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The paper contains a generalization of known properties of Cheby-
shev polynomials of the second kind in one variable to polynomials
of n variables based on the root lattices of compact simple Lie
groups G of any type and of any rank n. The results, inspired by
work of H. Li and Y. Xu where they derived cubature formulae from
A-type lattices, yield Gaussian cubature formulae for each simple
Lie group G based on nodes (interpolation points) that arise from
regular elements of finite order in G . The polynomials arise from
the irreducible characters of G and the nodes as common zeros of
certain finite subsets of these characters. The consistent use of Lie
theoretical methods reveals the central ideas clearly and allows for
a simple uniform development of the subject. Furthermore it points
to genuine and perhaps far reaching Lie theoretical connections.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

During most of the century and half long history of Chebyshev polynomials, only polynomials of
one variable were studied [17]. In recent years a considerable overlap of the subject can be found in
the emerging and practically important field of cosine and sine transforms [16,18]. In the absence of
additional constraints, truly higher-dimensional generalizations of Chebyshev polynomials are hidden
in the vast number of possibilities of defining orthogonal polynomials of more than one variable
[19,10]. In 2D [9] such constraints were provided by requiring that the polynomials of two variables
be simultaneous eigenvectors of two differential operators.
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Our motivation here comes from two directions:

(i) The method of constructing Chebyshev-like polynomials for any simple Lie group [14], and par-
ticularly from the recognition of the basic role played by the group characters.

(ii) The work of H. Li and Y. Xu in which they derived cubature formulae based on the symmetries
of A-type lattices [8].

From [14] we understood that a general formulation, uniform over all the types and ranks of simple
Lie algebras should be possible, and from [8] we saw what possibilities, beyond the construction of
the polynomials, might be achievable in a general formulation guided by the theory of compact simple
Lie groups.

In this paper the characters of the irreducible representations of a compact simply-connected sim-
ple Lie group G of rank n play the role of the Chebyshev polynomials (of the second kind) and
elements of finite order [11] in G give rise to nodes through which we arrive at Gaussian cuba-
ture formulae. The ring generated by the characters of G has a Z-basis consisting of the irreducible
characters and it is a polynomial ring in terms of the n irreducible characters of the fundamental
representations. These fundamental characters then serve as new variables for functions defined on a
bounded domain Ω ⊂ R

n . This domain Ω is derived from the fundamental domain of the affine Weyl
group of G and the kernel function used is the absolute value of the denominator of Weyl’s character
formula [20].

There are two technical ingredients in the paper which are indispensable for the uniformity of our
approach to simple Lie groups of all types and thus for generality of our conclusions.

(i) The ‘natural’ grading of polynomials by their total degree is replaced by new m-degree grading. It
is based on a set of Lie theoretical invariants, called the marks, which are unique for simple Lie
group of each type. The two gradings coincide only in the case of An .

(ii) The set of nodes is uniformly specified for each simple Lie group as a finite set of lattice points,
characterising all conjugacy classes of elements of a certain finite order in the underlying Lie
group.

The cubature formula (see Theorem 7.2) is then a formula that equates a weighted integral of a
general polynomial P , say of m-degree � 2M + 1, to weighted finite sums of the values of P sampled
at the nodes which are common zeros of the polynomials of m-degree M +1. So the cubature formula
is a type of interpolation formula with the nodes as the points of interpolation. The cubature is
Gaussian [21,22] in the sense that the number nodes coincides with the dimension of the space of
polynomials of m-degree � M . It turns out that the nodes are the elements whose adjoint order
divides M + h where h is the Coxeter number.

In more detail, having fixed a specific m-degree M , we are interested in the properties of the set
of all polynomials of m-degree at most M . There are three main results:

(1) Theorem 6.1: The nodes are common zeros for the set of polynomials of m-degree M + 1. These
nodes are directly related to regular elements of finite adjoint order M + h in G , where h is the
Coxeter number of G , and their number is precisely the dimension of the space of polynomials of
m-degree less than or equal to M .

(2) Theorem 7.2: There is a cubature formula that equates weighted integrals
∫
Ω

f K 1/2 of each poly-
nomial f of m-degree � 2M + 1 with K -weighted linear combinations of its values at the nodes.
This formula also appears in Theorem 7.2 in the guise of a discrete formula for a K 1/2-weighted
inner product of polynomials with m-degree at most M + 1.

(3) Proposition 8.2: The expansions of functions via irreducible characters (or rather these characters
interpreted as polynomials) using the nodes yield the best approximations in the K 1/2-weighted
L2-norm on the functions on Ω .

These results and their proofs are natural and completely uniform within the framework of the
character theory of simple Lie groups and their elements of finite order. In fact it is this natural-
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ness and perfection of fit that suggests that there are a deeper Lie theoretical implications to all of
this that are still to be discovered. The potential role of the finite reflection groups in the theory of
orthogonal polynomials was recognized already in [3], although only a limited use of these groups
is made there, the objects of interest being group invariant differential and difference-differential
operators. The present paper can be understood as a new contribution to the fulfilment of that po-
tential, much closer to the properties of the simple Lie groups which give rise to the finite reflection
groups.

Our discussion requires a certain familiarity with root and weight lattices, their corresponding co-
root and co-weight lattices, the Weyl group and its affine extension, and particularly the structure of
the natural fundamental domain for the affine Weyl group. We use Section 2, which sets up the nota-
tion, to briefly review the key points of this theory, while Section 3 and Section 4 contain preparatory
extensions of the standard theory. The paper proper begins at Section 5.

2. Simple compact Lie groups

This section is a brief review of the material that we need for this paper and establishes the
notation that we shall be using. The main facts about simple Lie groups and their representations are
classical and can be found in many places. One source that uses the same notation as in this paper is
[5, vol. 1]. Material on the fundamental domain, and in particular information about the stabilizers of
its various points, can be found in Ch. V of [1] and material on both the fundamental domain and the
elements of finite order can be found in [12].

Let G be a simply connected simple Lie group with Lie algebra g. We let cG denote the order of
its centre and let T be a maximal torus of G . We let it be the Lie algebra of T, so that we have the
exact sequence

0 → Q̌ → t
exp(2π i(·))−−−−−−→ T → 1

via the exponential map. Using t instead of the actual Lie algebra it of T has the advantages that the
Killing form (· | ·) of G restricted to t is positive definite and e2π i(·|·) is perfect for the Fourier analysis
to follow. Let n := dimR t, the rank of G .

The kernel of e2π i(·) on t is the co-root lattice Q̌ , and t/Q̌ � T naturally expresses T as a real space
factored by a lattice. We denote by t∗ the dual space of t and let 〈·,·〉 be the natural pairing of t∗
and t.

Let θT be the Haar measure on T that gives it volume equal to 1. In practice we most often write
integration over T in the form of integration over some fundamental region FR for Q̌ in t:∫

T

f dθT =
∫
FR

f
(
e2π ix)dθt (1)

where θt is ordinary Lebesgue measure in t normalized so that FR has volume equal to 1. In the
sequel no fundamental domain FR ever makes an appearance, but rather we work with a smaller
fundamental domain F ◦ of the affine Weyl group, see below.

Given any finite-dimensional complex representation V of the Lie group G , the action of the el-
ements of T on V can be simultaneously diagonalized, the resulting eigenspaces in V being the
weight spaces. The corresponding action of t on these weight spaces then affords elements λ ∈ t∗ for
which x ∈ t acts as exp(2π i〈λ, x〉). Naturally 〈λ, Q̌ 〉 ⊂ Z and the set of weights taken over all finite-
dimensional representations is the subgroup P ⊂ t∗ which is the Z-dual of the co-root lattice relative
to our pairing. P is the weight lattice of G relative to T. The adjoint representation, the representation
of G on its own Lie algebra, produces its own set of weights. Apart from the weight 0, which is of
multiplicity n, the remaining weights of the adjoint representation are the roots of G and they all
occur with multiplicity 1. They generate (as a group) the root lattice Q of G , and we have Q ⊂ P
with index equal to cG defined above. The Z-dual of Q in t is the co-weight lattice P̌ ⊃ Q̌ with the
index of Q̌ in P̌ being cG , again.
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Let W be the Weyl group associated with T, that is, the quotient by T of the normalizer of T

in G . Then W acts as a finite group of isometries of t relative to (· | ·), and W stabilizes Q̌ . It also
stabilizes P̌ , and if we pull its action over to t∗ by duality, then W also stabilizes the weight lattice
P and the root lattice Q .

The relationships between the lattices and between the various root and weight bases and their
co-equivalents described below are summarized in:

{α1, . . . ,αn} ⊂ Q Q̌
∩ × ∩
P P̌ ⊃ {ω̌1, . . . , ω̌n}.
∩ ∩
t∗ t

(2)

The times symbol is meant to indicate that Q and P̌ , as well as P and Q̌ , are in Z-duality with each
other. The indicated bases are also in Z-duality (see below).

We have the semi-direct product Waff = W � Q̌ acting on t, with Q̌ acting as translations and the
Weyl group as point symmetries. Waff is called the affine Weyl group.

A fundamental region F for t under the action of Waff can be given as follows. Let � be the set of
all the roots and let Π = {α1, . . . ,αn} be a simple system of roots for �. Let �+ (resp. �−) denote
the corresponding set of positive (resp. negative) roots, and let

α0 = −(m1α1 + · · · + mnαn) (3)

be the lowest root1 of �. The positive integers m1, . . . ,mn are called the marks of G . The marks and
co-marks (introduced below) are shown on Fig. 1. They are independent of the choice of T and the
choice of Π (but depend on the choice of ordering of α1, . . . ,αn). It is convenient to define one more
mark, m0 := 1, so one has

∑n
j=0 m jα j = 0. One then has the Coxeter number of G

h :=
n∑

j=0

m j.

This constant appears in many places and in many guises in Lie theory, and plays an important role
in what follows.

Now we define

F := {
x ∈ t

∣∣ 〈α j, x〉 � 0 for all j = 1, . . . ,n, 〈−α0, x〉 � 1
}
. (4)

This is a simplex in t. The Weyl group W contains the so-called simple reflections r1, . . . , rn in the
walls of F (the hyperplanes generated by the (n − 1)-faces of F ).

H j := {
x ∈ t

∣∣ 〈α j, x〉 = 0; j = 1, . . . ,n
}

(5)

and W is generated by these reflections. Thus any w ∈ W is expressible as a product of the simple
reflections, w = ri1 . . . rik ; but such a writing of w is not unique, and in particular the length l(w) = k
is not unique. However its parity (−1)l(w) is well defined. It is convenient to write this parity function
in the form (−1)l(w) even though l(w) depends entirely on the way in which we choose to write w
as a product of simple (or in fact any) reflections. The mapping

1 In what follows, the use of the lowest root rather than the highest root, which might seem more natural, is in keeping with
notation from the theory of affine root systems.
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Fig. 1. The usual Coxeter–Dynkin diagrams or graphs, which are simply a visually efficient way to encode the Cartan matrices,
are shown, along with information giving the corresponding marks and co-marks. The circular vertices, ignoring those with a
dot in them, stand for the simple roots with the convention that open (resp. filled) circles indicate long (resp. short) roots.
When there are both types of vertices, interchanging open and filled results in the co-diagram. Thus types B and C interchange
and types F and G end up as the same type but with the numbering of the roots permuted. The dotted vertex stands for the
root α0 (which is linearly dependent on the simple roots with the negatives of the marks as its coefficients). Under the duality
operation of roots to co-roots, it passes from being the lowest long root to being the lowest short co-root, a fact that we do not
explicitly have to use here.
The links between roots occur only when the roots are not orthogonal to one another. The marks and co-marks are shown as
the fractions m/m̌ attached to the corresponding vertices of the diagram. When both are equal to one, they are not shown.
We refer the reader to [2] for more details. The numbering of the simple roots goes from the left to right, the undotted vertex
above the main line (when it exists) carrying the highest value. The dotted vertex has number 0.

l : W → {±1}, w �→ (−1)l(w)

is a homomorphism.
There is a unique element wopp ∈ W which maps �+ into �− . It is an involution and is minimally

represented by the product of exactly |�+| of the simple reflections.
Waff is also a reflection group and is obtained by adding to r1, . . . , rn the additional generator r0

which is reflection in the remaining wall of F

H0 := {
x ∈ t

∣∣ 〈−α0, x〉 = 1
}
. (6)

There is a similar length function for Waff . The action of Waff on F tiles the entire space t with copies
of F , and in this way F serves as a fundamental domain for it. See Fig. 2 for an example.

The way in which F is the fundamental region is rather beautiful:

• Every element of G is conjugate to e2π ix for a unique element x ∈ F .
• Each Waff orbit in t has a unique element in F .
• For x ∈ F the stabilizer of x in Waff is the subgroup of Waff generated by the reflections r j ,

j = 0,1, . . . ,n, for which x is on the wall H j . In particular, all x ∈ F ◦ have trivial stabilizer in
Waff.

The fundamental co-weights are the elements ω̌k ∈ t dual to the simple roots: 〈α j, ω̌k〉 = δ jk . They
form a Z-basis of P̌ . In terms of them we can write F as the convex hull of

{
0,

ω̌1

m1
,
ω̌2

m2
, . . . ,

ω̌n

mn

}
.
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Fig. 2. A schematic view of the co-root system of G2. The shaded triangle is the fundamental region F . The dotted lines are
the mirrors which define its boundaries, the reflections in which generate the affine Weyl group. The action of the affine Weyl
group on F tiles the plane. A few tiles of this tiling are shown. Filled (resp. open) squares are the short (resp. long) co-roots
of G2.

The Cartan matrix of G is the integer n × n matrix

A = (Aij) =
(

2(αi | α j)

(α j | α j)

)
, 1 � i, j � n.

It is unique up to the numbering of simple roots. The Cartan matrices classify the compact simply-
connected simple Lie groups into the well-known A, B , C , D series and the five exceptional groups
E6, E7, E8, F4, and G2.

The simple co-roots {α̌1, . . . , α̌n} ⊂ Q̌ corresponding to {α1, . . . ,αn} ⊂ Q are defined by

〈αi, α̌ j〉 = Aij = 2(αi | α j)

(α j | α j)
for all i, j.

They form a Z-basis of Q̌ and their W -translates in Q̌ form the set of co-roots �̌. Actually �̌ and
the simple co-roots are a root system and simple roots for a simply-connected group Ǧ whose Cartan
matrix is AT . We do not need this group directly in what follows but we occasionally use information
about co-objects that we know is true from the fact that they have such an interpretation. In partic-
ular we have the co-marks m̌1, . . . ,m̌n arising from the lowest co-root written in terms of the simple
co-roots α̌1, . . . , α̌n .

Dual to the co-roots we have the fundamental weights ω j ∈ P defined by 〈ω j, α̌k〉 = δ jk . The funda-
mental weights form a Z-basis of P .

Each finite-dimensional irreducible representation L of G has a unique 1-dimensional weight
space Lλ , λ ∈ P , with the property that all other weights of L are of the form λ − β , where β is
a sum of positive roots. We have

λ ∈ P+ := {
μ ∈ t∗

∣∣ 〈μ, α̌i〉 ∈ Z
�0, i = 1, . . . ,n

}
.

Here P+ ⊂ P is the set of dominant weights. The dominant weight λ is called the highest weight of L.
If we designate L now by L(λ), then the correspondence
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λ ∈ P+ ↔ L(λ)

classifies all the irreducible finite-dimensional representations of G up to isomorphism.
We shall also need the set of strictly dominant weights

P++ := {
μ ∈ t∗

∣∣ 〈μ, α̌i〉 ∈ Z
>0, i = 1, . . . ,n

}
.

The ‘simplest’ strictly dominant weight is ρ defined by 〈ρ, α̌i〉 = 1 for i = 1, . . . ,n. The element ρ
plays an important role in what follows. We also know that

ρ = 1

2

∑
α∈�+

α =
n∑

k=1

ωk. (7)

The character of a finite-dimensional representation L of G is the mapping

g �→ trL g, g ∈ G.

Since a character is unaffected by conjugation by group elements, we can always restrict it to T

without any loss of information. We then further consider it as a function χL on t by

χL : x �→ trL exp(2π ix) =
∑
μ

dim Lμe2π i〈μ,x〉,

where μ runs over the weights of L. In particular, we have the characters χλ = χL(λ) , λ ∈ P+ .
Weyl’s character formula is

χλ(x) =
∑

w∈W (−1)l(w)e2π i〈w(λ+ρ),x〉∑
w∈W (−1)l(w)e2π i〈wρ,x〉 =: Sλ+ρ(x)

Sρ(x)
, for all x ∈ t. (8)

Also there is the special product formula for the denominator:

Sρ(x) =
∑

w∈W

(−1)l(w)e2π i〈wρ,x〉 =
∏

α∈�+

(
eπ i〈α,x〉 − e−π i〈α,x〉). (9)

The functions Sλ+ρ(x) and Sρ(x) are W -skew invariant whereas their quotient is W -invariant.
The functions Sλ+ρ(x) = ∑

w∈W (−1)l(w)e2π i〈w(λ+ρ),x〉 are called S-functions in [7,13,14] due to their
similarity in form to the sine function, which they are in the case of A1. In any case the values of the
characters and of the S-functions are determined by their values on the fundamental domain F , and
it is this fact that becomes the centre of our attention in the sequel.

Note that none of the reflecting hyperplanes (5) or (6), nor indeed any reflecting hyperplane of
Waff, meets the interior F ◦ of F and so Sρ(x) is never 0 in F ◦ . Thus |S2

ρ(x)|2 is positive on the
interior F ◦ of F . On the other hand, Sλ+ρ(x) and Sρ(x) vanish on the boundary of F since x ∈ H j

implies that r j x = x while replacing x by r j x in any S-function changes its sign.
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3. W -invariant and W -skew invariant functions on TTT

3.1. The algebra of formal exponentials

Starting with the weight lattice P one may form the algebra C[P ] of formal exponentials, which
has a C-basis of symbols eλ , λ ∈ P , together with a multiplication defined by bilinear extension of
the rule

eλeμ = eλ+μ.

Thus typical elements of C[P ] are finite complex linear combinations
∑

cλeλ . C[P ] is an unique
factorization domain and its group of invertible elements are the elements ceλ, where c �= 0,
λ ∈ P .

W acts on P and hence as a linear operator and even an automorphism on C[P ] by w.eλ = ewλ .
There is a partial order on P with λ � μ if and only if μ = λ − β where β is a sum (possibly empty)
of positive roots. This is important because in the weight systems of irreducible representations of G
the highest weight is highest in this sense. We will use this notion of highest below.

There are some advantages to introducing formal exponentials at times since they often clarify the
mathematics. However, we are really interested in their manifestations as functions on t and on T

which arise from

x �→ e2π ix �→ e2π i〈λ,x〉. (10)

These mappings are the characters φλ : x �→ exp(2π i〈λ, x〉) of the torus, so C[P ], as functions, is
its character ring. This relates directly back to the previous section where we have defined the
G-characters and S-functions, all of which may be viewed as arising from corresponding elements
χλ, Sλ+ρ of C[P ].

At the level of functions the action of W is completely consistent:

w.φλ(x) = φλ

(
w−1x

) = exp
(
2π iλ.w−1x

) = exp 2π iwλ.x = φwλ(x).

We are most interested in the subring C[P ]W of W -invariant elements. The simplest forms of
W -invariant functions are the orbit sums

∑
w∈W φwλ , called C-functions in [15,6,13,14] due to their

similarity in form to the cosine function (which they are in type A1). More relevant here are the
characters χλ of G (restricted to T) already introduced in Section 2:

χλ =
∑
μ∈P

dim L(λ)μe2π iμ (11)

where L(λ) is the irreducible representation of highest weight λ ∈ P+ and dim L(λ)μ is the dimension
of its μ-weight space. These are W -invariant and they form a basis for C[P ]W .

Proposition 3.1. (See [1, Ch. VI].) C[P ]W is a polynomial ring with the fundamental characters χω1 , . . . ,χωn

as the generators.2

2 The orbit sums over the various dominant weights also form a basis for C[P ]W and those for ω1, . . . ,ωn also form a set of
generators for it as a polynomial ring. The relationship between orbit sums and corresponding characters is a triangular matrix
of integers with 1s down the diagonal [2].
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This result really underlies the results of this paper. It says that the fundamental characters of G
can be used as new variables by which the algebra of invariant elements of C[P ] becomes a polyno-
mial ring in these variables. It is in working out the Fourier and functional analysis implied by this
statement that the cubature formulae arise.

In the sequel we prefer to reserve the word character for the characters of G (as opposed to the
characters of T) since they are of fundamental importance to the paper.

3.2. Skew invariants elements of C[P ]
Elements ξ ∈ C[P ] for which w.ξ = (−1)l(w)ξ for all w ∈ W are called skew-invariants. They play a

vital role in the paper. The simplest example is Sρ , and it is the foundation for all the skew-invariant
elements.

Proposition 3.2. (See [1, Ch. VI].) SρC[P ]W is the set of all W -skew-invariant elements of C[P ].

Later on, when we use the basic characters χω j as new variables X j and have polynomial functions
of the X j , we shall have need of a Jacobian for the switch of variables from the X j back to the
variables that parameterize T. We establish the key result here.

For each α̌ ∈ Q̌ there is a unique derivation3 Dα̌ on C[P ] satisfying

Dα̌eλ := Dα̌

(
eλ

) = 〈λ, α̌〉eλ

for all λ. Dα̌ is linear in α̌.
Let χω1 , . . . ,χωn be the basic characters and let α̌1, . . . , α̌n be the standard basis of Q̌ dual to

{ω1, . . . ,ωn}. Let J be the matrix with entries J jk = Dα̌ j
χωk .

Proposition 3.3 (Steinberg4).

det( J ) = Sρ.

Proof. All the exponentials in χωk are of the form eωk−βk where βk is a sum of positive roots, and the
highest term is eω j . Now Dα̌ j

χωk is a sum of exponentials of the same form, but since 〈ω j, α̌k〉 = δ jk ,
the highest terms only survive along the diagonal of J . Thus when we compute the determinant we
obtain a sum of signed products eω1−β1 . . . eωn−βn and only the term from the diagonal can contribute
an exponential of the form eω1 . . . eωn , and its coefficient is 1. Thus det( J ) is an element of C[P ]
whose highest term is ω1 + · · · + ωn = ρ and this occurs with coefficient equal to 1.

We shall prove that det( J ) is W -skew invariant. Then by Proposition 3.2 it is a multiple of Sρ .
Because all the weights in the expansion of det( J ) are less than or equal ρ , this multiple can only be
a scalar. Since the leading coefficient is 1 in both cases, det( J ) = Sρ , as we wish to prove.

A simple computation shows that w Dα̌ w−1 = D wα̌ for all α̌. Fix any l = 1, . . . ,n and let rl = rα̌l
.

We have rlα̌ j = α̌ j − Aljα̌l . Then,

rl det( J ) = det
(
rl( J )

) = det
((

rl(Dα̌ j
χωk )

))
= det

((
rl Dα̌ j

rl(rlχωk )
)) = det((Drlα̌ j

χωk ))

= det
((

Dα̌ j−Alj α̌l
(χωk )

)) = det
((

(Dα̌ j
− Alj Dα̌l

)(χωk )
))

= det
((

Dα̌ j
(χωk ) − Alj Dα̌l

(χωk )
))

,

3 A derivation of C[P ] is a linear mapping D : C[P ] → C[P ] satisfying D(φξ) = D(φ)ξ + φD(ξ) for all φ, ξ ∈ C[P ].
4 This result is an Exercise to Ch. VI in [1] and attributed to R. Steinberg there.
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where in the second line we used the W -invariance of the characters. The operation has resulted in
altering all rows except the lth row by a multiple of the lth row (which does not alter the deter-
minant) and replacing the lth row by its negative, which changes the sign of the determinant. Thus
rl det( J ) = −det( J ), which gives the desired skew-symmetry. �
3.3. An inner product on C[P ]W

The natural inner product on C[P ] is 〈·,·〉T defined by

〈 f , g〉T =
∫
T

f g dθT,

where the θT is the normalized Haar measure of the torus. Relative to this the functions φλ form
an orthonormal basis. Using this inner product we can complete C[P ] in the corresponding L2-norm
to the Hilbert space L2(T, θT) with the normalized φλ forming an orthonormal basis, in the sense
of Hilbert spaces. Of course we can look at the closure of C[P ]W in L2(T, θT), which is in fact the
subspace of W -invariant elements L2(T, θT)W of L2(T, θT).

However, the inner product 〈·,·〉T is not ideal for this subspace, and rather we would like to find
one with respect to which the characters χλ form an orthonormal base.

We note that for any f ∈ L2(T, θT)W , f Sρ ∈ L2(T, θT), and it is skew-invariant with respect to W .
Form its Fourier expansion

f Sρ =
∑
μ

〈 f Sρ,φμ〉Tφμ,

equality being in the L2 sense. The summands can be gathered together into W -orbits, and on each
orbit the coefficients 〈 f Sρ,φμ〉T are equal in absolute value and alternate in sign according to the
parity of the Weyl group elements. The only orbits that do not vanish are those containing a weight
μ ∈ P++ , and we get

f Sρ =
∑

λ∈P+
〈 f Sρ,φλ+ρ〉T Sλ+ρ.

Dividing out the function Sρ , which is valid as long as the functions are restricted to the interior of
the fundamental chamber F ◦ , we obtain

f =
∑

λ∈P+
〈 f Sρ,φλ+ρ〉Tχλ. (12)

Now, using the W -invariance of θT and the skew-invariance of f Sρ , we have

〈 f Sρ,φλ+ρ〉T =
∫
T

f Sρφλ+ρ dθT = 1

|W |
∫
T

∑
w∈W

(−1)w f Sρφw(λ+ρ) dθT

= 1

|W |
∫
T

f Sρ Sλ+ρ dθT = 1

|W |
∫
T

f χλ Sρ Sρ dθT =
∫
F ◦

f χλ Sρ Sρ dθT. (13)
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Thus (12) and (13) show that f ∈ L2(T, θT)W has a Fourier expansion in terms of the charac-
ters χλ , λ ∈ P+ , with coefficients given by a new inner product defined on L2(T, θT)W by

( f , g) �→
∫
F ◦

f g Sρ Sρ dθT. (14)

We can then rewrite (12) as

f =
∑

λ∈P+
( f ,χλ)χλ. (15)

We shall use these results in Section 8.

4. Elements of finite order

Elements of finite order [11] (EFOs) in G are used to create the nodes for the discrete Fourier
analysis [12] and cubature formulae to follow.

We have seen in Section 2 that every element of G is conjugate to one of the form g = exp(2π ix)
where x ∈ F . The element g is called regular if its centralizer is of dimension n, the rank of G . Since
each element lies in an n-torus, n is the smallest possible dimension for a centralizer. Regularity is
a property of the entire conjugacy class of an element and for x ∈ F it is equivalent to saying that
x ∈ F ◦ .

The condition that g has finite order dividing M is the equivalent to the condition that
exp(2π ix)M = exp(2π iMx) acts trivially on every irreducible representation, and for this all we need
is that it acts trivially on every weight space L(λ)μ . In turn this requires precisely that 〈μ, Mx〉 ∈ Z

for all weights of P , and finally it is equivalent to Mx ∈ Q̌ , since Q̌ is the Z-dual of P .
In fact what we are going to need here is not that x ∈ 1

M Q̌ but rather that

x ∈ 1

M
P̌ ,

a statement that is equivalent to saying that Ad(g)M = 1, i.e. gM acts trivially in the adjoint repre-
sentation. In this case we shall say that g has Ad-order M or adjoint order M , even though the actual
adjoint order, which we shall call the strict adjoint order, namely the least N for which Ad(g)N = 1,
may be some proper divisor of M . We also say that x ∈ t is an element of adjoint order M if exp(2π ix)
is of adjoint order M .

Given the definition above, the conjugacy classes of elements of adjoint order M are represented
by the points x of the form

x = 1

M

n∑
j=1

s jω̌ j (16)

where

s j ∈ Z
�0 for all j and 〈−α0, x〉 = 1

M

n∑
j=1

m j s j � 1. (17)

The regular conjugacy classes of adjoint order M are represented by (17) where the inequalities are
made strict. We write F M (resp. F ◦

M ) for the elements of F (resp. F ◦) of Ad-order M .



520 R.V. Moody, J. Patera / Advances in Applied Mathematics 47 (2011) 509–535
Using m0 = 1 defined in Section 2 we can define s0 ∈ Z
�0 so that

n∑
j=0

m js j = M. (18)

Listing all the elements of F M (resp. F ◦
M ) is then just a question of finding all non-negative (resp.

positive) integer solutions [s0, s1, . . . , sn] to (18). We call [s0, s1, . . . , sn] the Kac coordinates of x.
We will be particularly interested in the set F M+h of elements x ∈ F of Ad-order M + h for some

non-negative integer M:

x = 1

M + h
(s1ω̌1 + s2ω̌2 + · · · + snω̌n) ∈ 1

M + h
P̌ ,

where s1, . . . , sn ∈ Z
�0 and

n∑
j=1

m j s j � M + h. (19)

Alternatively we have the Kac coordinates [s0, s1, . . . , sn].
Each of the following three conditions assures that x of (19) is in F ◦

M+h:

s j > 0, j = 0,1, . . . ,n;
n∑

j=0

m jt j = M, t j := s j − 1 � 0;

n∑
j=1

m jt j � M (so t0 completes the sum to M). (20)

When M = 0, it contains only the element given by s0 = s1 = · · · = sn = 1. For M � 0, it clearly
contains |F ◦

M+h| = |F M | points. Formulae for the cardinality of |F M+h| have been worked out for all
M and for all simple G in [4].

5. Points of F ◦
M+h as zeros of S-functions

We are now at a point where we begin the main development of the paper. We fix, once and for
all a non-negative integer M . The first step is to show that the points of F ◦

M+h are common zeros of
a certain set of S-functions. These points are the nodes for the cubature formulae to follow.

Consider a dominant weight λ = λ1ω1 +· · ·+λnωn . We want to find points x ∈ F ◦
M+h at which the

S-function Sλ+ρ(x) vanishes:

Sλ+ρ(x) =
∑

w∈W

(−1)l(w)e2π i〈w(λ+ρ),x〉 =
∑

w∈W

(−1)l(w)e2π i〈λ+ρ,w−1x〉 = 0.

One way to make this happen is to have

〈λ + ρ, x〉 − 〈λ + ρ, rx〉 ∈ Z, for all x ∈ 1

M + h
P̌ , (21)

where r is the reflection in the highest coroot, for if this is the case then the sum collapses in pairs
adding up to zero. Via 〈wα, β̌〉 = 〈α, w−1β̌〉 we obtain that r appears as the reflection in some root
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Table 1
The m-degrees of the polynomial variables X1, . . . , Xn and of the
functions Sρ and K . The Coxeter number h = 1 + m̌1 + · · · + m̌n .

variable X1 X2 · · · Xn Sρ K
m-degree m̌1 m̌2 · · · m̌n h − 1 2h − 2

γ on the root/weight side of the picture: rx = x − 〈γ , x〉α̌0. The condition (21) is equivalent to

〈γ , x〉〈λ + ρ, α̌0〉 ∈ Z, for all x ∈ 1

M + h
P̌ .

Note that 〈γ , x〉 ∈ 1
M+h Z since 〈γ , P̌ 〉 ⊂ Z, so we only need 〈λ + ρ, α̌0〉 ∈ (M + h)Z.

The simplest case is to look for 〈λ + ρ,−α̌0〉 = M + h, that is,

n∑
j=1

(λ j + 1)〈ω j,−α̌0〉 =
n∑

j=1

(λ j + 1)m̌ j = M + h,

or equivalently,

n∑
j=1

λ jm̌ j = M + 1. (22)

All solutions λ = (λ1, . . . , λn) to (22), where the λ j ∈ Z
�0, lead to S-functions Sλ+ρ that are zero

at all EFOs of Ad-order M + h in the interior of the fundamental domain.

6. Introducing the polynomial functions

Following [14], assign variables X j to the characters for weights ω j . Thus we have polynomial
variables

X1, X2, . . . , Xn, where X j := χω j (x), x ∈ F ◦. (23)

With these we can introduce the domain

Ω := {(
X1(x), . . . , Xn(x)

)
: x ∈ F ◦} ⊂ C

n. (24)

We shall soon see that this is actually an open subset of a real n-dimensional space and eventually
it will be the natural domain of the real-valued functions of the variables X1, . . . , Xn that we wish to
study.

Define the m-degree5 of the variables by assigning degree m̌ j to X j (see Table 1).

Then the monomials Xλ1
1 . . . Xλn

n of m-degree � M are those satisfying

λ1m̌1 + · · · + λnm̌n � M (25)

where λ1 � 0, . . . , λn � 0. Although the marks and co-marks are not necessarily identical, see Fig. 1,
they are at worst simply permutations of each other. Thus (25) has the same number of solutions

5 This might be more properly called the m̌-degree, but this seems a bit cumbersome.
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(λ1, . . . , λn) as we saw before in (20), namely |F ◦
M+h| = |F M |. The constant polynomials are those of

m-degree 0.
In keeping with this notation, we will say also that λ = (λ1, . . . , λn) has m-degree equal to

λ1m̌1 + · · · + λnm̌n = 〈λ,−α̌0〉. (26)

Theorem 6.1. The number of monomials C[X1, . . . , Xn] of m-degree � M is equal to the number of regular
EFOs of Ad-order M + h in the fundamental chamber. Each of the regular EFOs of Ad-order M + h in the
fundamental chamber is a common zero of all the S-functions Sλ+ρ and all the character functions χλ for
which λ has m-degree equal to M + 1.

The trick that we have used above of using the internal reflective anti-symmetry to construct
common zeros is taken from [8]. It is remarkable that in the case of type An root lattices it actually
finds all the common zeros. The proof of this makes essential use of the fact that the new variables
X1, . . . , Xn are all of degree 1, something that is true only for type An . In fact our example of type
G2 in Section 9 indicates that this result does not hold in general.

The ‘smallest’ S-function is the one defined by the strictly dominant weight of lowest m-degree,
namely ρ of (7) with m-degree h − 1. Writing Sρ in its well-known form (9), we note that Sρ =
(−1)|�+| Sρ . Thus

|Sρ |2 = Sρ Sρ = (−1)|�+| S2
ρ,

and we note that this function is positive on all of F ◦ and vanishes on its boundary. Sρ Sρ is a W -
invariant function and so is expressible as a polynomial in the basic characters χω j = X j . We then
have the corresponding strictly positive function K on Ω:

K (X1, . . . , Xn) = Sρ Sρ(x), x ∈ F ◦. (27)

We note here that if μ ∈ P++ then

Sμ =
∑

w∈W

(−1)l(w)e−wμ =
∑

w∈W

(−1)l(w)(−1)l(wopp)e−w woppμ = (−1)|�+| S−woppμ,

where wopp is the opposite involution in W (since wopp is a product of |�+| reflections).
The opposite involution interchanges the positive roots (resp. positive coroots) with the negative

ones, and, since μ is dominant so is −woppμ. Of course wopp is not always simply the negation
operator, see Table 2. Still, it does simply change the sign of the highest positive root (resp. highest
coroot). Thus we have the important little equation

m- deg(μ) = 〈μ,−α̌0〉 = 〈woppμ,−woppα̌0〉 = 〈woppμ, α̌0〉 = m- deg(−woppμ). (28)

This is useful because it means that (−1)|�+| Sμ and χμ are just another S-function and another
group character respectively, and the highest weight involved in each case has the same m-degree
as before conjugation. In particular conjugation of the characters χω j can at worst permute some of
them, say χω j �→ χσ(ω j) by some permutation σ of order 2 of the indices {1, . . . ,n}. Table 2 shows
what happens in the cases when σ is not just the identity permutation.

If we let

R = {
z = (z1, . . . , zn) ∈ C

n: z = (zσ (1), . . . , zσ (n))
}
, (29)
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Table 2
Correspondence of the variables X j to X j ( j = 1, . . . ,n) produced by the
action of −wopp. In all other cases X j = X j .

An (n > 1)
X X1 X2 · · · Xn−1 Xn

X Xn Xn−1 · · · X2 X1

D2n+1 (n > 1)
X X1 X2 · · · X2n−1 X2n X2n+1

X X1 X2 · · · X2n−1 X2n+1 X2n

E6
X X1 X2 X3 X4 X5 X6

X X5 X4 X3 X2 X1 X6

then R is a real space of dimension n and Ω ⊂ R is an n-dimensional subdomain, as follows from the
non-vanishing of the Jacobian Sρ on F ◦ (32). This is the space on which we shall think of X1, . . . , Xn
as real variables.

Define

ξ : T → R,

x �→ X(x) := (
X1(x), . . . , Xn(x)

)
, (30)

so we have ξ(F ◦) = Ω . We define

FM+h = ξ
(

F ◦
M+h

)
.

Remark 1. As we have seen, conjugation actually permutes some of the basic variables X j . We shall
use the overline symbol to indicate this form of conjugation. Thus one should understand the conju-
gation symbol as having this dual meaning of actual complex conjugation when the X j are treated as
functions on T and as the permutation σ when treated as the coordinate variables of R. Thus we shall
write c X j1 . . . X jr (where c ∈ C) to mean c X j1 . . . X jr , understanding that the X j has this dual mean-

ing. For a polynomial g(X1, . . . , Xn) = ∑
c j1,..., jn X j1

1 . . . X jn
n , g(X1, . . . , Xn) := ∑

c j1,..., jn X1
j1 . . . Xn

jn =
g(X1

j1 . . . Xn
jn ).

Notice that since

X j Xk K ↔ χω j χωk Sρ Sρ = Sω j+ρ Sωk+ρ

and

〈ω j + ρ,−α̌0〉 = m̌ j + h − 1 and
〈−wopp(ωk + ρ),−α̌0

〉 = m̌k + h − 1,

we understand that K has m-degree equal to 2h − 2. This is indicated in Table 1.

7. The integration formula

We wish to study weighted integrals of the form∫
Ω

f g K 1/2 dX1 . . .dXn,

where f , g are functions of the variables X1, . . . , Xn defined on Ω . These are related back to t (more
specifically to F ◦) and the torus T via the defining Eqs. (23).
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7.1. The key integration formula

Natural variables for t are x = (x1, . . . , xn) = ∑n
j=1 x jα̌ j where the x j run over [0,1) × · · · × [0,1).

The derivation Dα̌ j
on C[P ], Dα̌ j

eλ = 〈λ, α̌ j〉eλ introduced in Section 3.2 is, when C[P ] is treated
as an algebra of functions on T, the mapping

Dα̌ j
e〈λ,2π ix〉 = Dα̌ j

e〈λ,2π i
∑

xkα̌k〉

= 〈λ, α̌ j〉e〈λ,2π ix〉 = 1

2π i

d

dx j
e〈λ,2π ix〉. (31)

Using Proposition 3.3 we then see that the Jacobian of the transformation of the variables x to
variables X is

∣∣(2π i)n Sρ(x)
∣∣ = (2π)n

∣∣Sρ(x)
∣∣. (32)

Thus from the definition of K we have

∫
Ω

f g K 1/2 dX1 . . .dXn

=
∫
Ω

f (X1, . . . , Xn)g(X1, . . . , Xn)K 1/2(X1, . . . , Xn)dX1 . . .dXn

= (2π)n
∫
F ◦

f
(
χω1(x), . . . ,χωn (x)

)
g
(
χω1(x), . . . ,χωn (x)

)
Sρ(x)Sρ(x)dx1 . . .dxn (33)

for all functions f , g are in the variables X1, . . . , Xn on Ω .

Theorem 7.1. Let M be a positive integer. Then for all polynomials f , g ∈ C[X1, . . . , Xn] with m- deg( f ) �
M + 1 and m- deg(g) � M we have

∫
Ω

f g K 1/2 dX1 . . .dXn

= (2π)n
∫
F ◦

f
(
χω1(x), . . . ,χωn (x)

)
g
(
χω1(x), . . . ,χωn (x)

)
Sρ(x)Sρ(x)dx1 . . .dxn

= 1

cG

(
2π

M + h

)n ∑
x∈F ◦

M+h

f
(
χω1(x), . . . ,χωn (x)

)
g
(
χω1(x), . . . ,χωn (x)

)
Sρ(x)Sρ(x). (34)

This theorem is proved in Section 7.5.

7.2. The cubature formula

For any function f defined on Ω , let f̃ be defined by f̃ (x) = f (χω1 (x), . . . ,χωn (x)).
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Theorem 7.2. Let M be a non-negative integer. Then for all polynomials f ∈ C[X1, . . . , Xn] with m- deg( f ) �
2M + 1 we have

∫
Ω

f K 1/2 dX1 . . .dXn = 1

cG

(
2π

M + h

)n ∑
X∈FM+h

f (X)K (X)

= 1

cG

(
2π

M + h

)n ∑
x∈F ◦

M+h

f̃ (x)K̃ (x). (35)

Eq. (35) is the cubature formula. The points x ∈ F ◦
M+h = ( 1

M+h P̌ ) ∩ F ◦ , or more precisely their
images under ξ , are the nodes. These points are common zeros of the character functions of the
m-degree M + 1. We shall also refer to the elements of F ◦

M+h as the nodes. The coefficients of the

interpolation are the values of K or K̃ = |Sρ |2 at the nodes. Theorem 7.2 is proved in exactly the
same way as Theorem 7.1, with λ now satisfying m- deg(λ) � 2M + 1 and μ replaced by 0.

We first prove a key lemma.

7.3. Separation lemma

Lemma 7.3. If φ = ∑n
j=1 φ jω j ∈ P+ and φ �= 0, and if m- deg(φ) < 2(M + h), then φ /∈ (M + h)Q .

Proof. Suppose by way of contradiction that φ ∈ (M + h)Q . We have

0 < 〈φ,−α̌0〉 < 2(M + h)

from our assumption on the m-degree of φ and since 〈φ,−α̌0〉 = ∑
φ jm̌ j > 0. However, since

〈Q ,−α̌0〉 ⊂ Z, our assumption on φ forces
∑

φ jm̌ j = 〈φ,−α̌0〉 ∈ (M + h)Z and hence
∑

φ jm̌ j =
M + h.

In the same way, applying φ to each simple coroot α̌ j in turn, we obtain φ j = 〈φ, α̌ j〉 = (M + h)a j

for some a j ∈ Z
�0, j = 1, . . . ,n. Thus M + h = ∑

φ jm̌ j = (M + h)
∑n

j=1 a jm̌ j . This implies that exactly
one a j �= 0 and for this j, a j = 1 and m̌ j = 1. Thus φ = (M + h)ω j ∈ (M + h)Q , i.e. ω j ∈ Q .

In fact this can’t happen. One way to see this is to use a well-known fact that the non-trivial
elements of the centre of the simply-connected simple Lie group G are given by the elements ω̌ j
over the j > 0 which correspond the places where m j = 1 (these are certain vertices, different from
the vertex 0, of the fundamental chamber). Of course these elements ω̌ j /∈ Q̌ for such an element
would be a representative of the identity element. Our case here is the same situation except it is
for the simply-connected simple Lie group Ǧ based on the dual root system: we have a j for which
m̌ j = 1, and hence ω j /∈ Q .

Thus φ = (M + h)ω j cannot lie in (M + h)Q . �
7.4. Weyl integral formula and its consequences

We recall here the Weyl integral formula [20],

∫
G

F dθG = 1

|W |
∫
T

F |Sρ |2 dθT

for all class functions F (functions which are invariant on conjugacy classes in G). Here the measures
are normalized Haar measure on G and T respectively and the function F is simply being restricted
to the maximal torus T in the second integral. In particular characters are class functions, and so
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for the irreducible characters χλ,χμ of the irreducible representations of G of highest weights λ,μ
respectively, we have from the standard orthogonality relations [20]:

δλ,μ =
∫
G

χλχμ dθG = 1

|W |
∫
T

χλχμ|Sρ |2 dθT. (36)

Here we are using the usual Kronecker delta.
We do not need all of (36), only the equality of the left- and right-hand sides; and that fact is not

hard to see. We have

χλ SρχμSρ = Sλ+ρ Sμ+ρ =
∑

w∈W

∑
v∈W

(−1)l(w)(−1)l(v)e2π i〈w(λ+ρ),x〉e−2π i〈v(μ+ρ),x〉

by Weyl’s character formula.6 The integral over T of e2π i〈w(λ+ρ),x〉−2π i〈v(μ+ρ),x〉 is 0 unless
w(λ + ρ) − v(μ + ρ) = 0, in which case it integrates to 1. Since λ + ρ and μ + ρ are strictly domi-
nant, this happens only if λ = μ and w = v . If indeed λ = μ then there are exactly |W | times when
w(λ + ρ) − v(μ + ρ) = 0, and we see that the right-hand side of (36) is δλ,μ .

We also wish to recall a result from discrete Fourier analysis [13]. There it is proved that, using
the notation established above,∫

F

Sλ+ρ Sμ+ρ dθT = 1

cG(M + h)n

∑
x∈F ◦

M+h

Sλ+ρ(x)Sμ+ρ(x) = δλ,μ, (37)

as long as when λ �= μ, the points of F ◦
M+h , can separate all the weights appearing in the W -orbit

of λ + ρ from all those appearing in the W -orbit of μ + ρ . Explicitly, separation means that it never
happens that w(λ + ρ) − v(μ + ρ) takes integer values on all the points of 1

M+h P̌ , or equivalently, it
never happens that w(λ + ρ) − v(μ + ρ) ∈ (M + h)Q , except when λ = μ.

This proof of the last equality in (37) is actually a straightforward thing to see. First note that
Sλ+ρ Sμ+ρ is W -invariant, and hence its integral over all of T is |W | times its integral over F . There
is no need to worry about the boundary of F which has measure 0 and in any case the function
takes the value 0 on all of its boundary. In the same way, the sum over F ◦

M+h can be extended by the

operation of the Weyl group to obtain a full set of representatives of 1
M+h P̌/Q̌ , noting again that since

the function is 0 on the boundaries of the chambers, adding in the extra boundary elements that may
appear in 1

M+h P̌/Q̌ makes no difference to the sum. This again increases the value of the sum by
|W | but has the benefit of turning the sum into a sum over a group. Then usual considerations of
sums of exponentials over a group give the desired orthogonality as long as the separation condition
is satisfied. The order of 1

M+h P̌/Q̌ is cG(M + h)n , which explains the factor outside the sum part of
the formula.

7.5. Demonstration of Theorem 7.1

With these facts, we now prove the integral formula (34):

Proof. Because of linearity, it is enough to prove (34) when f , g are monomials of the form

χν1
ω1

χν2
ω2

. . . χνn
ωn

, where ν1m1 + ν2m2 + · · · + νnmn � N,

where N = M + 1 for f and N = M for g .

6 In [20] Weyl’s character formula is derived from the integral formula, but algebraists usually use an algebraic proof of the
character formula.
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Since χ
ν1
ω1χ

ν2
ω2 . . . χνn

ωn decomposes into a linear combination of characters
∑

aλχλ1ω1+···+λnωn ,
where λ j � ν j for all j, and aν = 1 (i.e. the exponent ν = ν1ω1 + ν2ω2 + · · · + νnωn appears in the
sum with multiplicity 1), we need only prove the theorem for f (X1, . . . , Xn) = χλ = χλ1ω1+···+λnωn

and g(X1, . . . , Xn) = χμ = χμ1ω1+···+μnωn . Notice that it is quite possible for χ0, which is the con-
stant function 1T , to appear here.

We have from (36) and (37),

δλ,μ = 1

|W |
∫
T

χλχμ|Sρ |2 dθT = 1

|W |
∫
T

Sλ+ρ Sμ+ρ dθT =
∫
F

Sλ+ρ Sμ+ρ dθT

= 1

cG(M + h)n

∑
x∈F ◦

M+h

Sλ+ρ(x)Sμ+ρ(x) (38)

(which is exactly what we have to prove) as long as when λ �= μ there are no pairs w, v ∈ W for
which w(λ + ρ)(x) − v(μ + ρ)(x) ∈ Z for all x ∈ 1

M+h P̌ , or, as we pointed out above,

w(λ + ρ) − v(μ + ρ) ∈ (M + h)Q .

We will now show this cannot happen.
Consider the weights w(λ + ρ), w ∈ W . These weights are all of the form λ + ρ − β where β is

a sum of positive roots (including the case when it is the empty sum, 0). Now −α̌ is the highest
co-root and so is actually a dominant co-weight. This gives us that 〈β,−α̌〉 � 0 and so

m- deg
(

w(λ + ρ)
)
� m- deg(λ + ρ) � M + h.

The lowest weight in the W -orbit of λ + ρ is wopp(λ + ρ) and its m-degree is the negative of the
m-degree of λ+ρ as we saw above. All the other weights in its orbit are of the form wopp(λ+ρ)+β

for some sum β of positive roots and this then gives us

−(M + h) � −m- deg(λ + ρ) � m- deg
(

w(λ + ρ)
)
.

In short

−(M + h) � −m- deg(λ + ρ) � m- deg
(

w(λ + ρ)
)
� m- deg(λ + ρ) � M + h.

Exactly the same holds for v(μ + ρ) except that the inequalities are now strict since the degree of g
is at most M . Combining, we obtain

−2(M + h) < m- deg
(

w(λ + ρ) − v(μ + ρ)
)
< 2(M + h)

for all w, v ∈ W .
Now for any choice of w, v , each element in the W -orbit of w(λ + ρ) − v(μ + ρ) is another

element of the same form, and so its m-degree is constrained in the same way. Thus if there is a pair
w, v for which w(λ+ρ)− v(μ+ρ) ∈ (M +h)Q then, since (M +h)Q is W -invariant, we can assume
that φ := w(λ + ρ) − v(μ + ρ) ∈ P+ ∩ (M + h)Q , i.e. it is dominant. But then if φ �= 0 it contradicts
Lemma 7.3. It follows that φ = 0, and then due to the fact that λ+ρ and μ+ρ are strictly dominant,
we have λ = μ.

This proves the separation condition holds, and finishes the proof of the theorem. �
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7.6. Duality

The essence of the cubature formula of Theorem 7.2 is the duality between dominant weights
of m-degree not exceeding M and the elements of finite order M + h arising from the fundamental
region F . If we use the fact that the m-degree of ρ is h − 1 and the fact that any regular EFO in F
can be expressed as μ̌ + ρ̌ (or xμ̌+ρ̌ in T), where μ̌ is co-dominant, then the cubature matrix is

(Mλμ̌) = (
Sλ+ρ(xμ̌+ρ̌ )

)
,

where λ, μ̌ run over all solutions to the equations

∑
m̌ j(λ j + 1) = M + h,∑
m j(μ̌ j + 1) = M + h.

The sums run over j = 0, . . . ,n, and λ0 � 0, μ̌0 � 0 are defined so as to make the equations valid.
Since the marks and co-marks are simply permutations of each other, the symmetry of this pairing is
completely manifest: if we order the co-ordinates on each side to take account of this permutation,
the solutions to the two equations look identical and the matrix becomes symmetric. Moreover, for-
mally the situation is the same for G and the corresponding group Ǧ , with the roles of characters and
elements of finite order interchanged.

8. Approximating functions on Ω

In this section we show how polynomials f of m-degree at most M can be expanded as linear
combinations of the basic polynomials Xλ arising from the characters λ of m-degree at most M . The
coefficients are calculated using the values of f at the corresponding nodes. The same calculations
applied to an arbitrary function f ∈ L2

K (Ω) lead to a polynomial approximation of f as a linear
combination of the these basic polynomials Xλ , and this approximation is shown to be the best
possible in the L2

K -norm by polynomials of m-degree at most M .

8.1. Polynomial expansion in terms of the Xλ

To simplify notation and the following discussion we introduce an inner product on the space
L2

K (Ω) of all complex-valued functions f on Ω for which
∫
Ω

| f |2 K 1/2 < ∞. It is defined by

〈 f , g〉K : = (2π)−n
∫
Ω

f g K 1/2

= (2π)−n
∫
Ω

f (X1, . . . , Xn)g(X1, . . . , Xn)K 1/2(X1, . . . , Xn)dX1 . . .dXn. (39)

Note here that the definition of conjugation is made in terms of Remark 1.
Since K 1/2 is continuous and strictly positive on Ω , 〈 f , f 〉K � 0 with equality if and only if f is

zero almost everywhere in Ω (relative to Lebesgue measure). Relative to this inner product L2
K (Ω) is

a Hilbert space. We call 〈 f , f 〉1/2
K the L2

K -norm of f .
The results of (33) and (38) show that the polynomials defined by

Xλ := χλ(x), x ∈ F ◦,



R.V. Moody, J. Patera / Advances in Applied Mathematics 47 (2011) 509–535 529
where λ = ∑
λ jω j runs through the set of dominant weights P+ , form an orthonormal set:

〈Xλ, Xμ〉K = δλ,μ.

These polynomials are just those that result from expanding χλ as a polynomial (of degree equal to
the m-degree |λ|m of λ) in the fundamental characters X j = χω j .

The set {Xλ} actually forms a Hilbert basis for L2
K (Ω) (the main point being that they actually span

the entire space). This can be seen by relating functions f on Ω back to functions f̃ on F ◦ through
f̃ (x) := f (X1, . . . , Xn) = f (χω1 (x), . . . ,χωn (x)). Then using (33),

∞ > (2π)−n
∫
Ω

| f |2 K 1/2 =
∫
F ◦

|̃ f |2(x)Sρ(x)Sρ(x)dx. (40)

Formally f̃ exists only on F ◦ , but we can extend it to a function on all of T by W -symmetry if
necessary. This might make it a bit easier to relate to Section 3, which we are now going to use.

We have already seen the integral on the right-hand side of (40) in (14), and according to (12)
and (13) we have

f̃ =
∑
λ

bλχλ =
∑
λ

bλ X̃λ,

with

bλ = 1

|W |
∫
T

f̃ χλ|Sρ |2 dθT =
∫
F ◦

f̃ χλ|Sρ |2 dθT = (2π)−n
∫
Ω

f XλK 1/2 = 〈 f , Xλ〉K .

Thus for each f ∈ L2
K (Ω) we have its expansion

f �
∑
λ

〈 f , Xλ〉K Xλ,

where the � means equality in the sense of equality Lebesgue-almost-everywhere.
The truncated sums

∑
|λ|m�M

〈 f , Xλ〉K Xλ,

where |λ|m stands for the m-degree of λ, are polynomials of m-degree at most M in the variables
X1, . . . , Xn .

If f is a polynomial in the variables X1, . . . , Xn of m-degree M then f̃ := f ◦ ξ is a polynomial
function of χω1 , . . . ,χωn . However, the polynomials in χω1 , . . . ,χωn of m-degree � M span exactly
the same space as the characters χλ where λ runs through all the weights of m-degree � M . As a
consequence

f̃ =
∑

|λ|m�M

aλχλ, f =
∑

|λ|m�M

aλ Xλ

for some aλ ∈ C. From the 〈·.·〉-orthogonality relations it is clear that each aλ = 〈 f , Xλ〉K . Since the
latter expressions can be computed by simple summing over the nodes, we obtain:
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Proposition 8.1. Any polynomial f of m-degree at most M can be written in the form

f =
∑

|λ|m�M

〈 f , Xλ〉K Xλ

where

〈 f , Xλ〉K = 1

cG(M + h)n

∑
X∈F◦

M+h

f (X)K (X)1/2

= 1

cG(M + h)n

∑
x∈F ◦

M+h

f̃ (x)K̃ (x)1/2. (41)

8.2. Optimality of the approximation

We now show that these polynomials are the best possible approximations for f in terms of the
L2

K -norm. This result is in fact a natural consequence that one would expect from the situation that
we have created here, since it essentially relates back to the Fourier analysis of T. See also [21].

Proposition 8.2. Let f ∈ L2
K (Ω). Amongst all polynomials p(X1, . . . , Xn) of m-degree less than or equal to M,

the polynomial
∑

|λ|m�M〈 f , Xλ〉K Xλ is the best approximation to f relative to the L2
K -norm.

Proof. Let p = ∑
|λ|m�M bλ Xλ be any polynomial. Let aλ := 〈 f , Xλ〉K for all λ and set q :=∑

|λ|m�M aλ Xλ .

〈 f − p, f − p〉K = 〈 f , f 〉K − 〈 f , p〉K − 〈p, f 〉K + 〈p, p〉K

= 〈 f , f 〉K −
∑
λ

aλbλ −
∑
λ

bλaλ +
∑
λ

|bλ|2

= 〈 f , f 〉K −
∑
λ

|aλ|2 +
∑
λ

|aλ|2 −
∑
λ

aλbλ −
∑
λ

bλaλ +
∑
λ

|bλ|2

= 〈 f − q, f − q〉K +
∑
λ

|bλ − aλ|2 � 〈 f − q, f − q〉K

with equality if and only if bλ = aλ for all λ. �
9. Example: A cubature formula for G2

We illustrate the mathematics developed above by an example where the Lie group is the excep-
tional simple Lie group of type G2 and the value of M is chosen to be M = 8.

We begin with the pertinent information about G2 and related objects. Then we can start to solve
the problem of our example. There are three steps. Since M + h = 14, the nodes will come from the
EFOs of Ad-order 14. These appear in Section 9.2. These are supposed to be common zeros of the
S-functions of m-degree M + 1 = 9, which are described in Section 9.3. Finally we get to the cubature
formula whose various components are worked out in Section 9.4.
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9.1. Pertinent data about G2

From the G2 diagram in Fig. 1 we find the following:

〈α1,α1〉 : 〈α2,α2〉 = 3 : 1, A =
(

2 −3
−1 2

)
;

〈α̌1, α̌1〉 : 〈α̌2, α̌2〉 = 1 : 3, Ǎ =
(

2 −1
−3 2

)
;

−α0 = 2α1 + 3α2, −α̌0 = 3α̌1 + 2α̌2;
marks 2,3, co-marks 3,2;
Coxeter number h = 6, cG = 1.

Therefore we have

α1 = 2ω1 − 3ω2, α2 = −ω1 + 2ω2, ω1 = 2α1 + 3α2, ω2 = α1 + 2α2,

α̌1 = 2ω̌1 − ω̌2, α̌2 = −3ω̌1 + 2ω̌2, ω̌1 = 2α̌1 + α̌2, ω̌2 = 3α̌1 + 2α̌2.

The link between the bases is the Z-duality requirement

〈α j, ω̌k〉 = 〈ωk, α̌ j〉 = δ jk, j,k = 1,2.

The set of positive roots �+ and their half sum ρ are:

�+ = {α1,α2,α1 + α2,α1 + 2α2,α1 + 3α2,2α1 + 3α2}, ρ = 3α1 + 5α2 = ω1 + ω2.

The fundamental domain of G2 is the convex hull of its three vertices {0, 1
2 ω̌1,

1
3 ω̌2}.

9.2. Finding the nodes

The nodes are the ξ -images of the 10 points of the set F ◦
14 of EFO’s of Ad-order M + h = 14 which

are in the interior of F . They must satisfy the sum rule 14 = s0 + 2s1 + 3s2. We write them in the Kac
coordinates [s0, s1, s2] as well as in the ω̌-basis:

[9,1,1] =
(

1

14
,

1

14

)
, [7,2,1] =

(
1

7
,

1

14

)
, [5,3,1] =

(
3

14
,

1

14

)
,

[3,4,1] =
(

2

7
,

1

14

)
, [1,5,1] =

(
5

14
,

1

14

)
, [6,1,2] =

(
1

14
,

1

7

)
,

[2,1,1] =
(

1

7
,

1

7

)
, [2,3,2] =

(
3

14
,

1

7

)
, [3,1,3] =

(
1

14
,

3

14

)
,

[1,2,3] =
(

1

14
,

3

14

)
. (42)

The strict adjoint order of all the EFO’s but one is 14. It is 7 for 1
7 ω̌1 + 1

7 ω̌2, and we have removed
the common factor 2 from its original Kac coordinates [4,2,2] to get the simpler form [2,1,1]. Other
EFO’s of adjoint order 14 are not shown in (42) because they are on the boundary of F . The boundary
points are easily discarded because at least one of their Kac coordinates has to be zero. At the EFOs
of Ad-order 14, the S-functions Sλ+ρ for which the m-degree of λ is M + 1 = 9 must simultaneously
vanish.
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Table 3
Values of λ (in the ω-basis) for the character χω1 . All the weights are
of multiplicity 1 except for (0,0), which as multiplicity 2. This is the
adjoint representation.

(1,0) (−1,3) (0,1) (1,−1) (2,−3) (−1,2)

(0,0) (0,0)

(−2,3) (1,−2) (−1,1) (0,−1) (1,−3) (−1,0)

Table 4
Values of λ (in the ω-basis) for the character χω2 . All the weights have
multiplicity 1. This is the 7-dimensional irreducible representation of G2.

(0,1) (1,−1) (−1,2) (0,0) (1,−2) (−1,1) (0,−1)

9.3. Finding S-functions of m-degree 9

The m-degree of a G2 weight λ = (λ1, λ2) = λ1ω1 + λ2ω2 is calculated (remember that we use the
co-marks for this) as m̌1λ1 + m̌2λ2 = 3λ1 + 2λ2. We find first all the weights with m-degree � 9. They
are the following,

(0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (3,0).

Among these there are just two weights with m-degree equal to 9, namely (1,3) and (3,0). Thus
there are only two S-functions we need to consider, S(2,4)(x) and S(4,1)(x) (since the S functions
are of the form Sλ+ρ and ρ = (1,1)), and these that vanish simultaneously on all the EFOs found in
Section 9.2.

9.4. Cubature formula

The cubature formula itself reads (see (35))

∫
Ω

f K 1/2 dX1 dX2 =
(

π

7

)2 ∑
X∈F14

f (X)K (X). (43)

The points X run over the ξ -images of the EFO list (42). The corresponding values of K are given by
Table 6. The formula is valid for all polynomials f = f (X) = f (X1, X2) of m-degree less than or equal
to 2M + 1 = 17.

The mapping of the fundamental domain into R
2 is ξ : x �→ (X1(x), X2(x)) where X1, X2 are given

by the two fundamental characters: X1 = χω1 , X2 = χω2 . These characters are exponential functions
of the form:

∑
λ

Lλe2π i〈λ,x〉

where the λ run over the weight system of the irreducible modules L of highest weights ω1
and ω2 respectively, and the quantities Lλ are the multiplicities of the weights and x varies over
the fundamental domain. For the two modules in question these quantities are given by Tables 3
and 4.

In G2 irreducible characters are real-valued (as is clear since the Weyl group contains the central
inversion λ �→ −λ making the characters self-conjugate), and so the mapping ξ : T → C

2 is actually
into R

2, and R ⊂ R
2.
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Fig. 3. The region Ω along with the 10 regular EFOs of the example.

Fig. 4. The region Ω along with the 884 regular EFOs of Ad-order 106.

The image of the fundamental domain F under the mapping x �→ (X1(x), X2(x)) in R
2 along with

the images of the 10 nodes that we found in (42) are shown in Fig. 3. The way in which EFOs fill out
the region Ω is made clearer by the Fig. 4 which shows the distribution of the EFOs of Ad-order 106.
The actual coordinate values are given in Table 5.

The function K is most easily written down in terms of K̃ on the torus side of the picture, and in
its product form:
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Table 5
A table of EFOs of Ad-order 14 and the corresponding nodes (rounded to 4 figures) in R.
The positions of the nodes are shown in Fig. 3.

[9,1,1] [7,2,1] [5,3,1] [3,4,1] [1,5,1]
(5.604,4.494) (1.802,2.802) (−0.494,1.11) (−1.247,−0.247) (−1.247,−1.)

[6,1,2] [2,1,1] [2,3,2] [3,1,3] [1,2,3]
(0.445,1.445) (0.,0.) (0.445,−1.), (1.802,−1.) (2.89,−1.604)

Table 6
The values of the weighting function K̃ at the 10 nodes.

[9,1,1] [7,2,1] [5,3,1] [3,4,1] [1,5,1] [6,1,2] [2,1,1] [2,3,2] [3,1,3] [1,2,3]
0.364666 7.36467 30.1836 37.1836 7.36467 11.4517 49. 37.1836 11.4517 4.45175

Table 7
A table of values Sλ+ρ(xμ̌) (rounded to 4 figures), with the weights λ heading the rows and the EFOs heading the columns.

λ\xμ̌ [9,1,1] [7,2,1] [5,3,1] [3,4,1] [1,5,1] [6,1,2] [2,1,1] [2,3,2] [3,1,3] [1,2,3]
(0,0) −0.604 −2.714 −5.494 −6.098 −2.714 −3.384 −7. −6.098 −3.384 −2.11
(0,1) −2.714 −7.604 −6.098 1.506 2.714 −4.89 0. 6.098 3.384 3.384
(0,2) −5.494 −6.098 2.11 −3.384 −6.098 2.714 7. −3.384 2.714 −0.604
(0,3) −6.098 1.506 −3.384 −4.89 6.098 7.604 0. 3.384 −2.714 −2.714
(0,4) −2.714 2.714 −6.098 6.098 −7.604 3.384 0. 1.506 −4.89 3.384
(1,0) −3.384 −4.89 2.714 7.604 3.384 −1.506 0. −2.714 −6.098 −6.098
(1,1) −7. 0. 7. 0. 0. 0. −7. 0. 0. 7.

(1,2) −6.098 6.098 −3.384 3.384 1.506 −2.714 0. −4.89 7.604 −2.714
(2,0) −3.384 3.384 2.714 −2.714 −4.89 −6.098 0. 7.604 −1.506 −6.098
(2,1) −2.11 3.384 −0.604 −2.714 3.384 −6.098 7. −2.714 −6.098 5.494

K̃ (x) = |Sρ |2(x)

= (
2 − 2 cos〈α1, x〉)(2 − 2 cos〈α2, x〉)(2 − 2 cos〈α1 + α2, x〉)(2 − 2 cos〈α1 + 2α2, x〉)
× (

2 − 2 cos〈α1 + 3α2, x〉)(2 − 2 cos〈2α1 + 3α2, x〉).
The values of the weighting function K̃ at the nodes are given in Table 6.
Underlying the cubature formula (for M = 8 in G2) is the fact that the matrix

X = X (8) = (
Sλ+ρ(xμ̌)

)
satisfies 1

(8+6)2 X X T = I10×10.

Explicitly this works out as follows. The 10 weights of m-degree less than or equal to 8 are

(0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (2,0), (2,1),

as we have seen. For each of these weights λ and for each EFO xμ̌ of (42) we compute Sλ+ρ(xμ̌). The
results are displayed in Table 7.

Direct computation shows that X (8)(X (8))T = 142 I10×10, as it should be by (37).
Proposition 8.1 and Proposition 8.2 show how to use the elements of F ◦

14 or F◦
14 to compute

Fourier coefficients to expand polynomials exactly and to find best approximants in general.
Examination of the graphs of the two functions S2,4 and S4,1 reveals that they have (at least) 2

common zeros in F beyond the expected ones. These zeros do not seem to be related to EFOs and
are somewhat of a mystery to us.
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