296 research outputs found

    A practical attack on the fixed RC4 in the wep mode

    Get PDF
    Abstract. In this paper we revisit a known but ignored weakness of the RC4 keystream generator, where secret state info leaks to the generated keystream, and show that this leakage, also known as Jenkins’ correlation or the RC4 glimpse, can be used to attack RC4 in several modes. Our main result is a practical key recovery attack on RC4 when an IV modifier is concatenated to the beginning of a secret root key to generate a session key. As opposed to the WEP attack from [FMS01] the new attack is applicable even in the case where the first 256 bytes of the keystream are thrown and its complexity grows only linearly with the length of the key. In an exemplifying parameter setting the attack recoversa16-bytekeyin2 48 steps using 2 17 short keystreams generated from different chosen IVs. A second attacked mode is when the IV succeeds the secret root key. We mount a key recovery attack that recovers the secret root key by analyzing a single word from 2 22 keystreams generated from different IVs, improving the attack from [FMS01] on this mode. A third result is an attack on RC4 that is applicable when the attacker can inject faults to the execution of RC4. The attacker derives the internal state and the secret key by analyzing 2 14 faulted keystreams generated from this key

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    Cryptanalysis of Dedicated Cryptographic Hash Functions

    Get PDF
    In this thesis we study the security of a number of dedicated cryptographic hash functions against cryptanalytic attacks. We begin with an introduction to what cryptographic hash functions are and what they are used for. This is followed by strict definitions of the security properties often required from cryptographic hash functions. FSB hashes are a class of hash functions derived from a coding theory problem. We attack FSB by modeling the compression function of the hash by a matrix in GF(2). We show that collisions and preimages can easily be found in FSB with the proposed security parameters. We describe a meet-in-the-middle attack against the FORK-256 hash function. The attack requires 2^112.8 operations to find a collision, which is a 38000-fold improvement over the expected 2^128 operations. We then present a method for finding slid pairs for the compression function of SHA-1; pairs of inputs and messages that produce closely related outputs in the compression function. We also cryptanalyse two block ciphers based on the compression function of MD5, MDC-MD5 and the Kaliski-Robshaw "Crab" encryption algorithm. VSH is a hash function based on problems in number theory that are believed to be hard. The original proposal only claims collision resistance; we demonstrate that VSH does not meet the other hash function requirements of preimage resistance, one-wayness, and collision resistance of truncated variants. To explore more general cryptanalytic attacks, we discuss the d-Monomial test, a statistical test that has been found to be effective in distinguishing iterated Boolean circuits from real random functions. The test is applied to the SHA and MD5 hash functions. We present a new hash function proposal, LASH, and its initial cryptanalysis.The LASH design is based on a simple underlying primitive, and some of its security can be shown to be related to lattice problems

    Cryptanalysis of Dedicated Cryptographic Hash Functions

    Get PDF
    In this thesis we study the security of a number of dedicated cryptographic hash functions against cryptanalytic attacks. We begin with an introduction to what cryptographic hash functions are and what they are used for. This is followed by strict definitions of the security properties often required from cryptographic hash functions. FSB hashes are a class of hash functions derived from a coding theory problem. We attack FSB by modeling the compression function of the hash by a matrix in GF(2). We show that collisions and preimages can easily be found in FSB with the proposed security parameters. We describe a meet-in-the-middle attack against the FORK-256 hash function. The attack requires 2^112.8 operations to find a collision, which is a 38000-fold improvement over the expected 2^128 operations. We then present a method for finding slid pairs for the compression function of SHA-1; pairs of inputs and messages that produce closely related outputs in the compression function. We also cryptanalyse two block ciphers based on the compression function of MD5, MDC-MD5 and the Kaliski-Robshaw "Crab" encryption algorithm. VSH is a hash function based on problems in number theory that are believed to be hard. The original proposal only claims collision resistance; we demonstrate that VSH does not meet the other hash function requirements of preimage resistance, one-wayness, and collision resistance of truncated variants. To explore more general cryptanalytic attacks, we discuss the d-Monomial test, a statistical test that has been found to be effective in distinguishing iterated Boolean circuits from real random functions. The test is applied to the SHA and MD5 hash functions. We present a new hash function proposal, LASH, and its initial cryptanalysis.The LASH design is based on a simple underlying primitive, and some of its security can be shown to be related to lattice problems

    NESHA-256, NEw 256-bit Secure Hash Algorithm (Extended Abstract)

    Get PDF
    In this paper, we introduce a new dedicated 256-bit hash function: NESHA-256. The recently contest for hash functions held by NIST, motivates us to design the new hash function which has a parallel structure. Advantages of parallel structures and also using some ideas from the designing procedure of block-cipher-based hash functions strengthen our proposed hash function both in security and in efficiency. NESHA-256 is designed not only to have higher security but also to be faster than SHA-256: the performance of NESHA-256 is at least 38% better than that of SHA-256 in software. We give security proofs supporting our design, against existing known cryptographic attacks on hash functions

    MiMC:Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

    Get PDF
    We explore cryptographic primitives with low multiplicative complexity. This is motivated by recent progress in practical applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where primitives from symmetric cryptography are needed and where linear computations are, compared to non-linear operations, essentially ``free\u27\u27. Starting with the cipher design strategy ``LowMC\u27\u27 from Eurocrypt 2015, a number of bit-oriented proposals have been put forward, focusing on applications where the multiplicative depth of the circuit describing the cipher is the most important optimization goal. Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in \GF{p} for large pp, very few primitives, even considering all of symmetric cryptography, natively work in such fields. To that end, our proposal for both block ciphers and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping F(x):=x3F(x) := x^3 is used as the main component there and is also the main component of our family of proposals called ``MiMC\u27\u27. We study various attack vectors for this construction and give a new attack vector that outperforms others in relevant settings. Due to its very low number of multiplications, the design lends itself well to a large class of new applications, especially when the depth does not matter but the total number of multiplications in the circuit dominates all aspects of the implementation. With a number of rounds which we deem secure based on our security analysis, we report on significant performance improvements in a representative use-case involving SNARKs

    Questions related to Bitcoin and other Informational Money

    Get PDF
    A collection of questions about Bitcoin and its hypothetical relatives Bitguilder and Bitpenny is formulated. These questions concern technical issues about protocols, security issues, issues about the formalizations of informational monies in various contexts, and issues about forms of use and misuse. Some questions are formulated in the more general setting of informational monies and near-monies. We also formulate questions about legal, psychological, and ethical aspects of informational money. Finally we formulate a number of questions concerning the economical merits of and outlooks for Bitcoin.Comment: 31 pages. In v2 the section on patterns for use and misuse has been improved and expanded with so-called contaminations. Other small improvements were made and 13 additional references have been include

    Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages

    Get PDF
    This is an extended version of the article with the same title accepted at Asiacrypt 2019.International audienceHighly efficient encryption and authentication of short messages is an essential requirement for enabling security in constrained scenarios such as the CAN FD in automotive systems (max. message size 64 bytes), massive IoT, critical communication domains of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight cryptography project requirements is that AEAD schemes shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”. In this work we introduce and formalize a novel primitive in symmetric cryptography called a forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length output. We define its security as indistinguishability under chosen ciphertext attack. We give a generic construction validation via the new iterate-fork-iterate design paradigm. We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-specific attacks. We demonstrate the applicability of forkciphers by designing three new provably-secure, nonce-based AEAD modes which offer performance and security tradeoffs and are optimized for efficiency of very short messages. Considering a reference block size of 16 bytes, and ignoring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based AEAD modes. More generally, we show forkciphers are suited for lightweight applications dealing with predominantly short messages, while at the same time allowing handling arbitrary messages sizes. Furthermore, our hardware implementation results show that when we exploit the inherent parallelism of ForkSkinny we achieve the best performance when directly compared with the most efficient mode instantiated with the SKINNY block cipher
    • …
    corecore