3,315 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    An Overview of Schema Theory

    Full text link
    The purpose of this paper is to give an introduction to the field of Schema Theory written by a mathematician and for mathematicians. In particular, we endeavor to to highlight areas of the field which might be of interest to a mathematician, to point out some related open problems, and to suggest some large-scale projects. Schema theory seeks to give a theoretical justification for the efficacy of the field of genetic algorithms, so readers who have studied genetic algorithms stand to gain the most from this paper. However, nothing beyond basic probability theory is assumed of the reader, and for this reason we write in a fairly informal style. Because the mathematics behind the theorems in schema theory is relatively elementary, we focus more on the motivation and philosophy. Many of these results have been proven elsewhere, so this paper is designed to serve a primarily expository role. We attempt to cast known results in a new light, which makes the suggested future directions natural. This involves devoting a substantial amount of time to the history of the field. We hope that this exposition will entice some mathematicians to do research in this area, that it will serve as a road map for researchers new to the field, and that it will help explain how schema theory developed. Furthermore, we hope that the results collected in this document will serve as a useful reference. Finally, as far as the author knows, the questions raised in the final section are new.Comment: 27 pages. Originally written in 2009 and hosted on my website, I've decided to put it on the arXiv as a more permanent home. The paper is primarily expository, so I don't really know where to submit it, but perhaps one day I will find an appropriate journa

    The influence of mutation on population dynamics in multiobjective genetic programming

    Get PDF
    Using multiobjective genetic programming with a complexity objective to overcome tree bloat is usually very successful but can sometimes lead to undesirable collapse of the population to all single-node trees. In this paper we report a detailed examination of why and when collapse occurs. We have used different types of crossover and mutation operators (depth-fair and sub-tree), different evolutionary approaches (generational and steady-state), and different datasets (6-parity Boolean and a range of benchmark machine learning problems) to strengthen our conclusion. We conclude that mutation has a vital role in preventing population collapse by counterbalancing parsimony pressure and preserving population diversity. Also, mutation controls the size of the generated individuals which tends to dominate the time needed for fitness evaluation and therefore the whole evolutionary process. Further, the average size of the individuals in a GP population depends on the evolutionary approach employed. We also demonstrate that mutation has a wider role than merely culling single-node individuals from the population; even within a diversity-preserving algorithm such as SPEA2 mutation has a role in preserving diversity

    CSM-365 - Using schema theory to explore interactions of multiple operators

    Get PDF
    In the last two years the schema theory for Genetic Programming (GP) has been applied to the problem of understanding the length biases of a variety of crossover and mutation operators on variable length linear structures. In these initial papers, operators were studied in isolation. In practice, however, they are typically used in various combinations, and in this paper we present the first schema theory analysis of the complex interactions of multiple operators. In particular we apply the schema theory to the use of standard subtree crossover, full mutation, and grow mutation (in varying proportions) to variable length linear structures in the one-then-zeros problem. We then show how the results can be used to guide choices about the relative proportion of these operators in order to achieve certain structural goals during a run

    AN INVESTIGATION OF EVOLUTIONARY COMPUTING IN SYSTEMS IDENTIFICATION FOR PRELIMINARY DESIGN

    Get PDF
    This research investigates the integration of evolutionary techniques for symbolic regression. In particular the genetic programming paradigm is used together with other evolutionary computational techniques to develop novel approaches to the improvement of areas of simple preliminary design software using empirical data sets. It is shown that within this problem domain, conventional genetic programming suffers from several limitations, which are overcome by the introduction of an improved genetic programming strategy based on node complexity values, and utilising a steady state algorithm with subpopulations. A further extension to the new technique is introduced which incorporates a genetic algorithm to aid the search within continuous problem spaces, increasing the robustness of the new method. The work presented here represents an advance in the Geld of genetic programming for symbolic regression with significant improvements over the conventional genetic programming approach. Such improvement is illustrated by extensive experimentation utilising both simple test functions and real-world design examples

    Intelligent feature selection for neural regression : techniques and applications

    Get PDF
    Feature Selection (FS) and regression are two important technique categories in Data Mining (DM). In general, DM refers to the analysis of observational datasets to extract useful information and to summarise the data so that it can be more understandable and be used more efficiently in terms of storage and processing. FS is the technique of selecting a subset of features that are relevant to the development of learning models. Regression is the process of modelling and identifying the possible relationships between groups of features (variables). Comparing with the conventional techniques, Intelligent System Techniques (ISTs) are usually favourable due to their flexible capabilities for handling real‐life problems and the tolerance to data imprecision, uncertainty, partial truth, etc. This thesis introduces a novel hybrid intelligent technique, namely Sensitive Genetic Neural Optimisation (SGNO), which is capable of reducing the dimensionality of a dataset by identifying the most important group of features. The capability of SGNO is evaluated with four practical applications in three research areas, including plant science, civil engineering and economics. SGNO is constructed using three key techniques, known as the core modules, including Genetic Algorithm (GA), Neural Network (NN) and Sensitivity Analysis (SA). The GA module controls the progress of the algorithm and employs the NN module as its fitness function. The SA module quantifies the importance of each available variable using the results generated in the GA module. The global sensitivity scores of the variables are used determine the importance of the variables. Variables of higher sensitivity scores are considered to be more important than the variables with lower sensitivity scores. After determining the variables’ importance, the performance of SGNO is evaluated using the NN module that takes various numbers of variables with the highest global sensitivity scores as the inputs. In addition, the symbolic relationship between a group of variables with the highest global sensitivity scores and the model output is discovered using the Multiple‐Branch Encoded Genetic Programming (MBE‐GP). A total of four datasets have been used to evaluate the performance of SGNO. These datasets involve the prediction of short‐term greenhouse tomato yield, prediction of longitudinal dispersion coefficients in natural rivers, prediction of wave overtopping at coastal structures and the modelling of relationship between the growth of industrial inputs and the growth of the gross industrial output. SGNO was applied to all these datasets to explore its effectiveness of reducing the dimensionality of the datasets. The performance of SGNO is benchmarked with four dimensionality reduction techniques, including Backward Feature Selection (BFS), Forward Feature Selection (FFS), Principal Component Analysis (PCA) and Genetic Neural Mathematical Method (GNMM). The applications of SGNO on these datasets showed that SGNO is capable of identifying the most important feature groups of in the datasets effectively and the general performance of SGNO is better than those benchmarking techniques. Furthermore, the symbolic relationships discovered using MBE‐GP can generate performance competitive to the performance of NN models in terms of regression accuracies

    Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) are rapidly becoming a critical military asset. In the future, advances in miniaturization are going to drive the development of insect size UAVs. New approaches to controlling these swarms are required. The goal of this research is to develop a controller to direct a swarm of UAVs in accomplishing a given mission. While previous efforts have largely been limited to a two-dimensional model, a three-dimensional model has been developed for this project. Models of UAV capabilities including sensors, actuators and communications are presented. Genetic programming uses the principles of Darwinian evolution to generate computer programs to solve problems. A genetic programming approach is used to evolve control programs for UAV swarms. Evolved controllers are compared with a hand-crafted solution using quantitative and qualitative methods. Visualization and statistical methods are used to analyze solutions. Results indicate that genetic programming is capable of producing effective solutions to multi-objective control problems
    corecore