611 research outputs found

    An Improved Timestamp-Based Password Authentication Scheme Using Smart Cards

    Full text link
    With the recent proliferation of distributed systems and networking, remote authentication has become a crucial task in many networking applications. Various schemes have been proposed so far for the two-party remote authentication; however, some of them have been proved to be insecure. In this paper, we propose an efficient timestamp-based password authentication scheme using smart cards. We show various types of forgery attacks against a previously proposed timestamp-based password authentication scheme and improve that scheme to ensure robust security for the remote authentication process, keeping all the advantages that were present in that scheme. Our scheme successfully defends the attacks that could be launched against other related previous schemes. We present a detailed cryptanalysis of previously proposed Shen et. al scheme and an analysis of the improved scheme to show its improvements and efficiency.Comment: 6 page

    Cryptanalysis and improvement of chen-hsiang-shih's remote user authentication scheme using smart cards

    Get PDF
    Recently, Chen-Hsiang-Shih proposed a new dynamic ID-based remote user authentication scheme. The authors claimed that their scheme was more secure than previous works. However, this paper demonstrates that theirscheme is still unsecured against different kinds of attacks. In order to enhance the security of the scheme proposed by Chen-Hsiang-Shih, a new scheme is proposed. The scheme achieves the following security goals: without verification table, each user chooses and changes the password freely, each user keeps the password secret, mutual authentication, the scheme establishes a session key after successful authentication, and the scheme maintains the user's anonymity. Security analysis and comparison demonstrate that the proposed scheme is more secure than Das-Saxena-Gulati's scheme, Wang et al.'s scheme and Chen-Hsiang-Shih.Peer ReviewedPostprint (published version
    corecore