88 research outputs found

    Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups

    Get PDF
    AbstractThe paper contains a generalization of known properties of Chebyshev polynomials of the second kind in one variable to polynomials of n variables based on the root lattices of compact simple Lie groups G of any type and of any rank n. The results, inspired by work of H. Li and Y. Xu where they derived cubature formulae from A-type lattices, yield Gaussian cubature formulae for each simple Lie group G based on nodes (interpolation points) that arise from regular elements of finite order in G. The polynomials arise from the irreducible characters of G and the nodes as common zeros of certain finite subsets of these characters. The consistent use of Lie theoretical methods reveals the central ideas clearly and allows for a simple uniform development of the subject. Furthermore it points to genuine and perhaps far reaching Lie theoretical connections

    Cubature formulas of multivariate polynomials arising from symmetric orbit functions

    Full text link
    The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximating a weighted integral of any function by a weighted finite sum of function values, in connection with any simple Lie group. The cubature formulas are specialized for simple Lie groups of rank two. An optimal approximation of any function by multivariate polynomials arising from symmetric orbit functions is discussed.Comment: 19 pages, 4 figure

    Dominant weight multiplicities in hybrid characters of Bn, Cn, F4, G2

    Full text link
    The characters of irreducible finite dimensional representations of compact simple Lie group G are invariant with respect to the action of the Weyl group W(G) of G. The defining property of the new character-like functions ("hybrid characters") is the fact that W(G) acts differently on the character term corresponding to the long roots than on those corresponding to the short roots. Therefore the hybrid characters are defined for the simple Lie groups with two different lengths of their roots. Dominant weight multiplicities for the hybrid characters are determined. The formulas for "hybrid dimensions" are also found for all cases as the zero degree term in power expansion of the "hybrid characters".Comment: 15 page

    Note on cubature formulae and designs obtained from group orbits

    Full text link
    In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t. In this paper, we find some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and moreover gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007) which classifies tight Euclidean designs invariant under the Weyl group of type B to other finite reflection groups.Comment: 18 pages, no figur

    Discrete Fourier Analysis and Chebyshev Polynomials with G2G_2 Group

    Full text link
    The discrete Fourier analysis on the 30°30^{\degree}-60°60^{\degree}-90°90^{\degree} triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2G_2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of mm-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type

    ON CUBATURE RULES ASSOCIATED TO WEYL GROUP ORBIT FUNCTIONS

    Get PDF
    The aim of this article is to describe several cubature formulas related to the Weyl group orbit functions, i.e. to the special cases of the Jacobi polynomials associated to root systems. The diagram containing the relations among the special functions associated to the Weyl group orbit functions is presented and the link between the Weyl group orbit functions and the Jacobi polynomials is explicitly derived in full generality. The four cubature rules corresponding to these polynomials are summarized for all simple Lie algebras and their properties simultaneously tested on model functions. The Clenshaw-Curtis method is used to obtain additional formulas connected with the simple Lie algebra C2

    Gaussian cubature arising from hybrid characters of simple Lie groups

    Full text link
    Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading to the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.Comment: 23 pages, 3 figure

    Discrete Fourier analysis, Cubature and Interpolation on a Hexagon and a Triangle

    Full text link
    Several problems of trigonometric approximation on a hexagon and a triangle are studied using the discrete Fourier transform and orthogonal polynomials of two variables. A discrete Fourier analysis on the regular hexagon is developed in detail, from which the analysis on the triangle is deduced. The results include cubature formulas and interpolation on these domains. In particular, a trigonometric Lagrange interpolation on a triangle is shown to satisfy an explicit compact formula, which is equivalent to the polynomial interpolation on a planer region bounded by Steiner's hypocycloid. The Lebesgue constant of the interpolation is shown to be in the order of (logn)2(\log n)^2. Furthermore, a Gauss cubature is established on the hypocycloid.Comment: 29 page
    corecore