14,661 research outputs found

    Robots, drugs, reality and education: how the future will change how we think

    Get PDF
    Emerging technologies for learning report - Article exploring various future trends and their potential impact on educatio

    Internet of Things-based Traffic Management System for Maseru, Lesotho.

    Get PDF
    Published ThesisThe number of vehicles in Maseru has been steadily increasing, leading to heightened intensity of congestion and traffic occurrences. This is further exacerbated by ineffective solutions that are currently in place as well as the absence of tools that facilitate dispersal of information to motorists. Traffic lights have been put in place to manage flow of traffic but are becoming increasingly inefficient due to their design. The preset timing cycles between green, amber and red disregarding prevailing conditions leads, inter alia, to increased wait times, use of additional fuel and air pollution. In addition, lack of equipment that is able to provide motorists with information about prevailing road conditions further increases the possibility of one being stuck in traffic. To make traffic management more efficient at signaled junctions, the implementation of the Internet of Things (IoT) paradigm is used to create intelligent traffic management systems such as Wireless Sensor Networks (WSN) and fuzzy algorithms to intelligently decide the phases of traffic lights. Road density and vehicles’ speeds are collected from the road infrastructure using cameras and are passed to a fuzzy algorithm to determine how congested a road is. Dependent on these parameters, the algorithm will also determine which roads should be given highest priority while maintaining a degree of fairness, thus optimizing traffic flow. In addition, the ubiquitous provision of road condition information to motorists in various formats such as text and audio is also used. This feature allows for the acquisition of the latest road status, thus making it possible to find alternative routes. The unique feature in this project is the ability to collect road parameters from the road infrastructure itself, using WSN as well as crowd source data from road users using mobile devices. A study conducted in this research revealed a relationship between the number of cars on a road and concentration of Carbon Dioxide (CO2); the results showed that as the number of cars increases, so does the measure of CO2. Questionnaire-based surveys showed that Maseru citizens have noted an increase in congestion which they attributed to the increase in number of vehicles on the road that is not met by the increase or improvement in road infrastructure. The respondents in this survey also noted limited mechanisms that provide them with road conditions and highlighted that such tools may alleviate congestion. The performance of intelligent traffic lights was conducted via simulations compared with fixed cycle traffic lights. From the simulations it was observed that IoT- based traffic management systems reduced the wait times of vehicles at signaled junctions which would also result in reduction of the pollutant CO2. It is envisaged that the future implementation will include the ability to manage a network of junctions and ability to predict abnormal traffic flows

    Uavs path planning under a bi-objective optimization framework for smart cities

    Get PDF
    Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue operations, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer programming model under a multi-objective optimization framework to design trajectories that enable a set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of target detection to aim for mission planning success. The second objective ensures minimization of cumulative path length to provide a higher resource utilization goal. A two-step variable neighborhood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the proposed approach can favorably support practical deployability purposes

    Event-Cloud Platform to Support Decision- Making in Emergency Management

    Full text link
    The challenge of this paper is to underline the capability of an Event-Cloud Platform to support efficiently an emergency situation. We chose to focus on a nuclear crisis use case. The proposed approach consists in modeling the business processes of crisis response on the one hand, and in supporting the orchestration and execution of these processes by using an Event-Cloud Platform on the other hand. This paper shows how the use of Event-Cloud techniques can support crisis management stakeholders by automatizing non-value added tasks and by directing decision- makers on what really requires their capabilities of choice. If Event-Cloud technology is a very interesting and topical subject, very few research works have considered this to improve emergency management. This paper tries to fill this gap by considering and applying these technologies on a nuclear crisis use-case

    Industrial Revolution and Smart Farming: A Critical Analysis of Research Components in Industry 4.0

    Get PDF
    Purpose of the Research: The domains of Industry 4.0 and Smart Farming encompass the application of digitization, automation, and data-driven decision-making principles to revolutionize conventional sectors. The intersection of these two fields has numerous opportunities for industry, society, science, technology, and research. Relatively, this intersection is new, and still, many grey areas need to be identified. This research is a step toward identifying research areas and current trends. Methodology Followed: The present study examines prevailing research patterns and prospective research prospects within Industry 4.0 and Smart Farming. This is accomplished by utilizing the Latent Dirichlet Allocation (LDA) methodology applied to the data procured from the Scopus database. Results Obtained: By examining the available literature extensively, the researchers have successfully discovered and developed three separate research questions. The questions mentioned above were afterward examined with great attention to detail after using Latent Dirichlet Allocation (LDA) on the dataset. The paper highlights a notable finding on the lack of existing scholarly research in the examined combined field. The existing database consists of a restricted collection of 51 scholarly papers. Nevertheless, the forthcoming terrain harbors immense possibilities for exploration and offers a plethora of prospects for additional investigation and cerebral evaluation. The originality of the research: Based on a thorough examination of existing literature, it has been established that there is a lack of research specifically focusing on the convergence of Industry 4.0 and Smart Farming. However, notable progress has been achieved in the field of seclusion. To date, the provided dataset has not been subjected to analysis using the Latent Dirichlet Allocation (LDA) technique by any researcher. Practical Implications: This study examines the Industrial Revolution's and Smart Farming's practical effects, focusing on Industry 4.0 research. The proposed method could help agricultural practitioners implement Industry 4.0 technology. It could additionally counsel technology developers on innovation and ease technology transfer. Research on regulatory frameworks, incentive programs, and resource conservation may help policymakers and government agencies

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    The influence of public acceptance on what IVHS can achieve

    Get PDF
    IVHS (Intelligent Vehicle Highway Systems) combine computing, sensors, telecommunication to deliver a more effective road/vehicle system for freight and passenger vehicles. Many of these technologies involve surveillance, identification and location and collate such data for further use. These and other aspects of IVHS technologies raise concerns amongst the community, and have repeatedly delayed adoption of some of the systems with identification and tracing capacities. A number of IVHS systems and strategies for appropriate introduction of such systems are considered. The ownership and use of data collected in the course of IVHS operations presents both revenue opportunities and problems, and change the basis of enforcement systems. There are growing links with such large scale data transmission facilities such as the US National Information Initiative (NII) and the equivalent massive interactive data networks developing elsewhere. The cost of making any major errors in implementing IVHS could easily make it extremely difficult to deploy further systems, and it is argued that adoption of a number of principles could safeguard the potential benefits at an acceptable social cost

    Smart city for sustainable urban freight logistics

    Get PDF
    International audienc
    corecore