17,224 research outputs found

    Cumulative Step-size Adaptation on Linear Functions

    Get PDF
    The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.Comment: arXiv admin note: substantial text overlap with arXiv:1206.120

    Cumulative Step-size Adaptation on Linear Functions: Technical Report

    Get PDF
    The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.Comment: Parallel Problem Solving From Nature (2012

    Maximum Likelihood-based Online Adaptation of Hyper-parameters in CMA-ES

    Get PDF
    The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meaning that only one hyper-parameter, the population size, is proposed to be tuned by the user. In this paper, we propose a principled approach called self-CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters in order to improve its overall performance. Experimental results show that for larger-than-default population size, the default settings of hyper-parameters of CMA-ES are far from being optimal, and that self-CMA-ES allows for dynamically approaching optimal settings.Comment: 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014) (2014

    A Reinforcement Learning Agent for Minutiae Extraction from Fingerprints

    Get PDF
    In this paper we show that reinforcement learning can be used for minutiae detection in fingerprint matching. Minutiae are characteristic features of fingerprints that determine their uniqueness. Classical approaches use a series of image processing steps for this task, but lack robustness because they are highly sensitive to noise and image quality. We propose a more robust approach, in which an autonomous agent walks around in the fingerprint and learns how to follow ridges in the fingerprint and how to recognize minutiae. The agent is situated in the environment, the fingerprint, and uses reinforcement learning to obtain an optimal policy. Multi-layer perceptrons are used for overcoming the difficulties of the large state space. By choosing the right reward structure and learning environment, the agent is able to learn the task. One of the main difficulties is that the goal states are not easily specified, for they are part of the learning task as well. That is, the recognition of minutiae has to be learned in addition to learning how to walk over the ridges in the fingerprint. Results of successful first experiments are presented

    Markov Chain Analysis of Cumulative Step-size Adaptation on a Linear Constrained Problem

    Get PDF
    This paper analyzes a (1, λ\lambda)-Evolution Strategy, a randomized comparison-based adaptive search algorithm, optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using cumulative step-size adaptation. We exhibit for each case a Markov chain describing the behaviour of the algorithm. Stability of the chain implies, by applying a law of large numbers, either convergence or divergence of the algorithm. Divergence is the desired behaviour. In the constant step-size case, we show stability of the Markov chain and prove the divergence of the algorithm. In the cumulative step-size adaptation case, we prove stability of the Markov chain in the simplified case where the cumulation parameter equals 1, and discuss steps to obtain similar results for the full (default) algorithm where the cumulation parameter is smaller than 1. The stability of the Markov chain allows us to deduce geometric divergence or convergence , depending on the dimension, constraint angle, population size and damping parameter, at a rate that we estimate. Our results complement previous studies where stability was assumed.Comment: Evolutionary Computation, Massachusetts Institute of Technology Press (MIT Press): STM Titles, 201

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic

    Sparse Conformal Predictors

    Get PDF
    Conformal predictors, introduced by Vovk et al. (2005), serve to build prediction intervals by exploiting a notion of conformity of the new data point with previously observed data. In the present paper, we propose a novel method for constructing prediction intervals for the response variable in multivariate linear models. The main emphasis is on sparse linear models, where only few of the covariates have significant influence on the response variable even if their number is very large. Our approach is based on combining the principle of conformal prediction with the ℓ1\ell_1 penalized least squares estimator (LASSO). The resulting confidence set depends on a parameter Ï”>0\epsilon>0 and has a coverage probability larger than or equal to 1−ϔ1-\epsilon. The numerical experiments reported in the paper show that the length of the confidence set is small. Furthermore, as a by-product of the proposed approach, we provide a data-driven procedure for choosing the LASSO penalty. The selection power of the method is illustrated on simulated data
    • 

    corecore