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Abstract 

Deep learning and its models have provided exciting solutions in various image processing 
applications like image segmentation, classification, labeling, etc., which paved the way to apply 

these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of 

the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate 
classification system with less size and complexity is developed using smartphones. A labeled 

dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including 

the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-
trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ 

based on their depth and resolution multiplier. The results show that the proposed model with 0.5 

depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means 
algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also 

measures the number of pixels forming diseased spots, which helps in severity prediction. 
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1- Introduction 

Smart farming is initiated to meet the difficulties arising in agricultural production concerning productivity, food 

safety, and sustainability. This makes agriculture more efficient and effective with the help of high-precision algorithms. 

Various sensors are incorporated to monitor the entire crop, resulting in a large amount of data. Apart from the varying 

climatic conditions and the soil types, accurate and early detection of diseases is an important factor in improving the 

production of any crop, particularly apples. This helps in taking appropriate preventive measures, which reduce crop 

loss and increase production in terms of quality and quantity [1–3]. 

Pathogenic agents that cause plant diseases are fungi, bacteria, and viruses. Our work concentrates on disease 

classification and the visualization of diseased spots on apple leaf images. Fungal diseases like apple scabs, black rot, 

and cedar rust appeared on the leaves are shown in Figure 1, along with healthy ones. Apple Scab is caused by the fungus 

Venturia inaequalis where grey-brown lesions appear on the surface of the leaves. Cedar apple rust is a fungal disease 

caused by Gymnosporangium juniperi-virginianae where bright orange-yellow leaf spots develop on the upper surfaces 

of the leaves. The Botryosphaeria obtusa fungus causes black rot, which appears as a yellowish-brown spot on the upper 

surface of the leaves that enlarges into a circle [3, 4]. 

Various Information and Communication Technology (ICT) initiatives like mKisan and AGRITECH are developed 

by researchers and agricultural experts for easy farming guidance. This is accomplished using traditional image 

processing, data mining, and machine learning methods. Some traditional ICT-based systems can be either mobile-based 
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or web-based decision support systems. Nowadays, mobile phones are prominently used among farmers in various 

agricultural applications, like receiving information about the market value of the product, specific crops to be planted, 

the probability of disease, pesticides to be applied, etc. [1]. 

 

Figure 1. Input dataset categories 

Classification is the main task in machine learning. The main aim is to classify objects based on the features of binary 

or multiclass classes. Disease diagnosis is one of its applications. Earlier, disease diagnosis and classification were 

performed for the hand-crafted features, like HOG, SIFT, SURF, and LBP. These descriptors did not perform well as 

they took a lot of time. Segmenting images from the complex background also enhances the classification process. Many 

traditional approaches were used for classification, such as selecting the local minimum based on the threshold cut-off 

from the histogram of intensities constructed [5, 6]. Additional features such as color, texture, and shape can be extracted 

using the Gray Level Co-occurrence Matrix (GLCM) [7]. Based on the features extracted, the K-means algorithm can 

be used to segment the regions, and the K-nearest neighbour (KNN) classifier can be used for prediction from the 

extracted features [8–10]. Later, artificial intelligence was incorporated, and an optimized MSF-AdaBoost model was 

developed for classifying and monitoring powdery mildew on winter wheat. A Multiplier Classifier System (MCS) is 

created based on different machine learning algorithms such as Support Vector Machine (SVM) and Random Forest 

Classifier for pattern recognition of wheat leaf diseases and groundnut diseases, respectively [11–13]. K-means 

clustering is also proposed for identifying three classes of wheat leaf diseases. A Bayesian network-based diagnosis 

model is implemented for stripe rust, providing accurate identification and prediction [14, 15]. 

Hence, intelligent image data analysis is an important area of research in the agricultural domain for various 

agricultural applications where a combination of different Machine Learning (ML) and Deep Learning (DL) algorithms 

are applied [16–18]. A survey on deep learning in agriculture and the efforts taken by the researchers, starting from 

dataset acquisition to performance evaluation metrics, helps in understanding the merits and demerits of the different 

models [19]. Despite various limitations, like small datasets with low resolution or noisy images, the survey concludes 

that the application of deep learning in agriculture outperforms the traditional image processing technique by offering 

better performance [20–22]. 

The state-of-the-art methodologies use images for classification. So, image classification is the major domain where 

deep learning models are used. Challenges that degrade the performance of the classification systems developed are, 

firstly, the similarity in the appearance of diseases in the input image dataset. Secondly, visual interferences occurred 

while capturing the image due to reflection, equipment jitter, too much exposure to illumination, etc. [23, 24]. A Multi-

Layer Perceptron (MLP) called CNN is the base of all deep learning models. CNN models were developed to perform 

well with a gain in accuracy as the layers are stacked [25]. The ILSVRC challenge exploited various deep models trained 

and tested on the ImageNet database published in 2009, with a depth of 8 to 152 [26, 27]. The standard structure of all 

deep learning models is convolutional, linearly stacked layers, followed by pooling and fully connected layers. A survey 

reveals that increasing hidden layers is the main key to success. An increase in the number of convolutional layers 

increases parameters and computational complexity [25–27]. 

Creating a new model from scratch on a new dataset is a time-consuming and tedious process. Therefore, models 

developed and trained on the ImageNet dataset are retrained on the new dataset. Such models are called pre-trained 

models, and the process of applying the pre-trained models to the new dataset is called transfer learning. Therefore, a 

MobileNet model developed by Google, pre-trained on the ImageNet dataset, is retrained on the apple leaf image dataset 

retrieved from the PlantVillage database. The retrained model results show greater accuracy than the AlexNet, VGG, 

and Inception models, with smaller sizes and less computational cost. 

The main novelty and contribution of the research are listed: 

 A pre-trained MobileNet model is fine-tuned to get accuracy greater than that of the existing models with less size 

and computational cost. 

 A pre-trained MobileNet model is deployed on an android mobile for disease diagnosis in agricultural crops. 

 Also, disease spots are visualized, and the size of the spot is measured in inches to predict the severity of the disease 

using K-means segmentation. 
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2- Literature Review 

2-1- Relevant Studies 

Detecting disease in agricultural plants or fruits is a computer vision area that focuses on identifying the presence of 

a diseased part in an image, which leads to smart farming. Smart farming is employed to face the challenges of 

agricultural production concerning productivity, food safety, and sustainability. The increasing population needs to 

increase food production to maintain high nutritional quality without affecting nature [28–30]. Identification of diseases 

by segmenting the area of interest from a real-world environment are the different operations performed for different 

agricultural applications [31, 32-34]. A system can be developed to perform these operations using various algorithms, 

like computer vision and image processing. 

Deep Learning (DL) is an emerging technique drawing various researchers’ attention to object segmentation, 

detection, recognition, and classification. Deep learning models can be supervised, semi-supervised, or unsupervised. 

Convolutional Neural Network is the base of all supervised deep learning models using images or video as input datasets. 

These models consist of multiple layers, in which each layer computes the convolutional transforms followed by non-

linear and pooling operations. Hence, CNN can be used either for extracting features or as an end-to-end classifier. As a 

feature extractor, CNN extracts features that may then be fed into an SVM classifier for classification. CNN as a classifier 

can be directly used for image classification [20, 30, 33]. This paper focuses on how a pre-trained model functions and 

can be applied to real-time applications. 

The performance of existing deep learning models like LeNet [35], AlexNet [26], CaffeNet [36], VGG [25], 

GoogleNet [27], Inception [37], Inception-ResNet [38], and MobileNet [39, 40] were compared when applied to the 

ImageNet dataset. Each CNN differs from the other based on the layer count and structure. The performance of these 

models motivated the researchers to apply them in various applications using medical images, satellite images, and 

agricultural images. Medical images like Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans 

are processed to correctly diagnose various diseases. Satellite images are processed for different applications, namely 

oceanography, agriculture, warfare, etc. The application of image processing in agriculture results in improved decision-

making for vegetation, irrigation, fruit sorting, etc. [24, 41, 42]. 

Objects Recognition and classification of the input images have various uses in real-world applications. Objects 

recognized may vary based on the application – for instance, face, gesture, etc. Face recognition is used as a security 

measure for smartphone devices, and gesture recognition is used as a touchless user interface for driving. These systems 

were developed using the concept of transfer learning. Hence, transfer learning is a technique used for training the model 

where the knowledge of the previously trained model is transferred and used for a different but related purpose [43, 44]. 

The paper concentrates on the performance of different models applied in agricultural applications, restricted to plant 

disease detection and diagnosis, which improve productivity. Detecting the leaf area and & diagnosis of diseases found 

in the plant is achieved via monitoring the crop by capturing the images either manually or using the sensors. Unmanned 

Aerial Vehicle (UAV) imagery is used for crop type classification and plant/leaf area recognition. From the captured 

images, relevant information in the form of features is extracted, which can be later used to identify, classify, and segment 

the specific area of interest, like leaves, roots, soil, weeds, seeds, etc. 

Transfer learning of pre-trained models and application-specific or author-defined CNN architectures are also 

developed for solving the above tasks, such as plant or disease identification [30, 44]. Different models were developed, 

and their performances are listed in Table 1. 

Table 1. Models and Dataset 

Among the models developed for disease detection and classification, VGG outperformed other models. VGG 

attained a classification accuracy of 99.53% in classifying images to their respective classes from an image dataset 

comprising 17,548 images with a very low error rate but a large size or number of parameters. More profound and 

complex networks are developed to achieve high accuracy. More profound or deeper networks can be constructed by 

Author Architecture Purpose Dataset source Accuracy 

Ferentinos, (2018) [44] AlexNet, Googlenet 
Compared 2 architectures for 26 plant 

diseases 
Hughes Salathe Dataset 99.53 

Brahimi et al. (2017) [45] AlexNet, Googlenet 
Compared the 2 architectures with the 

SVM & Random Forest 

Tomato leaves from 

PlantVillage dataset 
99.18 

Fuetes et al. (2017) [46] Author defined CNN 9 different tomato diseases and pests 
PlantVillage and other 

captured images 

Satisfactory 

performance – not high 

Amara et al. (2017) [47] LeNet Banana leaf disease classification PlantVillage 96.00 

Mohanty et al. (2016) [23] GoogleNet, AlexNet 364 classes of images– 54306 images PlantVillage 99.35 

Sladojevic et al. (2016) [48] CaffeNet 13 classes of images- 4483 images Images created by the authors 96.30 
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inserting the convolution and pooling layers. The convolution and pooling layers help in extracting features. The count 

of layers ranges from 5 to 22 layers [44]. Irrespective of transfer learning, the deep residual learning method effectively 

predicts disease accurately within a minimum amount of time after taking tomato leaf images. This method outperforms 

the VGG model in a normal CPU environment without extra hardware [49]. 

Researchers are currently interested in deploying various AI applications on mobile devices, specifically smartphones. 

Hence, in this paper, the major focus is on deploying the application to mobile devices for disease diagnosis in 

agricultural fields. It is said that within 2 years, the applications deployed on mobile devices or smartphones will help 

the different agricultural experts or farmers in predicting as mobile phones will become an inevitable thing for all people. 

Mobile phones currently play a vital role in determining which crop can be planted in a particular area during a specific 

season, from sowing to cultivation [1]. However, disease diagnosis via mobile phones is not yet available to farmers. 

Therefore, research is focused on developing a model for disease diagnosis via mobile devices to identify 4 classes of 

apple leaf diseases: scab, rust, rot, and healthy leaf images. 

Hence, this paper considers a model called MobileNet, which is developed for classifying objects into 1000 classes 

using a trained ImageNet dataset using Neural Networks (NN) with multiple layers. Learning occurs in these layers 

based on multiple attributes and features identified from the input dataset [39, 40]. For identifying a leaf image, multiple 

features are extracted at the end of NN. The first few layers of NN are used to determine properties such as color, hue, 

etc. Additional layers are added over this network to learn similar features. Initial layers have to distinguish and train on 

the most salient features. These features can be trained over the final layers to produce a specific output for identifying 

the type of disease present on a particular plant. 

The MobileNet architecture uses only up to 4 million parameters and is designed to run efficiently on mobile devices, 

whereas VGG and ResNet have 130M and 25M parameters, respectively. Similarly, 300 MFLOPs of calculations are 

performed in the MobileNet model, which makes the model faster when compared to the other larger model, which 

performs up to 4 GFLOPs of calculations [25, 39, 44]. Based on accuracy, the current paper has high accuracy, similar 

to VGG. 

The other major advantages are: 

 Automatically learns the features from the training set of images; 

 Can work in a real-world environment; 

 It can be used on mobile; 

 Fewer parameters; 

 High accuracy; 

 Mobile in agriculture. 

2-2- Role of Image Segmentation 

Different tasks, namely image segmentation, feature extraction, and target recognition, belong to the computer vision 

field to process any image. In order to extract useful information from certain parts of the image, the image segmentation 

technique is used to divide the input image into several meaningful target areas based on the features like color, texture, 

edge, etc. The main goal of image segmentation is to divide the image into components or regions based on the 

application domain. The segmented objects in the image are the target objects on focus during analysis. Hence, it is 

easier to detect the target object and extract its features and similar objects in the image [50]. 

Image segmentation is the second step that is considered to be the most crucial because diagnostic precision plays an 

important role in detection results. With the deepening of research, image segmentation technology also has made great 

progress in selecting the target object. In Guo et al. [50], images are segmented based on the results of Region Proposal 

Network (RPN) algorithm. The segmented leaves are given as input to the transfer learning model for further analysis. 

The model is then evaluated on a dataset following training. The accuracy was 83.57 percent, which is higher than the 

accuracy obtained using the traditional method. 

Al-Tarawneh [51] converted the images taken for study to 𝐿 ∗ 𝑎 ∗ 𝑏 color space to enhance the analysis and 

classification process, given the images were collected from a real-world environment affected by uncontrolled 

illumination. Dataset taken for study are olive leaves. The converted images were classified using fuzzy C-means 

algorithm, and it gives an accuracy of 86%. From these images, the diseased pixels can be identified. To enhance the 

diseased spots, median filtering is applied. The severity percentage was computed by dividing the number of pixels 

classified as diseases by the total leaf area. 

Entuni et al. [52] also computed the severity of the disease in plant leaves by combining Fuzzy C-Means and YCbCr 

colour space. It was concluded that YCbCr colour space has a greater detection rate when compared with RGB, HSV, 

𝐿 ∗ 𝑎 ∗ 𝑏, as YCbCr can separate luminance from chrominance more effectively. Combining Fuzzy C-Means and YCbCr 

algorithm gave an accuracy of 96.81%. 
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The survey shows that features can be extracted from a segmented image using the GLCM method. For segmentation 

purpose, the K-means algorithm is used on the pre-processed image to extract diseased spots that occurred due to 

Bacterial Blight and Leaf spots, which led to the identification and classification of diseases in pomegranate leaves. 

Another alternate approach learned in the survey is based on converting to the color space model 𝐿 ∗ 𝑎 ∗ 𝑏 and 

performing classification of diseased spots using the K-means s algorithm [53]. 

As Deep Learning (DL) also started attracting researchers with its promising results, an attempt was made to compare 

the features extracted via the Gray Level Covariance Matrix (GLCM) and the pre-trained model for classification. Using 

GLCM, 12 texture features are extracted, and using a pre-trained AlexNet model, 1000 features are extracted and gave 

an accuracy of 93.85%, far better than the GLCM feature extraction-based method [54].  

A novel dilated dense encoder-decoder architecture with a custom dilated spatial pyramid pooling block is designed 

to localize the selected region accurately for segmentation. The dilation enables better spatial understanding, and dense 

connectivity preserves the features learned for better localization, currently applied in the medical domain. Also, a 

custom 2D dilated dense UNet architecture is used to localize and segment the target area in medical images [55]. These 

functions are similar to the DL models for classification, and features are extracted automatically for segmentation. It is 

currently used in medical images but can be extended its usage to the agricultural domain. The F-CNN model and S-

CNN model are trained using the original full images without segmentation and segmented images. S-CNN performed 

better on test images not previously seen by the model than F-CNN [56].  

From the survey, it is understood that using the DL model for segmentation gives promising results. But it increases 

the complexity and size of the model when merged along with any classification model. Therefore, a simple machine 

learning technique named K-means s is chosen to segment the image spots. Features are fed to the pre-trained m-ADD 

model for further classification to improve accuracy. Also, segmented severity can be calculated from the diseased spots, 

and the features are fed to the m-ADD. Hence, the model is named Agricultural Disease Diagnosis and Severity 

Estimation using k-means. 

3- Research Method, Design and Implementation 

The proposed mobile-based disease diagnosis for apple leaf image disease is illustrated in Figure 2. İt utilizes a pre-

trained deep learning model named MobileNet to collect the features found in the different classes of diseased and 

healthy plants. The proposed system helps the user identify the diseases that occurred at its early stage with the aid of a 

smartphone in a real environment. 

 

Figure 2. Proposed Model for Disease Diagnosis 

The MobileNet model is deployed on an android device, and the phone is held parallel to the leaf such that the entire 

leaf is visible inside the frame. A Tensorflow platform is used to deploy a smartphone-based disease detection model to 

identify 4 classes of disease found in leaves: leaf scab, cedar rust, black rot, and healthy. 

Transfer learning of a MobileNet model pre-trained on ImageNet dataset is utilized in the apple leaf image dataset 

consisting of 3171 images retrieved from PlantVillage. Based on the training results of 6000 iterations on NVIDIA Tesla 

GPU, the highest accuracy is achieved with less size and computational cost. Therefore, the same model is selected to 

test on a mobile device in the field. The K-means method is applied to images to segment the diseased spots and predict 

the severity of the disease. The workflow design of the experiment is shown in Figure 3. 
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Figure 3. Workflow of the Proposed System 

Initially, the model is trained, validated, and tested on the desktop to calculate the size, accuracy, and other 

performance metrics. Later, a mobile app is created to deploy the model on the mobile platform. 

3-1- Creating Dataset and Pre-processing 

The apple leaf image dataset of JPEG images is retrieved from the PlantVillage website. The data set consists of 4 

classes comprising 1645 healthy images, 630 leaf scab images, 621 black rot leaf images, and 275 cedar rust leaf images. 

İnitially, all the images on the disk are analyzed after resizing the image to 224×224 and splitting the dataset into training 

and testing sets. 

Every image is reused multiple times during training; therefore, bottleneck values are calculated for each image. The 

bottleneck is an informal term used as an image representation, as each image takes a lot of time to process. So, these 

bottleneck values are cached and can be used for classification as there is no major change. 

3-2- Architecture of the Proposed Model 

MobileNet is an efficient class of CNN designed by researchers at Google called MobileNet is said to be the first 

mobile-based architecture which can be run within the minimum time on the mobile phone. The main difference between 

the traditional CNN and the MobileNet architecture is that depthwise and pointwise convolution layers are used in the 

latter model. In contrast, convolution layers are used in the former. The usage of depthwise and pointwise convolution 

reduces the computational cost and time. 

Figure 4 and Table 2 show the layers of the MobileNet architecture. Column 1 of Table 2 shows the type of 

convolution and the stride performed - with the number of filters and its kernel size in the second column. Each layer’s 

input image width and height are listed in column 3 of Table 2. Column 4 and 5 in Table 1 lists the number of parameters 

and computations performed using the defined formulas. To compute the number of parameters in each layer is given: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑛 ∗ 𝑚 ∗ 𝑘) ∗ 𝐿 (1) 

where 𝑛 is the width of the filter, 𝑚 is the height of the filter, 𝑘 is the number of input feature maps, and L is the number 

of output feature maps. The number of computations performed in each layer varies based on the layers. The number of 

computations is computed by counting each layer’s Multiply-Accumulates (MACCs). The model’s speed can be 

predicted based on the number of computations. Less computation faster the model. 
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Figure 4. MobileNet Layers 

Table 2. Number of Parameters and Computational Cost of MobileNet Architecture – Layerwise 

Block Type/Stride Filter Shape x number of filters Input Size No. of Parameters (Size) Computational Cost 

0 Conv1/s2 3×3×3×32 224×224×3 3×3×3×32 = 864 3×3×3×32×112×112 = 10M 

1 
Convdw/s1 3×3×3×32 dw 112×112×32 864 3×3×32×112×112 = 3M 

Conv/s1 1×1×32×64 112×112×32 2048 32×112×112×64 = 25M 

2 
Convdw/s2 3×3×64 dw 112×112×64 576 3×3×64×56×56 

Conv/s1 1×1×64×128 56×56×64 8192 64×128×56×56 

3 
Convdw/s1 3×3×128 dw 56×56×128 1152 3×3×64×56×56 

Conv/s1 1×1×128×128 56×56×128 16384 128×128×56×56 

4 
Convdw/s2 3×3×128 dw 56×56×128 1152 3×3×128×28×28 

Conv/s1 1×1×128×256 28×28×128 32768 128×256×28×28 

5 
Convdw/s1 3×3×256 dw 28×28×256 2304 3×3×128×28×28 

Conv/s1 1×1×256×256 28×28×256 65536 256×256×28×28 

6 
Convdw/s2 3×3×256 dw 28×28×256 2304 3×3×256×14×14 

Conv/s1 1×1×256×512 14×14×256 131072 256×512×14×14 

7-11 
5 × convdw/s1 

Conv/s1 
3×3×512 dw 

1×1×512×512 
14×14×512 
14×14×512 

5× (4608+ 
262144)=1333760 

5× [(3×3×256×14×14)+ 
(512×51214×14)] 

12 
Convdw/s2 3×3×512 dw 14×14×512 4608 3×3×512×14×14 

Conv/s1 1×1×512×1024 14×14×512 524288 512×1024×7×7 

13 
Convdw/s2 3×3×1024 dw 7×7×512 9216 3×3×512×7×7 

Conv/s1 1×1×1024×1024 7×7×1024 1048576 1024×1024×7×7 

14 AvgPool/s1 Pool 7×7 7×7×1024 - 0 

15 FC/s1 1024×1000 7×7×1024 1024000 7×7×1024 

16 Softmax/s1 Classifier 1×1×1000   

3-2-1- Standard Convolution Layer 

In this layer, convolution is applied to all the input channels. The layer receives an RGB image of size 𝑊 × 𝐻 × 𝐷 

as input representing the width, height and depth of the image to produce low-level features represented using a feature 

map. The low-level features can be edges or curves. There are mainly 4 parameters for a standard convolution; the 

number of filters (k), filter size (K×K) with Stride (S) and Padding (P). Algorithm I (Figure 5) shows the operation 

performed during convolution. 
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Algorithm I. Convolution Layer Operation 

Inputs: A receptive field of size (n x n) from an RGB image I of size (𝑊 × 𝐻 × 𝐶), where 𝑊 × 𝐻 × 𝐶 

maps the width, height and number of input channels of N images. The number of filters (k) of size 

(K x K) is strived over the input image to obtain k feature maps. 

Output: k feature maps contain low-level features 

// P = 0 - for no zero padding; and P=1 for zero padding 

 𝑃 =
𝑘−1

2
               //to preserve the dimensionality of the feature map 

For (int n=0; n < N ; ++n){ 

   For (int d=0; d < D; ++d) { 

      For ( int w=0;w < W; ++w) { 

          Float sum = 0; 

          For ( int c=0; c<C; ++c) { 

            For ( int kx = 0; kx < K ; ++kx ) { 

               For ( int ky=0 ; ky < K ; ++ky ) { 

                  sum = sum + Dot_product( kernel ( kx , ky , c , d ), input (w+kx, h+ky , c , 

n)); 

                } 

             } 

         } 

         Output_feature_map [w , h , c , n ] = sum 

     } 

  } 

} 

Update feature_map[ ] = max ( 0, feature_map[k])      // Perform ReLU for non-linearity 

Figure 5. Algorithm Convolution Layer Operation 

The input for mobilenet is a 224×224×3 color image that passes through the first standard convolution layer with 32 

feature maps or filters having a size 5×5 and a stride of 2. The image dimensions change from 224×224×3 to 112×112×32 

resulting in the number of parameters =864 and the number of computations = 10M, as shown in Table 2. For a 

convolutional layer with kernel size K, the number of MACs is: 

Number of MACs = 𝐾 ∗ 𝐾 ∗ 𝐶𝑖𝑛 ∗ 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 ∗ 𝐶𝑜𝑢𝑡 (2) 

where 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡represents the output feature map, 𝐾 ∗ 𝐾 kernel containing input weights, 𝐶𝑖𝑛 - the input channels, 

𝐶𝑜𝑢𝑡 - the number of output channels or the kernels. 

3-2-2- Depthwise Separable Convolution 

Algorithm II (Figure 6) explains the operation of the depthwise separable convolution layer. Different steps followed 

in depthwise separable convolution are the following: 

Algorithm II. Depthwise Separable Convolution Layer Operation 

Inputs: A receptive field (R) of size (n x n) from an RGB image I of size (𝑊 × 𝐻 × 𝐷), number of filters (k), filter 

size(m x m) with Stride (S) and Padding (P) 

Output: k feature maps containing low level features 

Repeat for I [ 1: D ] 

   P = 0 // for zero padding 

   for any_receptive_field { 

      initialize sum=0 

      for any_kernel_size { 

         sum = sum + dot_product ( R, K ) 

       } 

       Return feature_map [ sum ] 

    R[] = R [ +S : n ; 1: n ]         //Perform Striding S for row wise movement 

    R[] = R [ 1 : n ; +S : n]        // perform striding S for column wise movement 

 Update feature_map[ ] = max ( 0, feature_map[k])      // Perform ReLU for non-linearity 

Figure 6. Algorithm Depthwise Separable Convolution Layer Operation 

 Depthwise Convolution: We give the input image a convolution without changing the depth in depthwise 

convolution. 

Number of MACs = 𝐾 ∗ 𝐾 ∗ 𝐶 ∗ 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 (3) 

where 𝐾 ∗ 𝐾 depthwise convolution applied on a 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 feature map with C number of input channels 
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 Pointwise Convolution: The pointwise convolution is so named because it uses a 1x1 kernel or a kernel that iterates 

through every single point. This kernel has a depth of however many channels the input image has 

The number of MACs computed = 𝐶𝑖𝑛 ∗ 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 ∗ 𝐶𝑜𝑢𝑡 (4) 

where 𝐶𝑖𝑛 ∗ 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 is the output feature map from the depthwise convolution and is projected to 𝐶𝑜𝑢𝑡 

dimensions. 

3-2-3- Activation Layer 

An activation layer utilizes the non-linear operators, such as Tanh, Sigmoid and Rectified Linear Unit, in the neural 

network model, after each convolution layer. This helps to build a powerful network by transforming the weighted sum 

of input from one layer to an output. 

3-2-4- Pooling Layer 

To reduce the spatial dimension of the input, retaining the unique features extracted pooling layer is used. A kernel 

or filter is used, which takes the maximum or average value within the filters applied to the image representation. Such 

a process is called max pooling or average pooling, respectively. Figure 7(i) shows the activation and pooling operation 

process. For example, consider a matrix representing a feature obtained after activation, as shown in the LHS equation 

in the Figure 7(i). The result obtained after max pooling and average pooling is shown in the RHS of the equation shown 

in Figure 7(i). 

 

Figure 7. Pooling & Fully Connected Layer 

3-2-5- Fully Connected Layer 

İt generates a vector of feature values taking the feature map matrices as input, obtained as output from various 

convolution, separable convolution and pooling layers after performing activation after each convolution and separable 

convolution layers. Here in the proposed system, the second fully connected layer takes the input features to map into 4 

categories of classes. The labels and the output vector obtained in the proposed system are shown in Figure 7-ii. Figure 

7-ii shows that the classifier has predicted the output class and its probability of the specific input image as 100% scab, 

40% rot, 20% rust and 30% healthy. 

3-2-6- Softmax Function 

This function determines which disease is occurred finally. The output of the fully connected layer is fed to the 

softmax layer with no activation. Hence the softmax layer of MobileNet model is modified for the proposed classification 

system, which contains 4 classes of images to be classified. Hence the output of the softmax layer will be of size 4, 

providing a 100% confidence in total. Table 3 shows an example output of the softmax layer. 

Table 3. Softmax Layer Output 

Class Prediction Probability (%) 

Scab 99.1 

Rot 0.4 

Rust 0.2 

Healthy 0.3 

Total Confidence 100 
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3-3- Transfer Learning 

Instead of creating a model from scratch, existing deep learning networks trained and tested on the different datasets 

can be used to solve many classification-related problems. This process is called transfer learning. The entire transfer 

learning process can be performed in the following steps: 

 Select a pre-trained model; 

 Prepare the dataset; 

 Fine-tune the model. 

Fine-tuning a network can be done in 3 ways, viz. 

 Train the entire model: The model is created and trained from scratch. This is a tedious and time-consuming 

process. 

 Train some layers and leave the others frozen: It freezes some of the convolution layers and trains the other layers 

that are not freeze. 

 Freeze the convolutional base: it acts as a feature extractor where all the convolution layers are freeze. The 

classifier, which contains the fully connected and the softmax layer, is opened to modify with respect to the 

application. 

4- Results and Discussion 

The proposed system consists of 2 phases: training and testing, built-in Ubuntu 16.04 Operating system, tested and 

ran on NVIDIA Tesla, containing 2 GPUs. Both phases perform some steps in common. Following are the different 

image processing steps performed on the digital image: 

 Image acquisition; 

 Image pre-processing; 

 Segmentation; 

 Feature extraction; 

 Classification. 

4-1- Image Acquisition for Dataset Creation 

Experimentation is conducted on leaf images of paddy and tomato obtained from the agricultural field, agricultural 

colleges database, and the web [57]. Since the count was significantly less, the accuracy of predicting the disease didn’t 

reach the maximum. But it worked well for segmenting the diseased spots and estimating the severity. Therefore, a 

dataset with a sufficient number of images was considered to prove km-ADDS as the best system for intelligent disease 

diagnosis and severity estimation. Therefore freely available leaf images of apple, banana, tomato and cucumber were 

taken from the PlantVillage dataset [23]. In addition to the above images, some additional images collected from the 

agricultural field are also added. 

In addition to the leaf images collected from the web, many more images are collected from a real-world environment 

using a mobile camera or other camera sensors. The collected images are taken as input images in RGB (Red, Green, 

Blue) format. Some sample images of tomato and paddy are shown below in Figures 8 and 9, respectively. 

 

Figure 8. Sample tomato leaf images (a) Healthy-original, (b) Healthy-segmented, (c) Diseased- original and (d) Diseased- segmented 
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    a)            b)               c) 

Figure 9. Sample images captured (a) Healthy, (b) Bacterial blight and (c) Leaf blast 

4-1-1- Image Pre-Processing 

After collecting the images from various sources, they are enhanced and augmented for further analysis. The images 

may be of different sizes when captured. Therefore to accelerate the image processing - all images are resized to the 

same size, i.e., 224×224, from the center of the captured image. In order to distinguish between the diseased and non-

diseased parts, the contrast stretching technique is used to enhance the contrast. Several color conversion techniques are 

also adopted to identify the leaf region and the diseased spots, as shown in Figure 10. 

 

Figure 10. Sample images after color conversion 

4-1-2- Image Segmentation & Severity Estimation 

K-means clustering is chosen to separate the infected and healthy regions of the pre-processed image based on k 

clusters among the different segmentation techniques. It can detect the segment of interest of the image and find the 

similarity groups in data by minimizing the sum of the squares of the distance between the corresponding cluster and the 

object [28]. Therefore, the K-means clustering algorithm is applied to extract the diseased spots after enhancement. The 

segmented images were divided into different classes: healthy, leaf blast, and bacterial blight. The Image processing 

algorithm was developed in Python3.7, using the OpenCV library. 

The proposed method uses K-means clustering to separate the diseased lesion, from which the affected ratio is 

calculated to predict the severity. K-means algorithm performed on km-ADDS is as follows [52, 58-61]: 

 Step1: Take the pre-processed image as input; 

 Step2: The image is converted from RGB to L*a*b color space, consisting of 2 chromaticity layers in *a and *b 

channels and a luminosity layer in the L* channel; 

 Step 3: Colors are classified using k-means clustering in *a*b space, and simultaneously the difference between 

the 2 colors is evaluated with the help of the Euclidean distance metric; 

 Step 4: Each pixel of the image is labeled with its assigned cluster index; 

 Step 5: The pixels present in the input image is separated by color using pixel labels which produce different image 

segment. 

K=3 is used in the proposed model. Figure 11 shows the segmentation results and the different steps involved in 

segmentation of the diseased spot from the cropped image using K-means via applying the algorithm. The image is 
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segmented to 3 clusters. Figure 12 shows the features extracted from the segmented clusters containing the region of 

interest for the Rice Blast infected paddy leaf image. Disease severity scale for evaluation of Bacterial Leaf Blight is 

shown in Table 4. 

 

Figure 11. Sample output ımages after segmentation using k-means 

 

Figure 12. Features extracted from the selected segmented clusters 

Table 4. Disease severity scale for Bacterial Leaf Blight (BLB) 

Disease Rating 0 1 3 5 7 9 

Lesion size (% of Leaf length) 0 >1-10% > 11-30% > 31-50% > 51-75% >76-100% 
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4-1-3- m-ADD Model for Feature Extraction and Classification 

Among the various pre-trained models MobileNet model is chosen to perform transfer learning on the input dataset. 

This model automatically extracts the original image’s features before segmentation and extracts features after 

performing the segmentation. With these extracted features, it performs classification. İt was found that the classification 

accuracy increased from 99.6 to 99.7%. Hence segmented features give an additional attribute to perform classification 

with minimum parameters. Hence this ensembling of machine learning techniques together with a deep learning model 

provides the best result for deploying it in a smartphone for disease identification and classification. 

4-2- Performance Evaluation 

Accuracy can be measured as the number of correctly classified images among all the classes of images in the test 

category. Cross entropy measures loss. Both accuracy and cross-entropy are visualized in a tool named tensorboard as 

shown in Figure 13 using the proposed model. In Figure 13, the train and validation accuracy is plotted by taking the 

number of steps on the x axis. İt is observed that the training and validation accuracy reached 100% and 98%, 

respectively, taking an average time of 6m 35secs at 6000 steps after applying a smoothing factor of 0.99. 

 

Figure 13. Accuracy and loss in tensorboard 

Different MobileNet models are retrained on the apple leaf image dataset to compare their performance on mobile 

devices. Table 5 shows the accuracy obtained while executing the proposed model, i.e., transfer learning of the 

MobileNet models on the leaf image dataset. Hence, an efficient accuracy of 99.6 is obtained when the MobileNet model 

with 0.5 widths and 224 resolution is fine-tuned with the parameters viz. number of steps (6000), Learning rate (0.01), 

and train-test ratio (90:10). Learning rate and training steps are considered hyperparameters for fine-tuning. 

Table 5. Performance of the proposed model 

Number of Steps Learning Rate Train-Test Ratio mADD0.75_224 Accuracy mADD0.50_224 Accuracy 

6000 0.01 90:10 99.4 99.6 

4000 0.01 90:10 99.2 99.4 

6000 0.001 80:20 98.5 99.15 

4000 0.001 80:20 98.5 99.15 

Table 6 compares the proposed model using K-means with the proposed work without K-means, Inception_v3 and 

VGG, on the apple leaf image dataset based on accuracy, a number of parameters, and Multiply and Accumulate (MAC) 

operation. The study summarizes that the proposed model gives better accuracy with less size and computational cost 

when compared to the other existing models. 
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Table 6. Comparison of the proposed model with existing models 

Model Accuracy (%) No of Parameters MACs 

Proposed model without k-means 99.6 4.2M 569M 

Proposed model with K-means 99.7 4.2M 569M 

MobileNetV2 97 3.47M 300M 

InceptionV3 99.4 6.8M 1430M 

VGG 99.5 138M 15500M 

The proposed model with K-means is deployed on Android smartphones as an app and is tested in the real world 

environment giving a high accuracy, as shown in Figure 14. 

 

Figure 14. km-ADDS deployed on Android smartphone 

4-2-1- Image Segmentation 

Among the various image segmentation algorithms, fuzzy C-means, K-means, and Otsu thresholding are the different 

methods used for analysis [62, 63]. Fuzzy C-means have been found to perform well. But due to its complexity and 

feasibility in real-world scenarios, it is not being used. Instead, the K-means algorithm is implemented on the input 

images to segment the diseased spot. Figure 15 shows the performance of k-means and the other algorithms on different 

images, both diseased and non-diseased. 

 

Figure 15. Performance of segmentation algorithms 
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Similarly, it is tested on different color space models like HSV, L*a*b, RGB, and YCbCr. From Figure 16, it is 

evident that to get better results from K-means, the L*a*b color space model is used. Therefore, in the pre-processing 

stage, the input image is converted to L*a*b color space, as shown in Figures 10 and 11. 

 

Figure 16. Performance-based on color spaces 

5- Conclusion 

This paper outlines the use of different deep learning models and their role in agriculture by automatically generating 

the features without human intervention. This also presents a novel insight into the importance of segmentation of 

diseased spots, transfer learning, and fine-tuning the model to develop a system for prediction. The proposed model 

without K-means is developed initially trained on the apple leaf dataset containing healthy and diseased leaf images. It 

has been done for MobileNet models that vary based on their depth and resolution multiplier to achieve maximum 

accuracy with less memory size, time, and complexity. The experimental results obtained after retraining the model 

conclude that there is a relationship between the accuracy and size of the model. The model mobilenet_0.5_128 is the 

most suitable model considering the tradeoff between size and complexity, but the accuracy obtained is very low. But 

the model proposed with K-means gives a better accuracy of 99.7% with minimum size. Therefore, for android-based 

disease diagnosis in apple leaf images or any other agricultural plants, mobilenet_0.5_224 is the best one, providing 

better accuracy with minimum size, time, and complexity. 

The challenges faced were related to the dataset collection for real-time testing. Therefore, various images were 

captured from a real-world environment belonging to the tomato and paddy categories. The K-means algorithm is applied 

to paddy leaf images to extract the features, which will be given as an additional input to the proposed model developed 

to perform the prediction. The model is run and tested on an apple leaf image dataset; therefore, the K-means algorithm 

is applied on the dataset to extract the features, and fed as an input to the m-ADD model. 

In future work identifying the type of disease, this model can be generalized to all plants. Also, various other metrics 

can be included in evaluating the system. The system can also be extended to predict severity by calculating the 

percentage of affected regions and suggesting necessary remedial measures. 
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