399 research outputs found

    The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft

    Flight telerobot mechanism design: Problems and challenges

    Get PDF
    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    A variable stiffness soft gripper using granular jamming and biologically inspired pneumatic muscles

    Get PDF
    As the domains in which robots operate change the objects a robot may be required to grasp and manipulate are likely to vary significantly and often. Furthermore there is increasing likelihood that in the future robots will work collaboratively alongside people. There has therefore been interest in the development of biologically inspired robot designs which take inspiration from nature. This paper presents the design and testing of a variable stiffness, three fingered soft gripper which uses pneumatic muscles to actuate the fingers and granular jamming to vary their stiffness. This gripper is able to adjust its stiffness depending upon how fragile/deformable the object being grasped is. It is also lightweight and low inertia making it better suited to operation near people. Each finger is formed from a cylindrical rubber bladder filled with a granular material. It is shown how decreasing the pressure inside the finger increases the jamming effect and raises finger stiffness. The paper shows experimentally how the finger stiffness can be increased from 21 to 71 N/m. The paper also describes the kinematics of the fingers and demonstrates how they can be position-controlled at a range of different stiffness values

    Development of a Novel Impedance-Controlled Quasi-Direct-Drive Robot Hand

    Full text link
    Most robotic hands and grippers rely on actuators with large gearboxes and force sensors for controlling gripping force. However, this might not be ideal for tasks which require the robot to interact with an unstructured and/or unknown environment. We propose a novel quasi-direct-drive two-fingered robotic hand with variable impedance control in the joint space and Cartesian space. The hand has a total of four degrees of freedom, a backdrivable gear train, and four brushless direct current (BLDC) motors. Field-Oriented Control (FOC) with current sensing is used to control motor torques. Variable impedance control allows the hand to perform dexterous manipulation tasks while being safe during human-robot interaction. The quasi-direct-drive actuators enable the fingers to handle contact with the environment without the need for complicated tactile or force sensors. A majority 3D printed assembly makes this a low-cost research platform built with affordable off-the-shelf components. The hand demonstrates grasping with force-closure and form-closure, stable grasps in response to disturbances, tasks exploiting contact with the environment, simple in-hand manipulation, and a light touch for handling fragile objects.Comment: 75 pages, A Thesis in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering at Stony Brook Universit

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Grasping and Control Issues in Adaptive End Effectors

    Full text link
    • …
    corecore