The two-input OTA developed is used in high-frequency tuneable filter design based on IFLF and LC ladder simulation structures. Simulated results of parameters and characteristics of the OTA and filters in a standard 1.2 μm CMOS process (MOSIS) are presented. A tuning circuit is also discussed.Peer reviewe

    Novel approaches in current-feedback operational amplifier design

    Get PDF
    The aim of this research programme was to design and develop a novel bipolar junction transistor Current Feedback Operational Amplifier (CFOA) with a good Common-Mode Rejection Ratio (CMRR), suitable for radio frequency (RF) applications. This research focused on investigation of the established CFOA with the emphases of improving CMRR, bandwidth, Voltage-Offset and Slew-rate performance. The majority of the results of this work have been reported by the author in references [11 to [6]. Initially a thorough analysis of the conventional CFOA was undertaken to provide an in depth understanding of the amplifier's operation, and this work revealed that the main shortcomings of the CFOA are in the design of the input stage. This initial study focussed on establishing reasons for the poor DC offset-voltage performance and CMRR and confirmed that these designs have inherently poor performance in these two elements. The analysis was carried out using both theoretical modelling and computer simulation. Using this analysis of the conventional CFOA as a benchmark, various novel circuit techniques were investigated. Several new input circuits for the CFOA were proposed with respect to improving the three previously mentioned key characteristics, viz., CMRR, offset voltage, and slew-rate. The first technique explored is based on floating the entire input stage of the CFOA which yielded significant improvements in CMRR, Offset-Voltage and bandwidth, and the results of this workwere published in [11, [2], and P). Based on these initial findings a second major development was undertaken. This time a bootstrapping technique was employed to key sections of the input stage, leading to new, simplified input circuit topology. This development leads to low DC offset voltage, wide bandwidth and high CNIRR, as well as improved gain accuracy, and was published by the author in [4,5]. A logical approach to the different input stage architectures examined by the author resulted in identification of a hierarchy of 6 different input CFOA circuit designs and a comparative study was undertaken showing their relative performance in respect of CMRR, Offset-Voltage and Slew-rate. This work was presented by the author, [6]

    A 0.3V Rail-to-Rail Three-Stage OTA With High DC Gain and Improved Robustness to PVT Variations

    Get PDF
    This paper presents a novel 0.3V rail-to-rail body-driven three-stage operational transconductance amplifier (OTA). The proposed OTA architecture allows achieving high DC gain in spite of the bulk-driven input. This is due to the doubled body transconductance at the first and third stages, and to a high gain, gate-driven second stage. The bias current in each branch of the OTA is accurately set through gate-driven or bulk-driven current mirrors, thus guaranteeing an outstanding stability of main OTA performance parameters to PVT variations. In the first stage, the input signals drive the bulk terminals of both NMOS and PMOS transistors in a complementary fashion, allowing a rail-to-rail input common mode range (ICMR). The second stage is a gate-driven, complementary pseudo-differential stage with an high DC gain and a local CMFB. The third stage implements the differential-to-single-ended conversion through a body-driven complementary pseudo-differential pair and a gate-driven current mirror. Thanks to the adoption of two fully differential stages with common mode feedback (CMFB) loop, the common-mode rejection ratio (CMRR) in typical conditions is greatly improved with respect to other ultra-low-voltage (ULV) bulk-driven OTAs. The OTA has been fabricated in a commercial 130nm CMOS process from STMicroelectronics. Its area is about 0.002 mm2 , and power consumption is less than 35nW at the supply-voltage of 0.3V. With a load capacitance of 35pF, the OTA exhibits a DC gain and a unity-gain frequency of about 85dB and 10kHz, respectively

    A 0.3 V rail-to-rail ultra-low-power OTA with improved bandwidth and slew rate

    Get PDF
    In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier

    A New Proposal for OFCC-based Instrumentation Amplifier

    Get PDF
    This contribution puts forward a new voltage mode instrumentation amplifier (VMIA) based on operational floating current conveyor (OFCC). It presents high impedance at input terminals and provides output at low impedance making the proposal ideal for voltage mode operation. The proposed VMIA architecture has two stages - the first stage comprises of two OFCCs to sense input voltages and coverts the voltage difference to current while the second stage has single OFCC that converts the current to voltage. In addition it employs two resistors to provide gain and imposes no condition on the values of resistors.  The behavior of the proposed structure is also analyzed for OFCC non idealities namely finite transimpedance and tracking error. The proposal is verified through SPICE simulations using CMOS based schematic of OFCC. Experimental results, by bread boarding it using commercially available IC AD844, are also included
    • …
    corecore