

INVENTEURS DU MONDE NUMÉRIQUE

Cumulative Step-size Adaptation on Linear Functions

Alexandre Chotard, Anne Auger and Nikolaus Hansen

TAO, Inria Saclay, Université Paris-Sud, France

name@lri.fr

Introduction and motivation

- Objective: optimize $f : \mathbb{R}^n \to \mathbb{R}$, where f is the composite of a linear function by a strictly increasing function.
- Model for when the step-size is small compared to the distance to the optimum. This situation threatens premature convergence.
- ► W.I.o.g., as CSA-ES is invariant under change of orthonormal basis, we can assume that *f* is the projection on the first dimension of a point of ℝⁿ, that is *f*(*x*) = [*x*]₁.
- Motivation: the linear functions case must be

CSA-ES without cumulation

- ► Without cumulation c = 1 so Eq. (1) becomes $p^{(g+1)} = \xi_{\star}^{(g)}$.
- Applying the LLN with Eq. (2) we get geometric divergence of the step-size for $\lambda \geq 3$

$$\frac{1}{g} \ln \left(\frac{\sigma^{(g)}}{\sigma^{(0)}} \right) \xrightarrow[g \to \infty]{a.s} \frac{1}{2d_{\sigma}n} \left(\mathbf{E} \left(\mathcal{N}_{1:\lambda}^2 \right) - 1 \right) > \mathbf{0}$$
(3)

With $\mathcal{N}_{i:\lambda}$ being the *i*th order statistic of λ random variables, i.i.d. according to a standard normal distribution.

► With a LLN for Markov chains we find a similar result on $X^{(g)}$ for $\lambda \geq 3$

$$\frac{1}{g} \ln \left| \frac{\left[\mathbf{X}^{(g)} \right]_{1}}{\left[\mathbf{X}^{(0)} \right]_{1}} \right| \xrightarrow[g \to \infty]{a.s} \frac{1}{2d_{\sigma}n} \left(\mathbf{E} \left(\mathcal{N}_{1:\lambda}^{2} \right) - 1 \right) > \mathbf{0}$$

handled well by any search algorithm by increasing the step-size, which is of critical importance in converging independently of the starting point in more general functions. It is not handled well by the (1, 2)-SA-ES.

$(1, \lambda)$ -CSA-ES

While stopping criterion has not been met:

• Generate λ new samples from previous selected point $\mathbf{X}^{(g)}$ of generation g with i.i.d. sequence $(\boldsymbol{\xi}_{i}^{(g)})_{i \in [[1,\lambda]]}$ of random steps, distributed according to a standard normal law $\mathcal{N}(\mathbf{0}, Id_{n})$:

$$\boldsymbol{Y}_{i}^{(g)} = \boldsymbol{X}^{(g)} + \sigma^{(g)} \boldsymbol{\xi}_{i}^{(g)}$$

Select the sample minimizing f:

$$\boldsymbol{X}^{(g+1)} = \operatorname*{argmin}_{\boldsymbol{Y} \in (\boldsymbol{Y}_{i}^{(g)})_{i \in [[1,\lambda]]}} f(\boldsymbol{Y}) = \boldsymbol{X}^{(g)} + \sigma^{(g)} \boldsymbol{\xi}_{\star}^{(g)}$$

Adapt the cumulative path with the selected

CSA-ES with cumulation

Through Markov chain analysis we obtain geometric divergence of the step-size for $\lambda \ge 2$ and c < 1

$$\frac{1}{g} \ln\left(\frac{\sigma^{(g)}}{\sigma^{(0)}}\right) \xrightarrow[g \to \infty]{a.s} \frac{1}{2d_{\sigma}n} \left(\left(2 - 2c\right) \mathbf{E} \left(\mathcal{N}_{1:\lambda}\right)^2 + c \left(\mathbf{E} \left(\mathcal{N}_{1:\lambda}^2\right) - 1\right) \right) > \mathbf{0}$$
(5)

Noise to Signal ratio

step:

$$p^{(g+1)} = (1-c)p^{(g)} + \sqrt{c(2-c)}\xi^{(g)}_{\star}$$
 (1)

Coefficients were chosen such that if $p^{(g)} \sim \mathcal{N}(\mathbf{0}, Id_n)$ and $\xi_{\star}^{(g)} \sim \mathcal{N}(\mathbf{0}, Id_n)$ (which is the case if f is 'random'), then $p^{(g+1)} \sim \mathcal{N}(\mathbf{0}, Id_n)$.

Adapt the step-size according to the cumulative path:

 $\sigma^{(g+1)} = \sigma^{(g)} \exp\left(\frac{c}{2d_{\sigma}} \left(\frac{\|\boldsymbol{p}^{(g+1)}\|^2}{n} - 1\right)\right) \quad (2)$

Increment g and loop over.

Simulations

Fig. 2: Plot of the standard deviation of $\ln(\sigma^{(g+1)}/\sigma^{(g)})$ divided by its expected value, for $\lambda = 8$. On the left for different dimensions, from bottom to top n = 2, 20, 200, 2000. On the right different c, from top to bottom: c = 1, 0.5, 0.2, $1/(1 + n^{1/4})$, $1/(1 + n^{1/3})$, $1/(1 + n^{1/2})$, 1/(1 + n)

As shown in Fig. 2 right, with a constant c the relative standard deviation increases with the dimension as \sqrt{n} . However, in Fig. 2 left, decreasing c decreases as well the relative standard deviation, as was shown in Fig. 1. Finally, we see in Fig. 2 right that for $c < 1/(1 + n^{1/3})$ the relative standard deviation decreases with the dimension.

Divergence rate as a function of λ

The divergence rate in Eq. (5) increases with λ , as does the number of function evaluations per iterations. Dividing the right hand side of Eq. (5) by λ , we obtain a speed per evaluation (instead of a speed per iteration), shown in the following curves:

Advantages of Cumulation

- For $\lambda = 2$,
 - Without cumulation (c = 1) the algorithm fails on linear functions (more precisely, ln(σ^(g)) does an unbiased random walk), like the (1, 2)-SA-ES, for the same symmetry reasons.
 - Cumulation (c<1) solves the problem, with the step-size geometrically diverging almost surely.

Fig. 1: Plot of the quantiles of 5001 simulations of $\ln(\sigma^{(g)}/\sigma^{(0)})$ against g with $\lambda = 8$ and n = 20. From the top to the bottom are the $1 - 10^{-i}$ quantiles, then the median, then the 10^{-i} quantiles (for i = 1..4). In the left plot, c = 1, and in the right plot $c = 1/\sqrt{20}$. A lower c gives here a higher divergence speed, and decreases the standard deviation of $\ln(\sigma^{(g+1)}/\sigma^{(g)})$, relatively to its expected value. This decreases the probability of $\ln(\sigma^{(g)}/\sigma^{(0)})$ being negative (as it here happens with c = 1).

Fig. 3: Plot of $((2-2c)\mathbf{E}(\mathcal{N}_{1:\lambda})^2 + c(\mathbf{E}(\mathcal{N}_{1:\lambda}^2) - 1))/\lambda$ against λ for different values of c. The lowest curve is for c = 1, then $c = 0.9, \dots, 0.1, 0.05, 0.01$.

The value of λ optimizing this divergence speed per evaluation depends here on the value of c, from $\lambda = 5$ when $c \leq 0.3$ to $\lambda = 8$ when c = 1.

- Circumvent the problem of selection noise. For $c = 1/n^{\alpha}$
 - With $\alpha < 1/3$, the noise to signal ratio goes to infinity. More accurately, if cis constant then the standard deviation of $\ln(\sigma^{(g+1)}/\sigma^{(g)})$ divided by its expected value grows as \sqrt{n} with the dimension.
 - With α > 1/3, the noise to signal ration goes to 0, giving the algorithm strong stability in high dimensions.
- Decreasing *c* increases the divergence rate on linear functions. For $\lambda = 5$, it can be increased by more than 3 times compared to without cumulation.