

GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: E NETWORK, WEB & SECURITY Volume 16 Issue 4 Version 1.0 Year 2016 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Cryptanalysis and Further Improvement of a Dynamic ID and Smart Card based Remote user Authentication Scheme

By Narendra Panwar

Uttarakhand Technical University

Abstract- Computer systems and their interconnections using networks have im-proved the dependence of both the organizations as well as the individuals on the stored information. This interconnection, in turn, has led to a heightened awareness of the need for data security and the protection of data and re- sources from electronic frauds, electronic eavesdropping, and network-based attacks. Consequently, cryptography and network security have evolved, leading to the development of smart cards to enforce network security. Re-cently, Rafael Martinez-Pelez and Rico-Novella Francisco [1] pointed out vul-nerabilities in Wang et al. [2] scheme. In this paper, we crypt-analyze Wanget al. scheme and demonstrated that our proposed scheme withstands thevulnerabilities pointed out by Francisco et al. and it completes all the re-cent security requirements of [3]. We implemented the proposed scheme in MATLAB and demonstrated that our proposed scheme.

Keywords: security, authentication, remote user, smart card.

GJCST-E Classification : C.2.3 C.2.5

CRYPTANALYSISAN OF URTHERIMPROVEMENT OF A DYNAMICIDAN DSMARTCARD BASE DREMOTE USE RAUTHENTICATION SCHEME

Strictly as per the compliance and regulations of:

© 2016. Narendra Panwar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Cryptanalysis and Further Improvement of a Dynamic ID and Smart Card based Remote user Authentication Scheme

Narendra Panwar

Abstract- Computer systems and their interconnections using networks have im-proved the dependence of both the organizations as well as the individuals on the stored information. This interconnection, in turn, has led to a heightened awareness of the need for data security and the protection of data and re- sources from electronic frauds, electronic eavesdropping, and network-based attacks. Consequently, cryptography and network security have evolved, leading to the development of smart cards to enforce network security. Re-cently, Rafael Martinez-Pelez and Rico-Novella Francisco [1] pointed out vul-nerabilities in Wang et al. [2] scheme. In this paper, we crypt-analyze Wanget al. scheme and demonstrated that our proposed scheme withstands thevulnerabilities pointed out by Francisco et al. and it completes all the re-cent security requirements of [3]. We implemented the proposed scheme in MATLAB and demonstrated that our proposed scheme is not vulnerable to the shortcomings pointed out by Francisco et al. in their scheme.

Keywords: security, authentication, remote user, smart card

I. INTRODUCTION

n 1981, a remote password authentication scheme was proposed by L. Lamport [4] over an insecure channel. Since then, several schemes [5], [6], [7], [8], [9], [10] have been proposed to address this problem for achieving more functionality and efficiency. In a traditional password scheme, each user has an identity and a secret password. If a person wants to log into a network system, they must submit their identity and the corresponding password.

Preprint submitted to Journal of Information Science and Applications May 31, 2016

To avoid storing a plain password table in a public network system, several scheme [4], [11], [12] have proposed a dictionary of verification tables to store each user ID and the corresponding one-way hash value of passwords in the remote system. In 2005, Chien et al.[9] pointed out that Das et al.[8] scheme cannot achieve user anonymity because an attacker can trace user with the static value. In 2010, Lee et al.[13] have analyzed the security of the smart card based user authentication scheme proposed by Lee and Chiu [14]. Their security analysis showed that scheme [9] does not achieve its main security goal of the two-factor security. To demonstrate this, they have shown that the scheme is vulnerable to an o_-line dictionary attack in which an attacker, who has obtained the secret values stored in the users smart card can easily find out its password. Besides reporting the security problem, they showed what really is causing the problem and how to fix it and they proposed a new and improved scheme than Lee and Chius scheme.

In 2012, Francisco et al. have shown security vulnerabilities like Denial of service, server spoong, impersonation in Wang et al. [2] scheme. We propose a scheme that can withstand the above mentioned attacks, we implemented and demonstrated the stated scheme using MATLAB. The paper is organized as follows.

In Section 2, we give a brief review on Wang et al.s scheme. We demon- strate the vulnerabilities of the scheme in Section 3. The proposed scheme and its security analysis are presented in section 4 and 5. Section 6 com- pares the performance of our proposed scheme with other related schemes. Finally, we conclude this paper in Section 7.

Table 1: Notation Table

Symbol	Description
U_i	The User
\mathbf{S}	The Remote Server
ID_i	Unique identity of U_i
PW_i	Unique password of U_i
\mathbf{S}_k	The common session key
\oplus	The bitwise XOR operation
$\mathrm{H}(.)$	A collision free one-way hash function such as SHA-256
x,y	Secret Keys of S

II. REVIEW OF WANG ET AL. SCHEME

Wang et al. proposed a dynamic ID and smart card based remote user authentication scheme in which the remote server does not maintain a verification table and chooses the users password. Table 1 describes the notations used in this paper and Table 2 depicts review of Wang et al. scheme.

Table 2 : Wang et al sche	eme
---------------------------	-----

User \mathbf{U}_i	Server S				
Registration Phase					
Select ID_i	Choose PW_i				
Send ID_i to Server S	Compute $A_i = H(PW_i) \oplus H(x) \oplus ID_i$				
	Store $[A_i, y, H(.)]$ into Smart Card				
	Sends PW_i and Smart Card to U_i				
	through secure channel				

Table 2 : Wang et al scheme

$\overline{\text{User U}_i}$	Server S

Login Phase

U_i keys in his/her ID_i and PW_i into smart card terminal and perform: $CID_i=H(PW_i)\oplus H(A_i\oplus y\oplus T)\oplus ID_i$ Send M_i=[ID_i, CID_i, A_i,T] to S.

Verification Phase

Verify $T^*-T \leq \Delta T$, if time interval is incorrect then reject login request otherwise accept M_i and perform: $H(PW_i)^*=CID_i\oplus H(A_i\oplus y\oplus T)\oplus ID_i$ Compute $ID_i^*=H(PW_i)^*\oplus H(x)\oplus A_i$ If ID_i^* and ID_i are not equals, then reject login request otherwise S performs: Computes $B=H(H(PW_i)^*\oplus y\oplus T_2)$ Sends $[B, T_2]$ to U_i

Server Verification Phase

Verify T_2 - $T \le \Delta T$, if the time interval is incorrect then U_i terminate phase, otherwise perform: Computes $B^*=H(H(PW_i) \bigoplus y \bigoplus T_2)$ If $B^*=B$ holds U_i confirms the identity of S.

Table 2 : Wang et al scheme

User U_i	Server S
Password Change Phase	
\mathbf{U}_i insert smart card into	
card reader and keys in his/her $\mathrm{PW}_i,$	
new password NPW_i and performs:	
$\mathbf{A}_i^* = \mathbf{A}_i \oplus \mathbf{H}(\mathbf{PW}_i) \oplus \mathbf{H}(\mathbf{NPW}_i)$	
Store A_i^* into smart card	
with replacing A_i .	

III. CRYPTANALYSIS OF WANG ET AL. SCHEME

In this section, we demonstrate that Wang et al. scheme is vulnerable to the followings attacks.

a) Denial-of-Service attack

There is no user id and password verification mechanism at client terminal. Therefore, if the user enters false identity ID_i^* it will compute CID_i^* and U_i send it to the server S as login request without verifying users identity.S computes

 $H(PWD_i)^* = CID_i^* \oplus H(A_i \oplus y \oplus T) \oplus ID_i^*$

 $ID_i^{**} = H(PW_i)^* \oplus H(x) \oplus A_i.$

Computed ID_i^{**} will never match to the ID_i^* received by the server from the user U_i . If such case happens unnecessary computing will be performed by the server, and it will lead to Denial-of-Service attack..

b) Impersonation attack

Wang et al.'s scheme cannot withstand impersonation attack. The attacker can create a valid login request message if he/she obtains $A_i^*H(x)$ and y. If a legitimate user with mal intent wishes to attack the server he/she can extract H(x) from his/her card and can establish a valid session with the server and thus becoming an attacker using his/ her user privileges. Table 3 describes impersonation attack on Wang et al scheme.

Table 3 : Impersonation attack on Wang et al scheme

	Server S
Server Verification	
Verify $T^{**}-T^* \leq \Delta T$, now time interval	
is correct and U_a perform:	
$B^* = H(H(PW_i) \oplus y \oplus T^{**})$	CID
Now session will successfully start	
between the legitimate attacker \mathbf{U}_a	
and server S.	

Year 2016

c) Server spoofing attack

Wang et al. scheme is vulnerable to server spoofing attack which is shown in Table 4. In this scheme, S needs to know y and H(x) for verifying the legitimacy of each user. If the attacker is a legitimate user U_a he/she can impersonate as S to cheat U_i because he/she knows y and H(x). After the user U_i receives the acknowledgement message $[B,T^{\ast\ast}]$ he/she will compute $B^{\ast}{=}H(PW_i) \oplus_{y} \oplus_{T}{\ast}^{\ast}$ and checks whether or not B^{\ast} is equal to B In this case, U_i will believe that the attacker is the legitimate S, and will establish a session key with S for further communication.

Table 4 : Server spoofing attack on Wang et al scheme

${\rm Legitimate~User~U}_i$	Legitimate User (Attacker) U_a as S				
Login Phase					
\mathbf{U}_i keys in his/her ID_i and PW_i					
into smart card terminal and per- form: $CID_i = H(PW_i) \oplus H(A_i \oplus y \oplus T) \oplus ID_i$ Send $M_i = [ID_i, CID_i, A_i, T]$ to S.	Intercept message M_i of User U_i $M_i = [ID_i, CID_i, A_i, T]$ Compute $H(x) = H(PW_a) \oplus A_a \oplus ID_a$ Compute $H(PW_i) = A_i \oplus H(x) \oplus ID_i$ Computes $B = H(H(PW_i) \oplus y \oplus T^{**})$ Sends $[B, T^{**}]$ to U_i				

Server Verification

Verify $T^{**}-T^* \leq \Delta T$, if time interval is correct then U_i perform: $B^* = H(H(PW_i) \oplus y \oplus T^{**})$ Now the session will successfully start between legitimate user U_i and attacker user U_a .

d) Password Change Phase Flaws

In the password change phase of Wang et al. scheme, we observe that an attacker user U_i can change password of any other legitimate user U_{is} , which is shown in Table 5.

Table 5 : Password	change flaws	of Wang et al scheme

${\bf Legitimate \ User \ } {\bf U}_l$	${\bf Attacker \ User \ U}_a$				
Login Phase					
\mathbf{U}_l keys his/her \mathbf{ID}_l and \mathbf{PW}_l into					
smart card terminal and perform:					
Computes					
$CID_{l} = H(PW_{l}) \oplus H(A_{l} \oplus y \oplus T) \oplus ID_{l}$	Intercept message M_1 of User U_l				
Send M1=[ID _l ,CID _l ,A _l ,T] to S.	$\mathbf{M1}{=}[\mathbf{ID}_l,\mathbf{CID}_l,\mathbf{A}_l,\mathbf{T}]$				
	Compute $H(x)=H(PW_a)\oplus A_a\oplus ID_a$				
	Change password				
	Compute $H(PW_l) = A_l \oplus H(x) \oplus ID_l$				
	Attacker user U_a computes:				
	$\mathbf{A}_{a}^{*} = \mathbf{A}_{l} \oplus \mathbf{H}(\mathbf{PW}_{l}) \oplus \mathbf{H}(\mathbf{NPW}_{l})$				
	Store A_l^* into smart card replacing with A_l				

IV. PROPOSED SCHEME

This section proposes a strong, secure authentication scheme which will with- stand the security vulnerabilities which leads to the aforementioned attacks.

a) Registration phase

In this phase, the user U_i registers with the remote server S through a secure channel to be a authentic user.

Step 1: U_i chooses his/her identity ID_i and password PW_i and computes $H(ID_i || PW_i || R_x$ where R_x random number generated by U_i . Then U_i sends the registration request $H(ID || PW_i || R_x)$] to S.

Step 2: Upon receiving $[ID_i H(ID || PW_i || R_x]$ from , S veri es the validity of and computes $VID_i = H(K \oplus ID_i)$

Step 3: S computes $N_i = VID_i \oplus H(ID_i || PW_i || R_x$ then captures current date and time in T and create a record $[ID_i,T]$ in its database.

Step 4: S stores $[H(.),N_iT]$ into the smart card of U_i and sends the smart card through a secure channel to the user U_i

Step 5: Upon receiving the smart card from $S_{,U_i}$ stores into smart card and does not need to remember R_x after _nishing registration phase. Finally, U_{iS_i} smart card contains $[H(.), N_i T, R_x]$

b) Login phase

In this phase, when an authentic user want to login to the remote server S, he/she must perform the following steps:

Step 1: U_i inserts his/her smart card into the card reader and inputs the identity ID_i and password PW_i The smart card computes $VID_i^*=N_i\oplus H(ID_i||PW_i||R_x)$, where R_x is retrieved from its memory space.

Step 2: The smart card computes

T=T+1 and $M_1=(ID_i||VID_i^*||R_x||T)^2 \mod n$ and sends a login request M_1 to S

c) Authentication phase

Upon receiving the login request M1 from U_i , S performs the following steps:

Step 1: S reveals M_1 by using the Chinese Remainder Theorem (CRT) with p and q to obtain $ID_i VID_i R_x$ and T. Then S veries the revealed T with the stored T_i corresponding to ID_i . If T _ T, S replaces T_i with new time variable T in its database. Otherwise, S rejects U_{iS}^{i} , login request.

Step 2: If Step 1 holds, S computes $VID_i = H(K \oplus ID_i)$, and checks if computed VID_i equals received VID_i^* . If it holds, S would successfully authenticate U_i and computes the session $keyS_k = H(VID_i || R_x || T)$ shared with U_i .

Step 3: S computes M_2 =H(VID|| R_x and send it to U_i . Step 4: Ui computes M_2 *=H(VIDikRx) and check if computed M_2 * equals received M_2 . If it does not hold, Ui stops the session. Otherwise, Ui now successfully authenticate S and use S_k =H(VID_i|| R_x ||T) shared session key with S for securing future communications.

d) Password change phase

In this phase, the user U_i inserts the smart card into device and inputs ID_i , original password PW_i , new password PW_i^* and R_x^* , where R_x^* is a new random number generated by U_i Then, the smart card computes $B=H(ID_i || PW_i || R_x)$, $B^*=H(ID_i || PW_i^* || R_x^*)$ and $A_i=A_i \oplus B \oplus B^*$. Finally, the values A_i and R_x stored in U_{iS} , smart card are replaced with A and R_x^* , respectively. Here the password PW_i^* of user U_i has been changed to a new password PW_i^* with o_ine session.

V. SECURITY ANALYSIS

In this section, we analyzed the security of the proposed scheme and shown that our scheme is secure against the following well-known attacks. The security of our proposed authentication scheme is based on the secure hash function and the CRT. In the following steps, we analyzed the security of the proposed scheme to verify that the specified security requirements [3] are fulfilled.

a) Resistance to user anonymity attack

Suppose that the attacker intercepted U_{is} , authentication messages. Then, the adversary cannot retrieve any static parameter from these messages, due to the CRT, Hence, the proposed scheme can preserve user anonymity.

b) Resistance to offine password guessing attack

Suppose that a malicious legitimate attacker user U_a has got U_{iS} , smart card, and the secret information $[H(.),N_i T$ and R_x can also be revealed under our assumption of the non-tamper resistant smart card. Even after gathering this information, the attacker has to at least guess both ID_i and PW_i , correctly at the same time, because it has been demonstrated that our scheme can provide identity protection. It is impossible to guess these two parameters correctly at the same time, and thus the proposed scheme can resist offine password guessing attack with smart card security breach.

c) Resistance to stolen verifier attack

In the proposed scheme no sensitive verifiers corresponding to the users are maintained by S. Therefore, the proposed scheme is free from the stolen verifier attack.

d) Resistance to user impersonation attack

As VID_i and N_i are protected by secure oneway hash function, any modification to these parameters of the legitimate user U_{iS} , will be detected by the server S. Because the attacker has no way of obtaining the values of $ID_i PW_i$ and N_i cor-responding to user U_i he/she cannot fabricate the validVID_i and Ni, Therefore, the proposed scheme is secure against user impersonation attack.

e) Resistance to server masquerading attack

In the proposed scheme, a malicious server S * cannot compute the correct mes- $sageM_2{=}H(VID_i \| R_x$ without knowing U_{iS} validVID_i and R, S* has to break

the secure one-way hash function to retrieve $ID_i PW_i$ and R_x from $H(ID_i || PW_i || R_x)$. Therefore, the proposed scheme is free from server masquerading attack.

f) Resistance to replay attack

Our scheme can withstand replay attack because the authenticity of authentcation messages M_1 is verified by checking the time variable T.

g) Resistance to parallel session attack

If an adversary masquerade as legitimate user $U_{\dot{\imath}}$ by replaying a previously intercepted authentication message. The attacker cannot compute valid T because he does not know the values of $M_{i}\!=\!(ID_{i}\|VID_{i}\|R_{x}\|T)^{2}$ mod n corresponding to user $U_{\dot{\imath}}$ Therefore, the resistance to parallel session attack can be guaranteed in our scheme.

h) Resistance to mutual authentication

In our scheme user U_i computes $M_2^*=H(VID_i||R_x$ and veri_ed with received

 M_2 . If it hold, U_i authenticate the server S veri_cation successfully and uses $S_k=H(VID_i||R_x||$ Tshared session key with S for future communications.

) Resistance to forward secrecy

Based on the dificulty of the one-way hash algorithm, any previously generated session keys cannot be revealed without knowledge of the $VID_i R_x$ and T. As a result our scheme provides the property of forward secrecy.

VI. COMPUTATIONAL COST ANALYSIS

In this scheme we have taken 1.0 unit average run time for a single one-way secure hash function operation. The proposed scheme requires lower computation overhead with comparison to other schemes, which is shown in the Table 6 and the Figure 1.

Computational overhead/Scheme		\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5	Our Sch.
Computation overhead in the registration phase	$5\mathrm{Th}$	$5\mathrm{Th}$	$3\mathrm{Th}$	$3\mathrm{Th}$	$2\mathrm{Th}$	2Th
Execution overhead in the registration phase	5.0	5.0	3.0	3.0	2.0	2.0
Computation overhead in the login phase	$7\mathrm{Th}$	$3\mathrm{Th}$	$2\mathrm{Th}$	$2\mathrm{Th}$	$2\mathrm{Th}$	2Th
Execution overhead in the login phase	7.0	3.0	2.0	2.0	2.0	2.0
Computation overhead in the authentication phase	$11 \mathrm{Th}$	$9\mathrm{Th}$	$5\mathrm{Th}$	$5\mathrm{Th}$	$5\mathrm{Th}$	$5\mathrm{Th}$
Execution overhead in the authentication phase	11.0	9.0	5.0	5.0	5.0	5.0
Total execution overhead	23.0	17.0	10.0	10.0	9.0	9.0

Table 6 : Computational cost analysis

Schemes:A1: Mishra et al A2:Hao et al A3:Lee et al A4:Wen et al A5:Wang et al

Figure 1 : Comparison of computational cost

VII. Conclusion

Wang et al.s scheme was proposed for resolving security issues presented in pre-vious work of [8]. However, we have discovered some security aws in their scheme making it vulnerable to various attacks such as impersonation, server spoofing and denial of service attack. Moreover, the scheme cannot withstand password change aws. As a remedy to the aforementioned weaknesses, we have presented an enhanced scheme, which overcome the vulnerabilities of [15] and [1] scheme.

References Références Referencias

 R. Mart'nez-Pel_aez, F. Rico-Novella, Weaknesses of an eficient and secure dynamic ID-based remote user authentication scheme, Procedia Technology 3 (2012) 351{353. doi:10.1016/j.protcy.2012.03.038. URLhttp://linkinghub.elsevier.com/retrieve/pii/ S22 12017312002678

- J. D. Y. Y. Wang, J.Y. Liu, F.X. Xiao, A more eficient and secure dynamic ID-based remote user authentication scheme, Computer Communications 32 (2009) 583{585.
- C. S. Tsai, C. C. Lee, M. S. Hwang, Password authentication schemes: Current status and key issues, in: International Journal of Network Security, Vol. 3, IEEE, 2006, pp. 101{115. doi:10.1109/ ICM2CS. 2009.5397977.URL http://ieeexplore .ieee.org/lpdocs/epic03/wrapper.htm?arnumber=53 97977
- L. Lamport, Password authentication with insecure communication, Communications of the ACM 24 (11) (1981) 770{772. doi:10.1145/358790.358797. URLhttp:// portal.acm.org/ citation.cfm? doid= 358790.358797

Year 2016

- P. G.M.J, J. van Leeuwen, Authentication : A Concise Survey, Computers & Security 5 (1986) 243{250. doi:0167 4048/86.
- 6. H.-M. Sun, An eficient remote use authentication scheme using smart cards (2000). doi:10.1109/30.920446.
- M. Kumar, New remote user authentication scheme using smart cards, in: IEEE Transactions on Consumer Electronics, Vol. 50, 2004, pp. 597{600. doi:10.1109/TCE.2004.1309433.
- M. Das, V. Gulati, A. Saxena, A dynamic id-based remote user authentication scheme, IEEE Transactions on Consumer Electronics 50 (2) (2004) 629{631.arXiv:0410011,doi:10.1109/TCE.2004.1309 441.
- S.-W. Lee, H.-S. Kim, K.-Y. Yoo, Improvement of Chien et al.'s remote user authentication scheme using smart cards, Computer Standards & Interfaces27(2)(2005)doi:http://dx.doi.org/10.1016/j. csi.2004.02.002.URLhttp://www.sciencedirect.com/ science/ article /pii/ S0920548904000170
- Z.-Y. Wu, Y. Chung, F. Lai, T.-S. Chen, A Password-Based User Authentication Scheme for the Integrated EPR Information System, Journal of Medical Systems 36 (2) (2012) 631{638. doi:10.1007/s10916-010-9527-7.URL http://link .springer.com/ 10.1007/s10916-010-9527-7
- C. C. Chang, S. J. Hwang, Cryptographic authentication of passwords, in: Security Technology, 1991. Proceedings. 25th Annual 1991 IEEE International Carnahan Conference on, 1991, pp. 126{130. doi:10.1109/CCST.1991.202203.
- 12. S.-M. Yen, Security of a one-time signature, Electronics Letters 33 (8) (1997) 677{679. doi:10.1049/el:19970460.
- Y. Lee, H. Yang, D. Won, Attacking and Improving on Lee and Chiu 's Authentication Scheme Using Smart Cards, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, Ch. Attacking, pp. 377{385.
- 14. Y.-C. Lee, Narn-Yih; Chiu, Improved remote authentication scheme with smart card, Computer Standards and Interfaces 27 (2) (2005) 177{180.
- Y.-P. Liao, S.-S. Wang, A secure dynamic ID based remote user authentication scheme for multi-server environment, Computer Standards & Interfaces 31 (1)(2009) 24{29. doi:10.1016/j.csi.2007.10.007. URL http://dx.doi.org/10.1016/j.csi.2007.10.007http://linki nghub.elsevier.com/retrieve/pii/S09205489070010 3

This page is intentionally left blank