8 research outputs found

    Cryptanalysis and Further Improvement of a Dynamic ID and Smart Card based Remote user Authentication Scheme

    Get PDF
    Computer systems and their interconnections using networks have im-proved the dependence of both the organizations as well as the individuals on the stored information. This interconnection, in turn, has led to a heightened awareness of the need for data security and the protection of data and re- sources from electronic frauds, electronic eavesdropping, and networkbased attacks. Consequently, cryptography and network security have evolved, leading to the development of smart cards to enforce network security. Re-cently, Rafael Martinez-Pelez and Rico- Novella Francisco [1] pointed out vul-nerabilities in Wang et al. [2] scheme. In this paper, we cryptanalyze Wanget al. scheme and demonstrated that our proposed scheme withstands thevulnerabilities pointed out by Francisco et al. and it completes all the re-cent security requirements of [3]. We implemented the proposed scheme in MATLAB and demonstrated that our proposed scheme is not vulnerable to the shortcomings pointed out by Francisco et al. in their scheme

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Cryptanalysis of and Improvement on Biometric-based User Authentication Scheme for C/S System

    Get PDF
    Password-based authentication schemes are convenient, but vulnerable to simple dictionary attacks. Cryptographic secret keys are safe, but difficult to memorize. More recently, biometric information has been used for authentication schemes. Das proposed a biometric-based authentication scheme, but it has various vulnerabilities. Jiping et al. improved Das’s scheme, but some vulnerabilities remain. In this paper, we analyze the cryptanalysis of Jiping et al.’s authentication scheme and propose the security enhanced biometric-based user authentication scheme for the C/S System

    Security Weaknesses of Song's Advanced Smart Card Based Password Authentication Protocol

    Get PDF
    [[abstract]]Password based authentication with smart cards has been adopted as a more secure means in insecure networks to validate the legitimacy of users. Traditional authentication schemes are based on the tamper-resistant smart card; that is, the data stored in the smart card cannot be revealed. However, it is a challenging problem for considering non-tamper-resistant smart cards used in user authentication. Very recently, in 2010, Song proposed an efficient authentication scheme with such non-tamper resistant smart cards based on symmetric key cryptosystems as well as modular exponentiations. In this paper, we will show that Song's scheme is vulnerable to the offline password guessing attack and the insider attack. Besides, this scheme does not provide perfect forward secrecy and does not preserve user anonymity.[[conferencetype]]國際[[conferencelocation]]Shanghai, Chin

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Cryptanalysis and Further Improvement of a Dynamic ID and Smart Card based Remote user Authentication Scheme

    Get PDF
    Computer systems and their interconnections using networks have im-proved the dependence of both the organizations as well as the individuals on the stored information. This interconnection, in turn, has led to a heightened awareness of the need for data security and the protection of data and re- sources from electronic frauds, electronic eavesdropping, and networkbased attacks. Consequently, cryptography and network security have evolved, leading to the development of smart cards to enforce network security. Re-cently, Rafael Martinez-Pelez and Rico- Novella Francisco [1] pointed out vul-nerabilities in Wang et al. [2] scheme. In this paper, we cryptanalyze Wanget al. scheme and demonstrated that our proposed scheme withstands thevulnerabilities pointed out by Francisco et al. and it completes all the re-cent security requirements of [3]. We implemented the proposed scheme in MATLAB and demonstrated that our proposed scheme is not vulnerable to the shortcomings pointed out by Francisco et al. in their scheme
    corecore