1,932 research outputs found

    Crowdsourcing a Word-Emotion Association Lexicon

    Full text link
    Even though considerable attention has been given to the polarity of words (positive and negative) and the creation of large polarity lexicons, research in emotion analysis has had to rely on limited and small emotion lexicons. In this paper we show how the combined strength and wisdom of the crowds can be used to generate a large, high-quality, word-emotion and word-polarity association lexicon quickly and inexpensively. We enumerate the challenges in emotion annotation in a crowdsourcing scenario and propose solutions to address them. Most notably, in addition to questions about emotions associated with terms, we show how the inclusion of a word choice question can discourage malicious data entry, help identify instances where the annotator may not be familiar with the target term (allowing us to reject such annotations), and help obtain annotations at sense level (rather than at word level). We conducted experiments on how to formulate the emotion-annotation questions, and show that asking if a term is associated with an emotion leads to markedly higher inter-annotator agreement than that obtained by asking if a term evokes an emotion

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    BeFaced: A casual game to crowdsource facial expressions in the wild

    Full text link
    Creating good quality image databases for affective computing systems is key to most computer vision research, but is unfortunately costly and time-consuming. This paper describes BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions to advance facial expression analysis. BeFaced uses state-of-the-art facial expression tracking technology with dynamic difficulty adjustment to keep the player engaged and hence obtain a large and varied face dataset. CHI attendees will be able to experience a novel game interface that uses the iPad's front camera to track and capture facial expressions as the primary player input, and also investigate how the game design in general enables massive crowdsourcing in an extensible manner

    Learning facial-expression models with crowdsourcing

    Get PDF
    The computational power is increasing day by day. Despite that, there are some tasks that are still difficult or even impossible for a computer to perform. For example, while identifying a facial expression is easy for a human, for a computer it is an area in development. To tackle this and similar issues, crowdsourcing has grown as a way to use human computation in a large scale. Crowdsourcing is a novel approach to collect labels in a fast and cheap manner, by sourcing the labels from the crowds. However, these labels lack reliability since annotators are not guaranteed to have any expertise in the field. This fact has led to a new research area where we must create or adapt annotation models to handle these weaklylabeled data. Current techniques explore the annotators’ expertise and the task difficulty as variables that influences labels’ correction. Other specific aspects are also considered by noisy-labels analysis techniques. The main contribution of this thesis is the process to collect reliable crowdsourcing labels for a facial expressions dataset. This process consists in two steps: first, we design our crowdsourcing tasks to collect annotators labels; next, we infer the true label from the collected labels by applying state-of-art crowdsourcing algorithms. At the same time, a facial expression dataset is created, containing 40.000 images and respective labels. At the end, we publish the resulting dataset

    A game to crowdsource data for affective computing

    Full text link
    This game submission describes BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions to advance affective computing. BeFaced uses state-of-theart facial expression tracking technology with dynamic difficulty adjustment to keep the player engaged and hence obtain a large and varied face dataset. FDG attendees will experience a novel affective game input interface and also investigate how the game design enables massive crowdsourcing in an extensible manner

    Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions

    Full text link
    A person's face discloses important information about their affective state. Although there has been extensive research on recognition of facial expressions, the performance of existing approaches is challenged by facial occlusions. Facial occlusions are often treated as noise and discarded in recognition of affective states. However, hand over face occlusions can provide additional information for recognition of some affective states such as curiosity, frustration and boredom. One of the reasons that this problem has not gained attention is the lack of naturalistic occluded faces that contain hand over face occlusions as well as other types of occlusions. Traditional approaches for obtaining affective data are time demanding and expensive, which limits researchers in affective computing to work on small datasets. This limitation affects the generalizability of models and deprives researchers from taking advantage of recent advances in deep learning that have shown great success in many fields but require large volumes of data. In this paper, we first introduce a novel framework for synthesizing naturalistic facial occlusions from an initial dataset of non-occluded faces and separate images of hands, reducing the costly process of data collection and annotation. We then propose a model for facial occlusion type recognition to differentiate between hand over face occlusions and other types of occlusions such as scarves, hair, glasses and objects. Finally, we present a model to localize hand over face occlusions and identify the occluded regions of the face.Comment: Accepted to International Conference on Affective Computing and Intelligent Interaction (ACII), 201
    • 

    corecore