Introduction and motivation

- Objective: optimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where f is the composite of a linear function by a strictly increasing function.
- Model for when the step-size is small compared to the distance to the optimum. This situation threatens premature convergence.
- W.I.o.g., as CSA-ES is invariant under change of orthonormal basis, we can assume that f is the projection on the first dimension of a point of \mathbb{R}^{n}, that is $f(\boldsymbol{x})=[\boldsymbol{x}]_{1}$.
- Motivation: the linear functions case must be handled well by any search algorithm by increasing the step-size, which is of critical importance in converging independently of the starting point in more general functions. It is not handled well by the $(1,2)-$ SA-ES.

(1, λ)-CSA-ES

While stopping criterion has not been met:

- Generate λ new samples from previous selected point $\boldsymbol{X}^{(g)}$ of generation g with i.i.d. sequence $\left(\xi_{i}^{(g)}\right)_{i \in[[1, \lambda]]}$ of random steps, distributed according to a standard normal law $\mathcal{N}\left(\mathbf{0}, I d_{n}\right)$:

$$
\boldsymbol{Y}_{i}^{(g)}=\boldsymbol{X}^{(g)}+\sigma^{(g)} \boldsymbol{\xi}_{i}^{(g)}
$$

- Select the sample minimizing f :
$\boldsymbol{X}^{(g+1)}=\quad \operatorname{argmin} \quad f(\boldsymbol{Y})=\boldsymbol{X}^{(g)}+\sigma^{(g)} \boldsymbol{\xi}_{\star}^{(g)}$ $\boldsymbol{Y} \in\left(\boldsymbol{Y}_{i}^{(g)}\right)_{i \in[[1, \lambda]]}$
- Adapt the cumulative path with the selected step:

$$
\begin{equation*}
\boldsymbol{p}^{(g+1)}=(1-c) \boldsymbol{p}^{(g)}+\sqrt{c(2-c)} \boldsymbol{\xi}_{\star}^{(g)} \tag{1}
\end{equation*}
$$

Coefficients were chosen such that if $\boldsymbol{p}^{(g)} \sim \mathcal{N}\left(\mathbf{0}, l d_{n}\right)$ and $\boldsymbol{\xi}_{\star}^{(g)} \sim \mathcal{N}\left(\mathbf{0}, l d_{n}\right)$ (which is the case if f is 'random'), then $\boldsymbol{p}^{(g+1)} \sim \mathcal{N}\left(\mathbf{0}, I d_{n}\right)$.

Adapt the step-size according to the cumulative path:

$$
\begin{equation*}
\sigma^{(g+1)}=\sigma^{(g)} \exp \left(\frac{c}{2 d_{\sigma}}\left(\frac{\left\|\boldsymbol{p}^{(g+1)}\right\|^{2}}{n}-1\right)\right) \tag{2}
\end{equation*}
$$

Increment g and loop over.

Fig. 1: Plot of the quantiles of 5001 simulations of $\ln \left(\sigma^{(g)} / \sigma^{(0)}\right)$ against g with $\lambda=8$ and $n=20$. From the top to the bottom are the $1-10^{-i}$ quantiles, then the median, then the 10^{-i} quantiles (for $i=1$..4). In the left plot, $c=1$, and in the right plot $c=1 / \sqrt{20}$. A lower c gives here a higher divergence speed, and decreases the standard deviation of $\ln \left(\sigma^{(g+1)} / \sigma^{(g)}\right)$, relatively to its expected value. This decreases the probability of $\ln \left(\sigma^{(g)} / \sigma^{(0)}\right)$ being negative (as it here happens with $c=1$).

CSA-ES without cumulation

- Without cumulation $c=1$ so Eq. (1) becomes $\boldsymbol{p}^{(g+1)}=\boldsymbol{\xi}_{\star}^{(g)}$
- Applying the LLN with Eq. (2) we get geometric divergence of the step-size for $\lambda \geq 3$

$$
\begin{equation*}
\frac{1}{g} \ln \left(\frac{\sigma^{(g)}}{\sigma^{(0)}}\right) \underset{g \rightarrow \infty}{\text { a.s }} \frac{1}{2 d_{\sigma} n}\left(\mathbf{E}\left(\mathcal{N}_{1: \lambda}^{2}\right)-1\right)>0 \tag{3}
\end{equation*}
$$

With $\mathcal{N}_{i: \lambda}$ being the $i^{\text {th }}$ order statistic of λ random variables, i.i.d. according to a standard normal distribution.

- With a LLN for Markov chains we find a similar result on $\boldsymbol{X}^{(g)}$ for $\lambda \geq 3$

$$
\begin{equation*}
\frac{1}{g} \ln \left|\frac{\left[\boldsymbol{X}^{(g)}\right]_{1}}{\left[\boldsymbol{X}^{(0)}\right]_{1}}\right| \underset{g \rightarrow \infty}{\stackrel{\text { a.s }}{g \rightarrow \infty}} \frac{1}{2 d_{\sigma} n}\left(\mathbf{E}\left(\mathcal{N}_{1: \lambda}^{2}\right)-1\right)>0 \tag{4}
\end{equation*}
$$

CSA-ES with cumulation

Through Markov chain analysis we obtain geometric divergence of the step-size for $\lambda \geq 2$ and $c<1$

$$
\begin{equation*}
\frac{1}{g} \ln \left(\frac{\sigma^{(g)}}{\sigma^{(0)}}\right) \underset{g \rightarrow \infty}{\stackrel{\text { a.s }}{\longrightarrow}} \frac{1}{2 d_{\sigma} n}\left((2-2 c) \mathbf{E}\left(\mathcal{N}_{1: \lambda}\right)^{2}+c\left(\mathbf{E}\left(\mathcal{N}_{1: \lambda}^{2}\right)-1\right)\right)>0 \tag{5}
\end{equation*}
$$

Noise to Signal ratio

Fig. 2: Plot of the standard deviation of $\ln \left(\sigma^{(g+1)} / \sigma^{(g)}\right)$ divided by its expected value, for $\lambda=8$. On the left for different dimensions, from bottom to top $n=2,20,200,2000$. On the right different c, from top to bottom: $c=1,0.5,0.2,1 /\left(1+n^{1 / 4}\right), 1 /\left(1+n^{1 / 3}\right), 1 /\left(1+n^{1 / 2}\right), 1 /(1+n)$
As shown in Fig. 2 right, with a constant c the relative standard deviation increases with the dimension as \sqrt{n}. However, in Fig. 2 left, decreasing c decreases as well the relative standard deviation, as was shown in Fig. 1. Finally, we see in Fig. 2 right that for $c<1 /\left(1+n^{1 / 3}\right)$ the relative standard deviation decreases with the dimension.

Divergence rate as a function of λ

The divergence rate in Eq. (5) increases with λ, as does the number of function evaluations per iterations. Dividing the right hand side of Eq. (5) by λ, we obtain a speed per evaluation (instead of a speed per iteration), shown in the following curves:

Fig. 3: Plot of $\left((2-2 c) \mathbf{E}\left(\mathcal{N}_{1: \lambda}\right)^{2}+c\left(\mathbf{E}\left(\mathcal{N}_{1: \lambda}^{2}\right)-1\right)\right) / \lambda$ against λ for different values of c. The lowest curve is for $c=1$, then $c=0.9, \cdots, 0.1,0.05,0.01$.

The value of λ optimizing this divergence speed per evaluation depends here on the value of c, from $\lambda=5$ when $c \leq 0.3$ to $\lambda=8$ when $c=1$.

Advantages of Cumulation

- For $\lambda=2$,
- Without cumulation $(c=1)$ the algorithm fails on linear functions (more precisely, $\ln \left(\sigma^{(g)}\right)$ does an unbiased random walk), like the (1,2)-SA-ES, for the same symmetry reasons.
- Cumulation $(c<1)$ solves the problem, with the step-size geometrically diverging almost surely.
- Circumvent the problem of selection noise.

For $c=1 / n^{\alpha}$

- With $\alpha<1 / 3$, the noise to signal ratio goes to infinity. More accurately, if c is constant then the standard deviation of $\ln \left(\sigma^{(g+1)} / \sigma^{(g)}\right)$ divided by its expected value grows as \sqrt{n} with the dimension.
- With $\alpha>1 / 3$, the noise to signal ration goes to 0 , giving the algorithm strong stability in high dimensions.
- Decreasing c increases the divergence rate on linear functions. For $\lambda=5$, it can be increased by more than 3 times compared to without cumulation.

