6,823 research outputs found
Parametric, Optimization-Based Study on the Feasibility of a Multisegment Antisolvent Crystallizer for in Situ Fines Removal and Matching of Target Size Distribution
Peer reviewedPostprin
Electrochemically induced precipitation enables fresh urine stabilization and facilitates source separation
Source separation of urine can enable nutrient recycling, facilitate wastewater management, and conserve water. Without stabilization of the urine, urea is quickly hydrolyzed into ammonia and (bi)carbonate, causing nutrient loss, clogging of collection systems, ammonia volatilization, and odor nuisance. In this study, electrochemically induced precipitation and stabilization of fresh urine was successfully demonstrated. By recirculating the urine over the cathodic compartment of an electrochemical cell, the pH was increased due to the production of hydroxyl ions at the cathode. The pH increased to 11-12, decreasing calcium and magnesium concentrations by >80%, and minimizing scaling and clogging during downstream processing. At pH 11, urine could be stabilized for one week, while an increase to pH 12 allowed urine storage without urea hydrolysis for >18 months. By a smart selection of membranes [anion exchange membrane (AEM) with a cation exchange membrane (CEM) or a bipolar membrane (BPM)], no chemical input was required in the electrochemical cell and an acidic stream was produced that can be used to periodically rinse the electrochemical cell and toilet. On-site electrochemical treatment, close to the toilet, is a promising new concept to minimize clogging in collection systems by forcing controlled precipitation and to inhibit urea hydrolysis during storage until further treatment in more centralized nutrient recovery plants
Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at cáhuil lagoon, chile.
Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity
A Multiscale Approach for the Characterization and Crystallization of Eflucimibe Polymorphs: from Molecules to Particles
We present in this paper a generic multiscale methodology for the characterization and crystallization of eflucimibe polymorphs. The various characterization techniques used have shown that eflucimibe polymorphism is due to a conformational change of the molecule in the crystal lattice. In addition, the two polymorphs are monotropically related in the temperature range tested and have similar structures and properties (ie. interfacial tension and solubility). Consequently, it was found that for a wide range of operating conditions, the polymorphs may crystallize concomitantly. Induction time measurements and metstable zone width determination allow to infer the origin of the concomitant appearance of the polymorphs. A predominance diagram has been established which allows to perfectly control the crystallization of the desired polymorph. However, even if the stable form can be produced in a reliable way, the crystal suspension went toward a very structured gel-like network which limits the extrapolation process. Based on microscopic observation of the crystallization events performed in a microfluidic crystallizer, we propose a range of operating conditions suitable for the production of the stable form with the desired handling properties
Crystal nucleation in adroplet based microfluidic crystallizer
The study presented in this paper deals with the determination of eflucimibe nucleation rate in a droplet based microfluidic crystallizer. The experimental device allows the storage of up to 2000 monodispersed droplets to get nucleation statistics and crystal growth rates under static conditions. Supersaturation was generated by quenching the droplets down to 273 or 293 K. To determine the nucleation kinetics of eflucimibe, the number of appearing crystals is recorded as a function of time. At low time scale, it was found that eflucimibe in the droplets containing active centers (impurities) crystallizes first and thus yields a rapid initial rate. At higher time scale, once all the droplets containing impurities have crystallized, leaving only the droplets that are free of impurities, the nucleation rate falls allowing the determination of the homogeneous nucleation rate. The crystal–solution interfacial energy found in this system σ=3.12 mJ m−2 is in good agreement with the previously published results. Using the crystalnucleation and the growth rate determined experimentally, simulations were performed using a Monte Carlo method. Even if this method correctly predicts the number of droplets that remains empty during the experiments, it was not possible to predict correctly the number of crystals per drop obtained experimentally. The relationship between the growth and nucleation rates and the resultant number of crystals per drop is likely to be complex and dependent on a number of system parameters. The failure of the model may be attributed either to an overestimation of the crystal growth rate or to an enhancement of the nucleation rate due to the presence of seed crystals
Process for the leaching of AP from propellant
A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension
Preparing oxidizer coated metal fuel particles
A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal
Electronic controller for reciprocating rotary crystallizer
An electronic controller for a reciprocating rotary crystallizer is described. The heart of this system is the electronic timer circuit. A schematic along with a detailed description of its operation is given
Active heat exchange system development for latent heat thermal energy storage
Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out
- …
