1,497 research outputs found

    Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation

    Get PDF
    The accurate description of protein-protein interfaces remains a challenging task. Traditional criteria, based on atomic contacts or changes in solvent accessibility, tend to over or underpredict the interface itself and cannot discriminate active from less relevant parts. A recent simulation study by Mihalek and co-authors (2007, JMB 369, 584-95) concluded that active residues tend to be `dry', that is, insulated from water fluctuations. We show that patterns of `dry' residues can, to a large extent, be predicted by a fast, parameter-free and purely geometric analysis of protein interfaces. We introduce the shelling order of Voronoi facets as a straightforward quantitative measure of an atom's depth inside an interface. We analyze the correlation between Voronoi shelling order, dryness, and conservation on a set of 54 protein-protein complexes. Residues with high shelling order tend to be dry; evolutionary conservation also correlates with dryness and shelling order but, perhaps not surprisingly, is a much less accurate predictor of either property. Voronoi shelling order thus seems a meaningful and efficient descriptor of protein interfaces. Moreover, the strong correlation with dryness suggests that water dynamics within protein interfaces may, in first approximation, be described by simple diffusion models

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    Identification of RNA Binding Proteins and RNA Binding Residues Using Effective Machine Learning Techniques

    Get PDF
    Identification and annotation of RNA Binding Proteins (RBPs) and RNA Binding residues from sequence information alone is one of the most challenging problems in computational biology. RBPs play crucial roles in several fundamental biological functions including transcriptional regulation of RNAs and RNA metabolism splicing. Existing experimental techniques are time-consuming and costly. Thus, efficient computational identification of RBPs directly from the sequence can be useful to annotate RBP and assist the experimental design. Here, we introduce AIRBP, a computational sequence-based method, which utilizes features extracted from evolutionary information, physiochemical properties, and disordered properties to train a machine learning method designed using stacking, an advanced machine learning technique, for effective prediction of RBPs. Furthermore, it makes use of efficient machine learning algorithms like Support Vector Machine, Logistic Regression, K-Nearest Neighbor and XGBoost (Extreme Gradient Boosting Algorithm). In this research work, we also propose another predictor for efficient annotation of RBP residues. This RBP residue predictor also uses stacking and evolutionary algorithms for efficient annotation of RBPs and RNA Binding residue. The RNA-binding residue predictor also utilizes various evolutionary, physicochemical and disordered properties to train a robust model. This thesis presents a possible solution to the RBP and RNA binding residue prediction problem through two independent predictors, both of which outperform existing state-of-the-art approaches

    Identification of RNA Binding Proteins and RNA Binding Residues Using Effective Machine Learning Techniques

    Get PDF
    Identification and annotation of RNA Binding Proteins (RBPs) and RNA Binding residues from sequence information alone is one of the most challenging problems in computational biology. RBPs play crucial roles in several fundamental biological functions including transcriptional regulation of RNAs and RNA metabolism splicing. Existing experimental techniques are time-consuming and costly. Thus, efficient computational identification of RBPs directly from the sequence can be useful to annotate RBP and assist the experimental design. Here, we introduce AIRBP, a computational sequence-based method, which utilizes features extracted from evolutionary information, physiochemical properties, and disordered properties to train a machine learning method designed using stacking, an advanced machine learning technique, for effective prediction of RBPs. Furthermore, it makes use of efficient machine learning algorithms like Support Vector Machine, Logistic Regression, K-Nearest Neighbor and XGBoost (Extreme Gradient Boosting Algorithm). In this research work, we also propose another predictor for efficient annotation of RBP residues. This RBP residue predictor also uses stacking and evolutionary algorithms for efficient annotation of RBPs and RNA Binding residue. The RNA-binding residue predictor also utilizes various evolutionary, physicochemical and disordered properties to train a robust model. This thesis presents a possible solution to the RBP and RNA binding residue prediction problem through two independent predictors, both of which outperform existing state-of-the-art approaches

    Structure-based Prediction of Protein-protein Interaction Networks across Proteomes

    Get PDF
    Protein-protein interactions (PPIs) orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. Significant efforts have been devoted to expand the coverage of the proteome-wide interaction space at molecular level. A number of experimental techniques have been developed to discover PPIs, however these approaches have some limitations such as the high costs and long times of experiments, noisy data sets, and often high false positive rate and inter-study discrepancies. Given experimental limitations, computational methods are increasingly becoming important for detection and structural characterization of PPIs. In that regard, we have developed a novel pipeline for high-throughput PPI prediction based on all-to-all rigid body docking of protein structures. We focus on two questions, ‘how do proteins interact?’ and ‘which proteins interact?’. The method combines molecular modeling, structural bioinformatics, machine learning, and functional annotation data to answer these questions and it can be used for genome-wide molecular reconstruction of protein-protein interaction networks. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Further, we validated our method against a few human pathways. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms as well as to construct dimer structures and estimate the confidence of protein interactions experimentally identified with high-throughput techniques

    Prediction of transmembrane regions of β-barrel proteins using ANN- and SVM-based methods

    Get PDF
    This article describes a method developed for predicting transmembrane β-barrel regions in membrane proteins using machine learning techniques: artificial neural network (ANN) and support vector machine (SVM). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. The accuracy of the ANN-based method improved significantly, from 70.4% to 80.5%, when evolutionary information was added to a single sequence as a multiple sequence alignment obtained from PSI-BLAST. We have also developed an SVM-based method using a primary sequence as input and achieved an accuracy of 77.4%. The SVM model was modified by adding 36 physicochemical parameters to the amino acid sequence information. Finally, ANN- and SVM-based methods were combined to utilize the full potential of both techniques. The accuracy and Matthews correlation coefficient (MCC) value of SVM, ANN, and combined method are 78.5%, 80.5%, and 81.8%, and 0.55, 0.63, and 0.64, respectively. These methods were trained and tested on a nonredundant data set of 16 proteins, and performance was evaluated using "leave one out cross-validation" (LOOCV). Based on this study, we have developed a Web server, TBBPred, for predicting transmembrane β-barrel regions in proteins (available at http://www.imtech.res.in/raghava/tbbpred)
    • …
    corecore