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Abstract: Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue opera-
tions, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of
low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer pro-
gramming model under a multi-objective optimization framework to design trajectories that enable a
set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of
target detection to aim for mission planning success. The second objective ensures minimization of
cumulative path length to provide a higher resource utilization goal. A two-step variable neighbor-
hood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for
determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments
and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the
proposed approach can favorably support practical deployability purposes.

Keywords: unmanned aerial vehicles (UAVs); multi-objective optimization; integer programming;
GLPK; variable neighborhood search; search and rescue

1. Introduction

The path planning problem for a set of Unmanned Aerial Vehicles (UAVs) has gained
unprecedented interest from researchers and practitioners to develop intelligent systems
and execute various tasks with minimum human intervention. With upgraded components
such as cameras, sensors, or telemetry systems, UAV application is becoming an integral
strategic part for emergency management; aerial photography; mountain rescue; smart
farming; maritime search and rescue; information collection, post-disaster relief; homeland
security, crowd management, etc. [1–3]. UAVs, in practice, has many significant advantages
such as human workload reduction, high mobility, saving of valuable resources, etc. In the
literature, the path planning problem is categorized in several ways according to problem
characteristics. For example, according to the targets’ reaction, one can classify the problem
into two categories: one-sided vs. two-sided path planning problems. On the other hand,
based on targets’ motion, one can classify the situation as static vs. moving target search or
open vs. closed-loop decision models based on the decision-making context [4–10].

In recent years, the utilization of UAVs has been becoming increasingly attractive in
the context of Smart City Management solutions. Several key technologies are continuously
integrated into smart cities operations, such as data collection and protection and intrusion
detection technologies. In this regard, the application of UAVs to collect data or images
is an economical and effective solution. UAVs operations can lead to a new paradigm for
developing smart cities with a high-quality life and sustainable economic growth. For
example, Felemban et al. [11] noted that UAVs could be used to detect the earlier signs
of a stampede, congestion, and other crowd problems. The authors proposed a Priority-
Based Routing Framework to increase the delivery speed of images during Hajj in Saudi
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Arabia. Researchers found that UAVs can be helpful in policing systems to fight against
crime [12]. It was reported that such UAV policing systems work well for extensive crime
deterrence [13]. However, there are many challenges, and we highlight one of those where
UAVs are deployed in search and rescue problems.

Due to the sequential decision-making nature, the fundamental search and rescue
path planning problem is a non-deterministic polynomial-time problem (NP-hard) [14].
Therefore, researchers employ both exact algorithm and heuristic approaches alternatively
to solve such complex decision-making problems. One can argue that the modern search
theory originated from the pioneering works by the group of researchers, Stewart [8],
Brown [15] and Benkoski et al. [16]. Researchers mainly focus on the allocation decision
instead of the optimal sequential path generation. By assuming an exponential detection
function, Stewart [8] formulated a network flow model to characterize a moving target
detection problem and used the branch and bound method to find a near-optimal solution.
Later, Eagle [4] formulated the model in a dynamic programming framework and utilized
the Markov process to replicate target motion as state transitions. Washburn [17] made an
effort to determine the best upper bound for a generalized path planning problem. After
that, researchers progressively shifted their attention toward the evaluation of algorithm
performance in more complex enshrinement [18]. However, the travel time in the earlier
model was assumed as uniform. Lau et al. [19] relaxed this assumption and formulated a
model where travel time among regions are non-uniform. Rogge and Aeyels [20] introduced
the concept of a collaborative path planning problem where the search area consists of
multiple moving targets with an arbitrary number of obstacles. Li et al. [21] studied energy-
efficient rechargeable UAV deployment strategy to provide seamless coverage in urban
areas and employed the two-stage particle swarm optimization (PSO) algorithm to solve
the problem. Regarding other variants, Berger and Lo [22] introduced a mixed-integer
programming model under a directed acyclic graph framework and used CPLEX software
to find an optimal path. To overcome computational effort, Perez-Carabaza et al. [23]
proposed a modified ant colony optimization (ACO) algorithm to investigate the nature
of trajectories for a set of heterogeneous UAVs. Ye et al. [24] used an adaptive genetic
algorithm (GA) to find the solution for a collaborative multiple task assignment problem
with fixed-wing UAVs. The authors employed a robust encoding strategy to generate
feasible chromosomes. Lu et al. [25] use the wolf pack algorithm (WPA) to solve the task
assignment problem for UAVs. The authors found that WPA can outperform PSO and GA
in terms of convergence speed and solution accuracy. Lou et al. [26] proposed a multi-
swarm fruit fly optimization algorithm to find a solution for multi-UAV cooperative mission
planning problem. However, Alhaqbani et al. [27] stated that a common problem in most of
the metaheuristics is that those can perform poorly in regards to run time. More recently,
Xiong et al. [28] introduced Voronoi-based Ant colony optimization algorithm combined
with the Dijkstra’s algorithm to investigate optimal trajectories. In recent years, various
types of machine learning algorithms have been employed to obtain optimal deployment
strategy, and we refer to the recent review works by [29] and [30] for detailed discussion in
this aspect. In addition, we refer the following works for more discussion on path planning
from various perspectives [31–37].

In this study, we use a modified Variable Neighborhood Search (VNS) meta-heuristic [38].
Since its inception, the algorithm has been employed in numerous fields such as network
design problems in communication [39], facility location problem [40], data mining [41],
timetabling and related manpower organization problems [42], single- and multi-objective
job shop scheduling [43,44], vehicle routing problem [45] and bioinformatics [46] due to its
user-friendliness, higher precision and robustness. The VNS systematically exploits the
idea of neighborhood change iteratively to improve the initial solution inside the shaking
and local search procedures [47,48]. Unlike other meta-heuristic approaches, parameter
tuning is always an issue; the fundamental VNS algorithm and its extension version require
few or, occasionally, no parameters. One significant advantage to the VNS-based approach
for path planning is that it accommodates the path maneuverability through the path
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constructor (see Algorithm 1) operator. At the same time, the inherent shaking procedure
seeks to overcome the possible local optima. The algorithm then attempts to improve the
randomly changed path to catch a more rewarded path than the incumbent solution.

The cited literature’s main disadvantage is that most authors only studied the problem
as a single-objective optimization problem, e.g., maximizing the probability of finding
targets, minimizing the path length, equal utilization of resources, etc. However, in a
time-constrained decision-making context, only considering one objective may not lead
to an acceptable outcome [49,50]. From a practical point of view, it is essential to handle
several objectives simultaneously to obtain a pragmatic solution. Explicitly, the two most
fundamental goals that need to be considered are maximization of finding the targets and
minimizing the path length objective that can ensure minimum utilization of resources and
implicitly ensure less operational time and energy consumption. It is challenging to find
the ideal solution due to the conflicting nature of objective functions; therefore, researchers
have proposed different approaches such as weighted sum [51], global criterion [52], goal
programming [53], multi-choice goal programming [54], non-dominated sorting genetic
algorithm II [55], fuzzy-two phase approach [56], etc., and the issue of a specific method
largely depends on the decision-makers. Note that UAV path planning is itself an NP-
hard problem [57]; thus, we use a simple weighted sum approach in this study. This
study formulated the model as binary linear programming (BLP) formulation under a
bi-objective optimization environment and proposed a modified VNS algorithm to find the
solution. Numerical experiments were conducted to validate the overall framework. The
key contributions of the study are as follows: First, a bi-objective optimization problem is
proposed to obtain paths for multiple UAVs in a time-constrained environment. Second, a
modified VNS algorithm is proposed, which is highly parallelizable and straightforward to
understand. Moreover, the simulation study reveals that it can provide a solution within a
reasonable time when the exact solver fails to provide a solution, and the performance for
the algorithm is always higher compared to Dijkstra’s algorithm, which is extensively used
by several researchers [58,59]. Finally, a sensitivity analysis on the weight-space provide
an overview regarding the importance of multi-objective formulation in the practical
implementation of UAVs.

The paper is organized as follows. The mathematical model and corresponding
assumption and notation are presented in Section 2. In Section 3, an overview is presented
for the data generation. The solution procedure for the model is described in Section 4.
A detailed overview of the VNS algorithm is also presented in this section. Extensive
numerical experiments and validation of the proposed solution framework’s effectiveness
are presented in Section 5. Finally, Section 6 concludes by highlighting findings, limitations
and future research directions.

2. Mathematical Model

Path planning and trajectory mapping for UAV is an important topic because of the
incredible versatility and flexibility of UAVs that allow them to be employed in different
operations. Although path planning goes before trajectory mapping, fundamentally, their
characteristics are not entirely distinct. If point-to-point trajectories are measured, the two
problem needs to be solved simultaneously if the initial and final positions are specified.
One can define the path planning problem as finding a collision-free motion within a
specified environment where initial and final locations are pre-defined. In this study, we
use the cell decomposition method. In this method, the entire search space is subdivided
into several regions (equal/unequal), called cells. The corresponding path will represent
a connected graph and describe the adjacent relations between cells. Simultaneously, the
trajectory planning problem is based on the input generated by the path planner. To plan a
trajectory, commonly, a sequence of waypoints needs to be extracted. A kinematic inversion
needs to be performed based on some decision-maker criteria such as minimizing total
execution time, energy, distance, jerk, etc. In the present formulation, we ignore the effect
of the kinematics of the UAV. We assume that a team of homogeneous UAVs is searching
stationary targets in a pre-defined search region [60].
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The search area is divided into an N× N grid describing possible target locations. The
time duration for each cell visit, with equal size, is assumed as constant. The cell occupancy
probabilities are generated initially, and, as we assume the targets to be stationary and non-
moving, we omit the dynamics of a changing probability map. To maneuver its neighboring
cells, any UAV can move in eight different directions{E, W, N, S, SE, SW, NE, NW}. However,
at the cell where the UAVs start maneuvering is located, the UAVs are also allowed to
hover. This mimics the possibility of early landing or later departure for some UAVs. A
graph theory-based directed acyclic network representation is employed to streamline the
setup. The entire graph is defined as Gt = (Vt, Et) for all t in a given time horizon T, Vt, the
set of vertices, represent all possible locations n ∈ N∗ = {1, . . . , N2 − 1, N2} at time t ∈ T.
Et, the set of edges, represents all the possible state transition related to each UAV between
episodes t and t + 1. An adjacency matrix A defines the connectivity of G, Atn′n = 1 if
vtn′ ∈ Vt and vt′n ∈ Vt+1 are connected, else Atn′n = 0. Consequently, a binary decision
variable xntr is introduced to represent the cells n traversed at the respective time period t
for the respective rth UAV.

The following notations are used to formulate the mathematical model:

N the entire search region is divided into N × N number of cells with equal area in the grid, n ∈ N∗ = {1, .., N2 − 1, N2}
T set of time intervals with equal length defining the time horizon to explore a grid, t ∈ {0, 1, . . . , |T| − 1}
R number of UAVs, r ∈ {1, . . . , R}
pn probability of actual target occupancy on cell n
xntr state transition binary variable; xntr = 1, if the path of rth UAV investigates the nth cell in time period t, while xntr = 0, if that the

corresponding cell is not visited
Fn′ntr a binary matrix representation of the infeasible maneuvers. That is, Fn′ntr = 1 whenever Atn′n = 0
Zntr a binary binary matrix representation of all cells through the time horizon representing the same location
Bntr a binary matrix representation of the cells that can only be visited once
Hntr a binary matrix representation of all maneuvers performed in the time period t
Sntr a binary matrix representation of start and ending positions for rth UAV

Based on the above notation, the following mathematical model is proposed, where
the first objective represents the cumulative probability of success for the total number of
UAVs to be deployed and the second objective minimizes the total spent time performing
the mission:

max f1 = ∑
r∈R

∑
t∈T

∑
n∈N∗

pnxntr (1)

min f2 = ∑
r∈R

∑
t∈T

∑
n∈N∗

xntr

RT
(2)

s.t.

∑
t∈T

∑
n∈N∗

Fn′ntrxntr ≤ 1 ∀r ∈ R ∀n′ ∈ N∗ (3)

Constraint (3) ensures that infeasible maneuvers cannot be performed between two
consecutive time periods. The binary matrix F showcases each pair between consecutive
cells n and n′ that are infeasible for a given time period t. That is, if Fn′ntr = 1, then the two
cells n and n′ in time period t and t + 1, respectively, are not feasible in the same path for
any r.

∑
r∈R

Zntrxntr ≤ 1 ∀n ∈ N∗ t ∈ T (4)

Constraint (4) enforces a safety zone around each path, that is, a single agent r can
only traverse a cell in a given time period. Note that the binary matrix Z showcases the
decision variable’s index that represents the same time period.

∑
r∈R

∑
t∈T

Bntrxntr ≤ 1 ∀n ∈ N∗ (5)

Here, constraint (5) considers gathering images of a cell over multiple different time
periods, where the binary B matrix showcase each index that represents the same cell. In
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this paper, we neglect the dynamics of changing probability, and we are not interested in
obtaining a search path that acquires multiple images of the same cell. Note that we do
not have to consider a conditional probability map that is dependent on the chosen paths
because of this constraint, as the cumulative probability will be in the range of [0, 1].

∑
n∈N2

Hntrxntr = 1 ∀n ∈ N∗ r ∈ R (6)

In constraint (6), the binary H matrix ensures that the paths only allow a single
maneuver to be performed per time period per UAV.

∑
r∈R

∑
t∈T

Sntrxntr = 1 ∀r ∈ R (7)

Constraint (7) ensures that the complete path starts and ends in the designated time
zones in the designated time periods.

xntr ∈ {0, 1} ∀n ∈ N∗, ∀t ∈ T, r ∈ {1, . . . , R} (8)

Finally, the above constraint (8) represent the decision and auxiliary variables.

3. Scenario Generation

The UAV-assisted SAR mission generally consists of multiple different phases, with
the common goal of deploying as soon as possible when sufficient information about the
mission is gathered. The UAV aspect is to either aid or collect information as fast as possible
for the rescue team’s job. In this research, the UAVs are only gathering information through
images. Therefore, when generating the problem scenarios, we have to assume some
information that later can be modified to accommodate real-world scenario. In general, the
overall map is divided into an N × N grid where each cell is assumed to have the same
area. Then, a probability map is generated where each cell is given a certain probability
of containing the missing target. The probability map is generated randomly based on
a given number of hotspots and corresponding spread (see Figure 1). To accommodate
the problem scenario, the number of deployed UAVs also affects the size of the problem
scenario. These are assumed to be taking off and landing in a specific grid cell. There is also
denoted a time horizon with a given number of equidistant points in time, and the UAVs
are then able to search an entire grid cell for each time period, and then go to one of their
neighboring grid cells in the following time period. As mentioned in the Mathematical
Modelling Section, the UAVs can move in all directions, but they can only hover (land) in
the grid cell containing the UAV station. Note that this cell, therefore, should not have any
gain or loss in terms of the objectives, e.g., probability of locating the target. Due to the
problem complexity, we assume there to only be two hot spots with a spread of three and
the UAV station to be located in grid cell [0, 0]. The parameters assumed to affect the size
of the problem scenario are the grid size, N, time horizon, T, and number of UAVs, R.

Note that the proposed division of the search area is analogous to the raster model,
which is a data storage method used extensively in geographic information systems.

4. Solution Procedure

In this section, we explain the solution procedure and the selection of search pa-
rameters for the employed search method. The exact approach is often not applicable in
large-scale scenarios, as it can even fail to deliver a feasible solution. In a time-restricted
environment such as UAV-assisted search and rescue, this is not applicable. On the other
side of the spectrum, a greedy approach does deliver a feasible solution, but it often lacks
in performance. This is what we try to investigate with the deployed VNS approach. We
evaluate the performance of the algorithm with Dijkstra’s algorithm and exact solvers such
as GNU Linear Programming Kit (GLPK) to establish its efficiency. However, before doing
so, the following definitions should be presented.
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Figure 1. Probability map on a 30 × 30 grid given six hotspots with a spread of 3. The start and end
cell (UAV station) is located in cell [0, 0] in the upper left corner.

Definition 1. Multiple objective optimization problems can be represented as follows:
max ( f1(x), f2(x), . . . , fk(x))
min (g1(x), g2(x), . . . , gr(x))
s.t. x ∈ X = {x | ht(x) ≤ 0, t = 1, . . . , m}

where x = (x1, x2, . . . , xn) are the decision variables; fi(x), (i = 1, . . . , k) are maximization
type objective functions; gj(x), (j = 1, . . . , r) are minimization type objective function; ht(x),
(t = 1, . . . , m) are set of constraints [60].

Definition 2. A decision plan x0 ∈ X is said to be a Pareto optimal solution to the multiple
objective optimization problems if there does not exist another y ∈ X, such that fk(y) ≤ fk(x0) for
all k and fs(y) < fs(x0) for at least one s Wu et al. [61].

From the perspective of the search and rescue problem, it is difficult to define the strict
upper or lower bounds for the multi-objective setting problem. This is first because of the
fuzzy nature of the multi-objective setting but also because of the complexity of obtaining a
solution. Therefore, we incorporate both exact and inexact solution approachs to illustrate
these issues.

4.1. Transforming Multi-Objective Framework into a Single-Objective One

When dealing with a multi-objective framework, several types of solution approaches
can be applied, such as transforming the problem into a single-objective one, incorporating
them through a lexicographic method, identifying the entire Pareto front to determine the
trade-off among objective weightings, etc. Therefore, it generally comes down to whether
the decision maker’s preference is incorporated before, under or after exploring the solu-
tion space.

In a time-restricted environment such as search and rescue mission planning, it is
of absolute necessity that a solution can be obtained in real-time. Therefore, we utilize
the approach to transform the multi-objective framework into a single objective. For the
bi-objective framework, the objectives do not have a fitting cost transform due to the
respective units of the objectives. However, there is a range similarity in terms of the sum
of them being between 0 and 1; a simple weighted average is, therefore, fitting to do this.
Here, α represents the trade-off between the objectives [62].

fcombined = α f1 + (1− α) f2 (9)

Note that the naive weighted average can be controversial, and we therefore elaborate the
use of this in Section 5 (for more information see, Wang [29]).
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4.2. GLPK

We utilized the freely available GNU Linear Programming Kit (GLPK) package for the
exact solution procedure. The GLPK package is used for large-scale mixed-integer linear
programming problems [63]. It utilizes the branch-and-cut method for integer restriction
of the decision variables, extending to the branch-and-bound and cutting plane method.
The package is implemented in Python, where a maximum solution time is set to 12 min.
In a general real-world setting, the ultimately allowed solution time in practice is likely to
be lower, and this limit is therefore only set for illustrative purposes.

4.3. Dijkstra’s Algorithm

A useful path can be established by implementing graph searching algorithms. In
this direction, we utilize Dijkstra’s Algorithm, which is extensively used in single-source
shortest path problems with non-negative weights for each edge. In implementing the
Dijkstra’s algorithm for the path finding problem, it is imperative to introduce the constraint
on revisiting nodes that represent the same location in different time periods. A way to
incorporate this is when visiting the node (i.e., that node being the lowest distance in the
queue), then not allowing it to go back after a defined safety period has passed. The set of
nodes is then removed in the same way as the visiting node is removed from the queue.
Here, the distance that is sought to be minimized is the cumulative score, while the graph
traversed is the directed graph G, not allowing it to go backward in time. We refer to the
works of Yuan et al. [58] and Sathyara et al. [59] for the detail overview of the algorithm.

4.4. Variable Neighborhood Search

The inexact solution procedure developed in this research is a two-step VNS method
that incorporates the general approaches of the VNS but couples that with the known
information of directed acyclic graph of feasible paths through a path construction al-
gorithm. The general VNS is proposed by Mladenovic and Hansen [38] in 1997, and it
represents a flexible framework for building heuristics to approximately solve combi-
natorial and non-linear optimization problems. The VNS search heuristic systematically
changes its neighborhood structures to obtain a solution. It does so based on the following
key observations [64]:

• A local optimum relative to one neighborhood structure is not necessarily a local
optimum for another neighborhood structure.

• A global optimum is a local optimum concerning all neighborhood structures.
• Empirical evidence shows that all or a large majority of the local optima are relatively

close to each other for many problems.

The ingredients of a variable neighborhood search heuristic include an improvement
phase used to improve a given solution and a so-called shaking phase used to resolve
local minima traps. The improvement phase, the shaking procedure and the neighborhood
change step are executed alternately until a predefined stopping criterion. This research
combined it with a path construct algorithm to obtain feasible solutions more quickly and
ensure that it follows the stated constraints. The path construct algorithm can be found in the
pseudo-code of Algorithm 1. This approach linearly goes through the available time horizon
and selects the next maneuver through a weighted probability based on each alternative’s
respective score. It accompanies the constraint by removing feasible maneuvers and steers
it back to the end position by narrowing the feasible maneuvers based on the Chebyshev
and Manhattan distances to the end position. Note that this feature of steering the path
back to the selected end position is necessary as the two-step VNS randomly selects new
neighborhoods to investigate. The grid representation is, therefore, not enough to steer it
back. The integrated VNS approach selects a random neighborhood to improve upon the
path. It stops selecting new neighborhoods when a designated number of iteration have
been investigated. The pseudocode of the algorithm is presented in Algorithms 1 and 2.
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Algorithm 1: The path constructing algorithm: path_constructor(x_original, t1,
t2, rs, score)

Result: feasible path in x
1 x_original := the path that should be updated
2 N, R, T := the dimensions of the problem (grid size, number of UAVs, size of time horizon)
3 t1, t2 := the start and end time where a new path between should be located
4 rs := the set of UAVs
5 x_new := x_original
6 x_new[:,:,[t1:t2]] := 0
7 for r in rs do
8 start = starting position
9 end = end position

10 if start, end is empty then
11 start := global start
12 end := global end
13 end
14 t := t1 + 1
15 infeasible_neighbor := []
16 infeasible_neighbor_T := []
17 while t < t2 do
18 prior := cell of t-1 maneuver
19 feasible_maneuver := all maneuvers inside grid

/* remove infeasible maneuvers */
20 feasible_maneuvers := remove infeasible manuevers as indicated by

infeasible_neighbor if t is in infeasible_neighbor_T
21 if Manhatten distance from prior to end >= t2 - (t-1) then
22 maneuver_distance = manhatten distance from possible neighbors to end + 1
23 if maneuver_distance <= t2-t then
24 remove maneuver from feasible_maneuvers
25 end
26 end
27 if chebyshev distance from prior to end >= t2 - (t-1) then
28 maneuver_distance = chebyshev distance from possible neighbors to end + 1
29 if maneuver_distance <= t2-t then
30 remove maneuver from feasible_maneuvers
31 end
32 end
33 if maneuver in feasible_maneuvers has already been visited by other UAVs then
34 remove maneuver from feasible_maneuvers
35 end
36 if feasible_maneuvers is empty then
37 if t-1 is equal to t1 then
38 RETURN(x_original)
39 end
40 else
41 Add prior manuever to infeasible_neighbor
42 Add t-1 to infeasible_neighbor_T
43 remove prior from x_original
44 t := t-1
45 break
46 end
47 end

/* select feasible maneuver based on weighted probability */
48 ranked_maneuvers := ARGSORT(score[feasible_manuevers])
49 weighted_maneuvers := ranked_maneuvers / SUM(ranked_maneuvers)
50 chosen := CHOOSE(feasible_manuevers, weighted_maneuvers, 1)
51 x_new[chosen] = 1
52 end
53 end
54 RETURN(x_new)
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Algorithm 2: Pseudocode representing VNS(score, N, R, T, neighborhood_size,
nmax, kmax, tmax)
1 h! Result: best path P
2 score := score for each cell
3 N, R, T := the dimensions of the problem (grid size, number of UAVs, size of time horizon)
4 neighborhood_size := size of searched neighborhood
5 nmax := maximum number of neighborhood changes
6 kmax := maximum searches per neighborhood
7 tmax := total maximum runtime in seconds
8 n := 0
9 x_best := path_constructor(ZEROS(N,R,T), t1=0, t2=end, rs=[0,1], score)

10 score_best := SUM(x_best * score)
11 while n<nmax do
12 k := 0
13 while k<kmax do
14 n1 := RANDOM(0,T)
15 n2 := min(T,n1+neighborhood_size)
16 nr := RANDOM(0,R)
17 x_temp := path_constructor(x_best, t1=n1, t2=n2, rs=nr, score)
18 score_temp := SUM(x_best * score)
19 if score_temp > score_best then
20 x_best := x_temp
21 score_best := score_temp
22 k := 0
23 end
24 k := k+1
25 end
26 n := n+1
27 end
28 RETURN(x_best)

5. Experiments

All numerical experiments were executed with Intel Core i5-8250 CPU with 1.60 GHz
processors and 8.00 GB RAM for performance evaluation. For numerical verification, we
model the probability map through two hotspots with a spread of two cells.

5.1. Sensitivity of VNS Parameters

The VNS algorithm has three different parameters indicating the search depth, i.e.,
neighborhood, nmax and kmax, defining the size of the neighborhood each search consid-
ers; the maximum number of searched neighborhoods; and the number of searches per
neighborhood. The results are shown in Table 1.

Table 1. Average performance, standard deviation and average runtime for 100 different runs with different neighbor-
hood parameter.

Neighborhood Parameter Relative Performance ( fcombined) Standard Deviation ( fcombined) Runtime (s)

0.250 0.630 0.086 13.239
0.333 0.820 0.033 20.094
0.417 0.837 0.036 27.870
0.500 0.860 0.025 35.917
0.583 0.908 0.027 39.621
0.667 0.921 0.027 42.898
0.750 0.893 0.043 47.320
0.833 0.862 0.035 49.739
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The performance in Table 2 illustrates the change in deviation and runtime when
modifying the nmax and kmax parameter, but it should be noted that the computation of
these could easily be parallelized. In the parameter indicating the neighborhood’s size,
we can see that there is not a unified result showing which size of a neighborhood to
chose. Therefore, we choose to further extend the algorithm by randomly selecting a length
within the range of 0.3 to 0.9 for each neighborhood change. This furthers the shake and
improvement steps of the VNS, as both local and global solutions will be investigated.

Table 2. Average relative performance of the Variable Neighborhood Search (VNS) method compared to the exact GNU
Linear Programming Kit (GLPK) approach for 100 different runs with different nmax and kmax settings.

Avg. Performance (Relative to GLPK) Avg. Runtime (In Seconds)

nmax\kmax 5 15 25 35 45 55 5 15 25 35 45 55

50 0.778 0.844 0.847 0.865 0.907 0.889 1.279 3.634 6.006 8.895 10.885 13.773
100 0.777 0.865 0.889 0.885 0.885 0.847 2.335 7.114 11.527 16.675 22.014 26.318
150 0.931 0.890 0.870 0.931 0.950 0.933 3.662 11.177 16.975 24.241 32.656 37.795
200 0.926 0.931 0.843 0.823 0.864 0.912 5.356 14.136 23.159 32.099 42.245 54.182
250 0.867 0.779 0.911 0.933 0.891 0.865 6.185 16.359 28.851 39.850 55.093 62.888
500 0.932 0.867 0.913 0.911 0.869 0.975 12.262 33.660 59.775 87.177 102.260 126.429
1000 0.934 0.912 0.910 0.868 0.871 0.932 23.976 70.143 111.092 156.020 211.473 269.177
1500 0.886 0.846 0.928 0.928 0.867 0.913 32.441 103.338 171.001 248.853 323.948 360.003
2000 0.927 0.849 0.911 0.912 0.956 0.912 45.564 133.198 229.218 338.928 360.003 360.007
2500 0.869 0.976 0.911 0.912 0.974 0.912 61.237 175.410 298.774 360.004 360.002 360.002

5.2. Performance and Runtime for VNS, Dijkstra, and GLPK

GLPK is an exact approach and is therefore significantly slower, but it also yields
the optimal solution. However, the GLPK is not able to solve any of the larger problem
scenarios. The performance and runtime for the three approaches on different scenario
sizes relative to grid size N, time horizon T and the number of UAVs R can be seen in
Figure 2. Note that, when a solution approach reaches the time limit, the time is noted,
while its performance is not.

Figure 2. (a) The relative performance of the Variable Neighborhood Search (VNS) and Dijkstra algorithm compared to the
optimal solution found by the GNU Linear Programming Kit (GLPK) approach is shown. Note that many experiments do
not yield a relative performance as GLPK could not obtain a solution. (b) The runtime for the three approaches is presented,
demonstrating relation to different grid sizes and time horizons. The exact value of performance measures is presented in
Table 3.
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Table 3. The performance of the respective solution approaches on different scenarios. Note that
GLPK could not obtain a solution on some of the scenarios. This is illustrated by (-), while its runtime
reached the limit of 720 s.

Grid Size Time Horizon No. of UAVs Performance ( fcombined) Relative Performance

N T R VNS Dijkstra GLPK
f|V NS

f|GLPK

f|Dijkstra
f|GLPK

5 10 1 0.225 0.018 0.242 0.928 0.074
5 10 2 0.137 0.324 0.416 0.329 0.778
5 14 1 0.310 0.206 0.357 0.868 0.576
5 14 2 0.454 0.124 0.454 1.000 0.273
5 18 1 0.332 0.199 0.484 0.686 0.412
5 18 2 0.371 0.172 0.428 0.865 0.406
5 22 1 0.460 0.128 0.460 1.000 0.280
5 22 2 0.400 0.185 0.481 0.830 0.384
7 10 1 0.075 0.046 0.102 0.730 0.450
7 10 2 0.082 0.019 0.135 0.612 0.143
7 14 1 0.163 0.037 0.178 0.912 0.208
7 14 2 0.119 0.045 0.143 0.831 0.316
7 18 1 0.366 0.140 0.385 0.951 0.364
7 18 2 0.214 0.061 - - -
7 22 1 0.554 0.005 0.554 1.000 0.009
7 22 2 0.344 0.016 - - -
9 10 1 0.184 0.057 0.222 0.832 0.258
9 10 2 0.319 0.188 0.344 0.927 0.546
9 14 1 0.096 0.035 0.101 0.947 0.351
9 14 2 0.026 0.011 - - -
9 18 1 0.346 0.244 0.371 0.932 0.656
9 18 2 0.431 0.003 - - -
9 22 1 0.446 0.237 0.496 0.899 0.479
9 22 2 0.458 0.300 - - -

11 10 1 0.185 0.007 0.185 1.000 0.042
11 10 2 0.283 0.099 0.296 0.958 0.336
11 14 1 0.273 0.042 0.297 0.916 0.141
11 14 2 0.408 0.162 0.427 0.955 0.380
11 18 1 0.242 0.029 0.297 0.812 0.098
11 18 2 0.272 0.003 - - -
11 22 1 0.447 0.191 0.447 0.999 0.428
11 22 2 0.545 0.002 - - -
13 10 1 0.097 0.056 0.111 0.876 0.504
13 10 2 0.110 0.027 - - -
13 14 1 0.223 0.068 0.248 0.899 0.273
13 14 2 0.347 0.274 - - -
13 18 1 0.348 0.002 0.348 1.000 0.008
13 18 2 0.522 0.005 - - -
13 22 1 0.373 0.089 - - -
13 22 2 0.547 0.047 - - -
15 10 1 0.111 0.042 0.111 0.999 0.384
15 10 2 0.085 0.028 - - -
15 14 1 0.095 0.009
15 14 2 0.039 0.028 - - -
15 18 1 0.072 0.043 - - -
15 18 2 0.112 0.039 - - -
15 22 1 0.092 0.004 - - -
15 22 2 0.107 0.031 - - -
17 10 1 0.010 0.008
17 10 2 0.024 0.081 - - -
17 14 1 0.492 0.068 - - -
17 14 2 0.573 0.355 - - -
17 18 1 0.372 0.163 - - - -
17 18 2 0.448 0.003 - - -
17 22 1 0.249 0.001 - - -
17 22 2 0.141 0.033 - - -

The performance clearly indicates that the GLPK is generally faster for small problem
scenarios with a single UAV. However, it cannot even obtain a solution whenever there are
two UAVs to consider or the grid size or time horizon is larger. The relative performance of
VNS indicates that, for larger problem scenarios, it will perform within 20% of the optimal
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solution, while, for smaller problem scenarios, it performs within 50% of the optimal. The
latter is perhaps because VNS searches with a neighborhood size that is too small relative
to the grid size, so it will never get out of the local optima. However, it does not seem
to be an issue for the larger problem scenarios. Similarly, the Dijkstra approach seems to
decrease in performance relative to the exact approach when the scenario size increases.
This is probably due to the greedy nature of the method, as it does not want to investigate
areas that require it to cross a section of cells without any probability of success. The results
also showcase the complexity of the large-scale problem scenarios in UAV-assisted search
and rescue missions. Overall, Figure 2 demonstrates that the VNS outperforms GLPK
and Dijkstra’s algorithm in the perspective of relative performance measures for most of
the instances.

5.3. Sensitivity of Objective Weighting for the GLPK

Figure 3 illustrates the sensitivity to changes in the trade-off between objectives
represented by modifying α. The sensitivity analysis sheds light on the change in the
optimal path for different trade-offs. Figure 3 shows that the UAVs for alpha equal to
0 and 0.1 clearly stay in take-off and landing zone for the entire time horizon for both
UAVs or just for one UAV. This is because the score for each grid cell outside the take-off
zone is too high to consider. Finally, Figure 4 shows that the optimal path changes for
almost all different alpha settings. However, the pattern of each path seems to follow the
same structure because the path is sensitive to the parameter α, which also justifies the
multi-objective formulation of the problem.

Figure 3. The corresponding route in 2D generated by GLPK for different weightings of alpha on the corresponding scoring
map. Note that the illustrated paths is for two UAVs on a 6× 6 grid with a time horizon of 10 and start and end in grid cell
[0, 0]. In addition, for alpha = 0.1, the second UAV stays in the start cell.
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Figure 4. The corresponding route in three dimension generated by GLPK for different weights of alpha. The longitude and
latitude axes represent the possible maneuvers on the grid, while time illustrates the time dimension.

5.4. Benefits and Adverse Circumstances Associated with Multi-Objective Framework

The results on the sensitivity clearly showcase some of the dangers when incorporating
the bi-objective framework on the UAV pathfinding. It is very difficult to see which alpha
enforces that all equipment will be employed and not spending too much time in the
landing zone. Clearly, the solution procedure should allow UAVs to return before time, but
it is very difficult to identify when it is too early to specify through the alpha parameter.

There is similarly a robustness issue when introducing the multi-objective framework as
objectives can be conflicting, and a solution can satisfy an objective that is not of our interest.
In the case of this paper, we are clearly interested in searching as many high probability cells
as possible in as little time as possible. However, indicating how little time is too much is
very difficult in the presented setting. The last thing one wants to introduce is nervousness
in the scheduling, so some rules about searching different areas could be of advantage.

Nevertheless, introducing these additional objectives clearly brings us closer to the
optimal goal. For these search and rescue Missions, we are interested in accumulating the
highest probability of locating the missing target. We are, however, also interested in doing
it as quickly as possible by obtaining the best quality images possible. Similarly, there could
be a chance that the missing target has a higher probability of survival in some regions
than others, which is why we also are interested in locating the target alive. Therefore,
additional objectives other than the ones considered in this research could be introduced.

6. Conclusions

The smart city concept is almost around last couple of decades, and one of the critical
concepts is to integrate cutting-edge technology without raising costs in improving environ-
mental sustainability and life expectancy. In this direction, we proposed a multi-objective
path planning and trajectory mapping problem under the mixed integer programming
problem framework for a set of homogeneous UAVs deployed to search for static targets. A
graph theory-based directed acyclic network representation is employed to reduce complex-
ities and track the inward and outward movement of each UAV from its respective present
cell location by ensuring flow conservation. A modification of the basic VNS algorithm is
proposed and implemented in two phases to find the solution. In the first phase, a path is
generated and in the second phase, trajectory mapping is done sequentially by considering
constraints associated with the problem environment. Numerical simulation on synthetic
experimental settings demonstrates that the proposed approach can reduce computational
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complexity and provide a solution within reasonable amount of time compared to the
exact solver. Moreover, it is found that the exact solver is unable to provide a solution
within a time threshold. When we compare the relative performance of VNS with GLPK
or Dijkstra’s algorithm, it was found that Dijkstra’s algorithm’s performance is relatively
lower as the grid size increases, which justifies the efficiency of the proposed algorithm. To
our best knowledge, this is the first work to explore the path for multiple UAVs by using
a bi-objective VNS algorithm. Considering the numerical evaluation, one can conclude
that the approach presented in this study is a better alternative than the exact solver, and
methodology can contribute to intelligent systems.

For future work, we intend to extend the proposed approach to calculate paths
for finding moving targets. We assumed altitude differentiation from the perspective of
collision avoidance. We ignored constraints such as fuel, sensor capacity, search pattern, etc.,
those need to be integrated to formulate a robust path planning model. We compared the
outcome of proposed solution approach with exact solver, therefore one can employ other
algorithms such as particle swarm optimization [65], bat algorithm [66], A∗ algorithm [59],
machine learning (ML) algorithms [29] etc. to compare the performance of the proposed
VNS algorithm. Finally, one can use a multi-criterion decision-making algorithm [67] to
incorporate customizable preferences of decision-makers robustly to take advantage of the
inherent flexibility while setting weights.
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36. Sitek, P.; Wikarek, J.; Rutczyńska-Wdowiak, K.; Bocewicz, G.; Banaszak, Z. Optimization of capacitated vehicle routing problem

with alternative delivery, pick-up and time windows: A modified hybrid approach. Neurocomputing 2021, 423, 670–678. [CrossRef]
37. Thibbotuwawa, A.; Bocewicz, G.; Zbigniew, B.; Nielsen, P. A solution approach for UAV fleet mission planning in changing

weather conditions. Appl. Sci. 2019, 9, 3972. [CrossRef]
38. Mladenovic, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
39. Loudni, S.; Boizumault, P.; David, P. On-line resources allocation for ATM networks with rerouting. Comput. Oper. Res. 2006, 33,

2891–2917. [CrossRef]
40. Geiger, M.J.; Wenger, W. On the assignment of students to topics: A Variable Neighborhood Search approach. Socio-Econ. Plan.

Sci. 2010, 44, 25–34. [CrossRef]
41. Brusco, M.J.; Singh, R.; Steinley, D. Variable neighborhood search heuristics for selecting a subset of variables in principal

component analysis. Psychometrics 2009, 74, 705. [CrossRef]
42. Schilde, M.; Doerner, K.F.; Hartl, R.F.; Kiechle, G. Metaheuristics for the bi-objective orientation problem. Swarm Intell. 2009, 3,

179–201. [CrossRef]
43. Anghinolfi, D.; Paolucci, M. Parallel machine total tardiness scheduling with a new hybrid metaheuristic approach. Comput. Oper.

Res. 2007, 34, 3471–3490. [CrossRef]
44. Qian, B.; Wang, L.; Huang, D.X.; Wang, X. Multi-objective flow shop scheduling using differential evolution. In Intelligent

Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1125–1136.
45. Fleszar, K.; Osman, I.H.; Hindi, K.S. A variable neighborhood search algorithm for the open vehicle routing problem. Eur. J. Oper.

Res. 2009, 195, 803–809. [CrossRef]

http://dx.doi.org/10.1287/opre.34.2.324
http://dx.doi.org/10.1287/opre.28.6.1275
http://dx.doi.org/10.1002/1520-6750(199108)38:4<469::AID-NAV3220380404>3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1520-6750(199804)45:3<243::AID-NAV1>3.0.CO;2-7
http://dx.doi.org/10.1016/j.ejor.2007.06.043
http://dx.doi.org/10.1109/TVT.2019.2927425
http://dx.doi.org/10.1016/j.cor.2014.06.016
http://dx.doi.org/10.1016/j.asoc.2017.09.009
http://dx.doi.org/10.3390/electronics9040687
http://dx.doi.org/10.3390/app10238335
http://dx.doi.org/10.3390/s20185026
http://dx.doi.org/10.1016/j.robot.2019.02.002
http://dx.doi.org/10.1109/COMST.2020.2965856
http://dx.doi.org/10.3390/electronics9091459
http://dx.doi.org/10.3390/app10103575
http://dx.doi.org/10.3390/s19194165
http://dx.doi.org/10.1016/j.engappai.2019.06.002
http://dx.doi.org/10.1007/s10957-016-1014-y
http://dx.doi.org/10.1016/j.neucom.2020.02.126
http://dx.doi.org/10.3390/app9193972
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.cor.2005.01.016
http://dx.doi.org/10.1016/j.seps.2009.03.001
http://dx.doi.org/10.1007/s11336-009-9130-3
http://dx.doi.org/10.1007/s11721-009-0029-5
http://dx.doi.org/10.1016/j.cor.2006.02.009
http://dx.doi.org/10.1016/j.ejor.2007.06.064


Electronics 2021, 10, 1193 16 of 16

46. Montemanni, R.; Smith, D.H. Construction of constant GC-content DNA codes via a variable neighborhood search algorithm.
J. Math. Model. Algorithms 2008, 7, 311. [CrossRef]
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