109,597 research outputs found

    Cumulative Step-size Adaptation on Linear Functions

    Get PDF
    The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.Comment: arXiv admin note: substantial text overlap with arXiv:1206.120

    Cumulative Step-size Adaptation on Linear Functions: Technical Report

    Get PDF
    The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.Comment: Parallel Problem Solving From Nature (2012

    Cumulative Step-size Adaptation on Linear Functions: Technical Report

    Get PDF
    The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied

    Markov Chain Analysis of Cumulative Step-size Adaptation on a Linear Constrained Problem

    Get PDF
    This paper analyzes a (1, λ\lambda)-Evolution Strategy, a randomized comparison-based adaptive search algorithm, optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using cumulative step-size adaptation. We exhibit for each case a Markov chain describing the behaviour of the algorithm. Stability of the chain implies, by applying a law of large numbers, either convergence or divergence of the algorithm. Divergence is the desired behaviour. In the constant step-size case, we show stability of the Markov chain and prove the divergence of the algorithm. In the cumulative step-size adaptation case, we prove stability of the Markov chain in the simplified case where the cumulation parameter equals 1, and discuss steps to obtain similar results for the full (default) algorithm where the cumulation parameter is smaller than 1. The stability of the Markov chain allows us to deduce geometric divergence or convergence , depending on the dimension, constraint angle, population size and damping parameter, at a rate that we estimate. Our results complement previous studies where stability was assumed.Comment: Evolutionary Computation, Massachusetts Institute of Technology Press (MIT Press): STM Titles, 201

    Markov Chain Analysis of Evolution Strategies on a Linear Constraint Optimization Problem

    Get PDF
    This paper analyses a (1,λ)(1,\lambda)-Evolution Strategy, a randomised comparison-based adaptive search algorithm, on a simple constraint optimisation problem. The algorithm uses resampling to handle the constraint and optimizes a linear function with a linear constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using path length control. We exhibit for each case a Markov chain whose stability analysis would allow us to deduce the divergence of the algorithm depending on its internal parameters. We show divergence at a constant rate when the step-size is constant. We sketch that with step-size adaptation geometric divergence takes place. Our results complement previous studies where stability was assumed.Comment: Amir Hussain; Zhigang Zeng; Nian Zhang. IEEE Congress on Evolutionary Computation, Jul 2014, Beijing, Chin

    Cascades of Dynamical Transitions in an Adaptive Population

    Get PDF
    In an adaptive population which models financial markets and distributed control, we consider how the dynamics depends on the diversity of the agents' initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. This change in the environment results in dynamical transitions from vanishing to non-vanishing step sizes. When the diversity decreases further, we find a cascade of dynamical transitions for the different signal dimensions, supported by good agreement between simulations and theory. Besides, the signal of the largest step size at the steady state is likely to be the initial signal.Comment: 4 pages, 8 figure
    corecore