9 research outputs found

    Secure Computing, Economy, and Trust: A Generic Solution for Secure Auctions with Real-World Applications

    Get PDF
    In this paper we consider the problem of constructing secure auctions based on techniques from modern cryptography. We combine knowledge from economics, cryptography and security engineering and develop and implement secure auctions for practical real-world problems. In essence this paper is an overview of the research project SCET--Secure Computing, Economy, and Trust-- which attempts to build auctions for real applications using secure multiparty computation. The main contributions of this project are: A generic setup for secure evaluation of integer arithmetic including comparisons; general double auctions expressed by such operations; a real world double auction tailored to the complexity and performance of the basic primitives '+' and

    An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks

    Get PDF
    In this paper we describe a novel strategy for carrying out lookups in Chord-based peer-to-peer (P2P) networks, wherein nodes are assumed to behave selfishly. This is in contrast to the traditional lookup schemes, which assume that nodes cooperate with each other and truthfully follow a given protocol in carrying out resource lookups. The proposed scheme also provides efficient and natural means for preventing free-riding problem in Chord without requiring prior trust relationships among nodes. In addition, we evaluate the performance of Chord for providing routing service in a network of selfish nodes and prove that it has good structural properties to be used in uncooperative P2P networks

    A Mechanism Design Approach to Bandwidth Allocation in Tactical Data Networks

    Get PDF
    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems\u27. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today\u27s software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community. In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors. We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained. Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches

    Cryptographic Protocols for Secure Second-Price Auctions

    No full text
    In recent years auctions have become more and more important in the field of multiagent systems as useful mechanisms for resource allocation, task assignment and last but not least electronic commerce. In many cases the Vickrey (second-price sealed-bid) auction is used as a protocol that prescribes how the individual agents have to interact in order to come to an agreement. The main reasons for choosing the Vickrey auction are the existence of a dominant strategy equilibrium, the low bandwidth and time consumption due to just one round of bidding and the (theoretical) privacy of bids. This paper specifies properties that are needed to ensure the accurate and secret execution of Vickrey auctions and provides a classification of different forms of collusion. We approach the two major security concerns of the Vickrey auction: the vulnerability to a lying auctioneer and the reluctance of bidders to reveal their private valuations. We then propose a novel technique that allows to securely perform second-price auctions

    Novel Secret Sharing and Commitment Schemes for Cryptographic Applications

    Get PDF
    In the second chapter, the notion of a social secret sharing (SSS) scheme is introduced in which shares are allocated based on a player's reputation and the way she interacts with other parties. In other words, this scheme renews shares at each cycle without changing the secret, and it allows the trusted parties to gain more authority. Our motivation is that, in real-world applications, components of a secure scheme have different levels of importance (i.e., the number of shares a player has) and reputation (i.e., cooperation with other parties). Therefore, a good construction should balance these two factors accordingly. In the third chapter, a novel socio-rational secret sharing (SRS) scheme is introduced in which rational foresighted players have long-term interactions in a social context, i.e., players run secret sharing while founding and sustaining a public trust network. To motivate this, consider a repeated secret sharing game such as sealed-bid auctions. If we assume each party has a reputation value, we can then penalize (or reward) the players who are selfish (or unselfish) from game to game. This social reinforcement stimulates the players to be cooperative in the secret recovery phase. Unlike the existing protocols in the literature, the proposed solution is stable and it only has a single reconstruction round. In the fourth chapter, a comprehensive analysis of the existing dynamic secret sharing (DSS) schemes is first provided. In a threshold scheme, the sensitivity of the secret and the number of players may fluctuate due to various reasons. Moreover, a common problem with almost all secret sharing schemes is that they are ``one-time'', meaning that the secret and shares are known to everyone after secret recovery. We therefore provide new techniques where the threshold and/or the secret can be changed multiple times to arbitrary values after the initialization. In addition, we introduce a new application of dynamic threshold schemes, named sequential secret sharing (SQS), in which several secrets with increasing thresholds are shared among the players who have different levels of authority. In the fifth chapter, a cryptographic primitive, named multicomponent commitment scheme (MCS) is proposed where we have multiple committers and verifiers. This new scheme is used to construct different sealed-bid auction protocols (SAP) where the auction outcomes are defined without revealing the losing bids. The main reason for constructing secure auctions is the fact that the values of the losing bids can be exploited in future auctions and negotiations if they are not kept private. In our auctioneer-free protocols, bidders first commit to their bids before the auction starts. They then apply a decreasing price mechanism to define the winner and selling price in an unconditionally secure setting
    corecore