41 research outputs found

    Symptoms Based Image Predictive Analysis for Citrus Orchards Using Machine Learning Techniques: A Review

    Get PDF
    In Agriculture, orchards are the deciding factor in the country’s economy. There are many orchards, and citrus and sugarcane will cover 60 percent of them. These citrus orchards satisfy the necessity of citrus fruits and citrus products, and these citrus fruits contain more vitamin C. The citrus orchards have had some problems generating good yields and quality products. Pathogenic diseases, pests, and water shortages are the three main problems that plants face. Farmers can find these problems early on with the support of machine learning and deep learning, which may also change how they feel about technology.  By doing this in agriculture, the farmers can cut off the major issues of yield and quality losses. This review gives enormous methods for identifying and classifying plant pathogens, pests, and water stresses using image-based work. In this review, the researchers present detailed information about citrus pathogens, pests, and water deficits. Methods and techniques that are currently available will be used to validate the problem. These will include pre-processing for intensification, segmentation, feature extraction, and selection processes, machine learning-based classifiers, and deep learning models. In this work, researchers thoroughly examine and outline the various research opportunities in the field. This review provides a comprehensive analysis of citrus plants and orchards; Researchers used a systematic review to ensure comprehensive coverage of this topic

    Numerical Modeling and Design of Machine Learning Based Paddy Leaf Disease Detection System for Agricultural Applications

    Get PDF
    In order to satisfy the insatiable need for ever more bountiful harvests on the global market, the majority of countries deploy cutting-edge technologies to increase agricultural output. Only the most cutting-edge technologies can ensure an appropriate pace of food production. Abiotic stress factors that can affect plants at any stage of development include insects, diseases, drought, nutrient deficiencies, and weeds. On the amount and quality of agricultural production, this has a minimal effect. Identification of plant diseases is therefore essential but challenging and complicated. Paddy leaves must thus be closely watched in order to assess their health and look for disease symptoms. The productivity and production of the post-harvest period are significantly impacted by these illnesses. To gauge the severity of plant disease in the past, only visual examination (bare eye observation) methods have been employed. The skill of the analyst doing this analysis is essential to the caliber of the outcomes. Due to the large growing area and need for ongoing human monitoring, visual crop inspection takes a long time. Therefore, a system is required to replace human inspection. In order to identify the kind and severity of plant disease, image processing techniques are used in agriculture. This dissertation goes into great length regarding the many ailments that may be detected in rice fields using image processing. Identification and classification of the four rice plant diseases bacterial blight, sheath rot, blast, and brown spot are important to enhance yield. The other communicable diseases, such as stem rot, leaf scald, red stripe, and false smut, are not discussed in this paper. Despite the increased accuracy they offer, the categorization and optimization strategies utilized in this work lead it to take longer than typical to finish. It was evident that employing SVM techniques enabled superior performance results, but at a cost of substantial effort. K-means clustering is used in this paper segmentation process, which makes figuring out the cluster size, or K-value, more challenging. This clustering method operates best when used with images that are comparable in size and brightness. However, when the images have complicated sizes and intensity values, clustering is not particularly effective

    A Framework for Crop Disease Detection Using Feature Fusion Method

    Get PDF
    Crop disease detection methods vary from traditional machine learning, which uses Hand-Crafted Features (HCF) to the current deep learning techniques that utilize deep features. In this study, a hybrid framework is designed for crop disease detection using feature fusion. Convolutional Neural Network (CNN) is used for high level features that are fused with HCF. Cepstral coefficients of RGB images are presented as one of the features along with the other popular HCF. The proposed hybrid model is tested on the whole leaf images and also on the image patches which have individual lesions. The experimental results give an enhanced performance with a classification accuracy of 99.93% for the whole leaf images and 99.74% for the images with individual lesions. The proposed model also shows a significant improvement in comparison to the state-of-art techniques. The improved results show the prominence of feature fusion and establish cepstral coefficients as a pertinent feature for crop disease detection

    A Detailed Review on Plant Leaf Disease Detection and Classification Methodologies using Deep Learning Techniques

    Get PDF
    The rapid emergence and evolution of deep learning methodologies in the field of plant disease classification and detection has resulted in significant progress. Their application has revolutionized the way agriculture is done. This paper provides an overview of the advancements in utilizing deep learning models to address the crucial task of identifying and categorizing plant diseases. By harnessing the power of deep convolutional neural networks (CNNs) and transfer learning, researchers have achieved remarkable accuracy in disease classification, often surpassing traditional methods. This study also delves into the challenges that persist in this field, such as the scarcity of labeled data and potential biases in models. To address these concerns, the integration of visualization techniques is explored, allowing for better model interpretation and transparency. The collaborative efforts of agricultural experts and machine learning researchers are deemed crucial for overcoming these challenges and driving the future direction of research. Looking ahead, the interdisciplinary approach is anticipated to play a pivotal role in refining deep learning models for plant disease detection. A seamless collaboration between domain-specific professionals, machine learning experts, and agricultural practitioners is essential to foster innovation, enhance the reliability of models, and create a sustainable agricultural ecosystem. With the integration of cutting-edge architectures, emerging technologies like edge computing, and broader datasets, the field is poised to bring about transformative changes in agricultural practices, bolstering crop health and productivity

    Crops leaf diseases recognition: a framework of optimum deep learning features

    Get PDF
    Manual diagnosis of crops diseases is not an easy process; thus, a computerized method is widely used. From a couple of years, advancements in the domain of machine learning, such as deep learning, have shown substantial success. However, they still faced some challenges such as similarity in disease symptoms and irrelevant features extraction. In this article, we proposed a new deep learning architecture with optimization algorithm for cucumber and potato leaf diseases recognition. The proposed architecture consists of five steps. In the first step, data augmentation is performed to increase the numbers of training samples. In the second step, pre-trained DarkNet19 deep model is opted and fine-tuned that later utilized for the training of fine-tuned model through transfer learning. Deep features are extracted from the global pooling layer in the next step that is refined using Improved Cuckoo search algorithm. The best selected features are finally classified using machine learning classifiers such as SVM, and named a few more for final classification results. The proposed architecture is tested using publicly available datasets–Cucumber National Dataset and Plant Village. The proposed architecture achieved an accuracy of 100.0%, 92.9%, and 99.2%, respectively. A comparison with recent techniques is also performed, revealing that the proposed method achieved improved accuracy while consuming less computational time

    Pepper leaf disease recognition based on enhanced lightweight convolutional neural networks

    Get PDF
    Pepper leaf disease identification based on convolutional neural networks (CNNs) is one of the interesting research areas. However, most existing CNN-based pepper leaf disease detection models are suboptimal in terms of accuracy and computing performance. In particular, it is challenging to apply CNNs on embedded portable devices due to a large amount of computation and memory consumption for leaf disease recognition in large fields. Therefore, this paper introduces an enhanced lightweight model based on GoogLeNet architecture. The initial step involves compressing the Inception structure to reduce model parameters, leading to a remarkable enhancement in recognition speed. Furthermore, the network incorporates the spatial pyramid pooling structure to seamlessly integrate local and global features. Subsequently, the proposed improved model has been trained on the real dataset of 9183 images, containing 6 types of pepper diseases. The cross-validation results show that the model accuracy is 97.87%, which is 6% higher than that of GoogLeNet based on Inception-V1 and Inception-V3. The memory requirement of the model is only 10.3 MB, which is reduced by 52.31%-86.69%, comparing to GoogLeNet. We have also compared the model with the existing CNN-based models including AlexNet, ResNet-50 and MobileNet-V2. The result shows that the average inference time of the proposed model decreases by 61.49%, 41.78% and 23.81%, respectively. The results show that the proposed enhanced model can significantly improve performance in terms of accuracy and computing efficiency, which has potential to improve productivity in the pepper farming industry

    Smart Farm-Care using a Deep Learning Model on Mobile Phones

    Get PDF
    Deep learning and its models have provided exciting solutions in various image processing applications like image segmentation, classification, labeling, etc., which paved the way to apply these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate classification system with less size and complexity is developed using smartphones. A labeled dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ based on their depth and resolution multiplier. The results show that the proposed model with 0.5 depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also measures the number of pixels forming diseased spots, which helps in severity prediction. Doi: 10.28991/ESJ-2023-07-02-013 Full Text: PD

    A Hybrid Machine Learning Model to Recognize and Detect Plant Diseases in Early Stages

    Get PDF
    This paper presents an improved Inception module to recognise and detect plant illnesses substituting the original convolutions with architecture based on modified-Xception (m-Xception). In addition, ResNet extracts features by prioritising logarithm calculations over softmax calculations to get more consistent classification outcomes. The model’s training utilised a two-stage transfer learning process to produce an effective model. The results of the experiments reveal that the suggested approach is capable of achieving the specified level of performance, with an average recognition fineness of 99.73 on the public dataset and 98.05 on the domestic dataset, respectively

    An Intelligent Technique for Grape Fanleaf Virus Detection

    Get PDF
    Grapevine Fanleaf Virus (GFLV) is one of the most important viral diseases of grapes, which can damage up to 85% of the crop, if not treated at the right time. The aim of this study is to identify infected leaves with GFLV using artificial intelligent methods using an accessible database. To do this, some pictures are taken from infected and healthy leaves of grapes and labeled by technical specialists using conventional laboratory methods. In order to provide an intelligent method for distinguishing infected leaves from healthy ones, the area of unhealthy parts of each leaf is highlighted using Fuzzy C-mean Algorithm (FCM), and then the percentages of the first two segments area are fed to a Support Vector Machines (SVM). To increase the diagnostic reliability of the system, K-fold cross validation method with k = 3 and k =5 is applied. After applying the proposed method over all images using K-fold validation technique, average confusion matrix is extracted to show the True Positive, True Negative, False Positive and False Negative percentages of classification. The results show that specificity, as the ability of the algorithm to really detect healthy images, is 100%, and sensitivity, as the ability of the algorithm to correctly detect infected images is around 97.3%. The average accuracy of the system is around 98.6%. The results imply the ability of the proposed method compared to previous methods

    Plant Disease Detection: Electronic System Design Empowered with Artificial Intelligence

    Get PDF
    Today, plant diseases have become a major threat to the development of agriculture and forestry, not only affecting the normal growth of plants but also causing food safety problems. Hence, it is necessary to identify and detect disease regions and types of plants as quickly as possible. We have developed a plant monitoring system consisting of sensors and cameras for early detection of plant diseases. First, we create a dataset based on the data collected from the strawberry plants and then use our dataset as well as some well-established public datasets to evaluate and compare the recent deep learning-based plant disease detection studies. Finally, we propose a solution to identify plant diseases using a ResNet model with a novel variable learning rate which changes during the testing phase. We have explored different learning rates and found out that the highest accuracy for classification of healthy and unhealthy strawberry plants is obtained with the learning rate of 0.01 at 99.77%. Experimental results confirm the effectiveness of the proposed system in achieving high disease detection accuracy
    corecore