6 research outputs found

    6th International Maar Conference-Abstracts

    Get PDF

    La topographie comme marqueur de la déformation de la lithosphère

    Get PDF
    L’objectif de ma recherche est de contribuer à la compréhension des processus géodynamiques àl’origine des chaînes de montagnes par l’étude des mouvements tectoniques. Ces derniers se décomposenten déplacements horizontaux qui décalent les rivières, et en déplacements verticaux de la topographie enréponse à un amincissement ou un épaississement de la lithosphère, ou encore en raison des mouvementsdans le manteau inférieur à l’origine de la topographie dynamique. Les déplacements verticaux de latopographie correspondent au surface uplift comme l’ont défini England et Molnar (1990), c'est-à-dire lerock uplift moins l’érosion. Dans les chaînes actives, le rock uplift est généré par la tectonique qui force lesrivières à inciser. Même si l’érosion dépend également du flux d’eau et qu’elle est donc modulée par leclimat, elle est surtout contrôlée par la tectonique. Je me suis jusqu’à présent intéressé à la dynamique dusurface uplift dans les chaînes, et à son influence sur le réseau de drainage et le remplissage des bassinssédimentaires

    Crustal and Upper Mantle Density Structure Beneath the Qinghai-Tibet Plateau and Surrounding Areas Derived from EGM2008 Geoid Anomalies

    No full text
    As the most active plateau on the Earth, the Qinghai-Tibet Plateau (TP) has a complex crust–mantle structure. Knowledge of the distribution of such a structure provides information for understanding the underlying geodynamic processes. We obtain a three-dimensional model of the density of the crust and the upper mantle beneath the TP and surrounding areas from height anomalies using the Earth Gravitational Model 2008 (EGM2008). We refine the estimated density in the model iteratively using an initial density contrast model. We confirm that the EGM2008 products can be used to constrain the crust–mantle density structures. Our major findings are: (1) At a depth of 300–400 km, high-D(ensity) anomalies terminate around the Jinsha River Suture (JRS) in the central TP, which suggests that the Indian Plate has reached across the Bangong Nujiang Suture (BNS) and almost reaches the JRS. (2) On the eastern TP, low-D(ensity) anomalies at a depth of 0–300 km and with high-D anomalies at 400–670 km further verified the current eastward subduction of the Indian Plate. The ongoing subduction process provides force that results in frequent earthquakes and volcanoes. (3) At a depth of 600 km, low-D anomalies inside the TP illustrate the presence of hot weak material beneath it, which contribute to the inward thrusting of external material

    Crustal and Upper Mantle Density Structure Beneath the Qinghai-Tibet Plateau and Surrounding Areas Derived from EGM2008 Geoid Anomalies

    No full text
    As the most active plateau on the Earth, the Qinghai-Tibet Plateau (TP) has a complex crust–mantle structure. Knowledge of the distribution of such a structure provides information for understanding the underlying geodynamic processes. We obtain a three-dimensional model of the density of the crust and the upper mantle beneath the TP and surrounding areas from height anomalies using the Earth Gravitational Model 2008 (EGM2008). We refine the estimated density in the model iteratively using an initial density contrast model. We confirm that the EGM2008 products can be used to constrain the crust–mantle density structures. Our major findings are: (1) At a depth of 300–400 km, high-D(ensity) anomalies terminate around the Jinsha River Suture (JRS) in the central TP, which suggests that the Indian Plate has reached across the Bangong Nujiang Suture (BNS) and almost reaches the JRS. (2) On the eastern TP, low-D(ensity) anomalies at a depth of 0–300 km and with high-D anomalies at 400–670 km further verified the current eastward subduction of the Indian Plate. The ongoing subduction process provides force that results in frequent earthquakes and volcanoes. (3) At a depth of 600 km, low-D anomalies inside the TP illustrate the presence of hot weak material beneath it, which contribute to the inward thrusting of external material
    corecore