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Abstract 

Feature	Selection	(FS)	and	regression	are	two	important	technique	categories	in	

Data	Mining	(DM).	In	general,	DM	refers	to	the	analysis	of	observational	datasets	

to	 extract	 useful	 information	 and	 to	 summarise	 the	data	 so	 that	 it	 can	be	more	

understandable	and	be	used	more	efficiently	in	terms	of	storage	and	processing.	

FS	 is	 the	 technique	 of	 selecting	 a	 subset	 of	 features	 that	 are	 relevant	 to	 the	

development	 of	 learning	 models.	 Regression	 is	 the	 process	 of	 modelling	 and	

identifying	 the	 possible	 relationships	 between	 groups	 of	 features	 (variables).	

Comparing	 with	 the	 conventional	 techniques,	 Intelligent	 System	 Techniques	

(ISTs)	are	usually	favourable	due	to	their	flexible	capabilities	for	handling	real‐life	

problems	 and	 the	 tolerance	 to	 data	 imprecision,	 uncertainty,	 partial	 truth,	 etc.	

This	 thesis	 introduces	 a	 novel	 hybrid	 intelligent	 technique,	 namely	 Sensitive	

Genetic	 Neural	 Optimisation	 (SGNO),	 which	 is	 capable	 of	 reducing	 the	

dimensionality	of	a	dataset	by	 identifying	 the	most	 important	group	of	 features.	

The	 capability	 of	 SGNO	 is	 evaluated	 with	 four	 practical	 applications	 in	 three	

research	areas,	including	plant	science,	civil	engineering	and	economics.		

	

SGNO	 is	 constructed	 using	 three	 key	 techniques,	 known	 as	 the	 core	 modules,	

including	Genetic	Algorithm	(GA),	Neural	Network	(NN)	and	Sensitivity	Analysis	

(SA).	The	GA	module	controls	the	progress	of	the	algorithm	and	employs	the	NN	

module	as	 its	 fitness	 function.	The	SA	module	quantifies	 the	 importance	of	each	

available	 variable	 using	 the	 results	 generated	 in	 the	 GA	 module.	 The	 global	

sensitivity	 scores	 of	 the	 variables	 are	 used	 determine	 the	 importance	 of	 the	

variables.	 Variables	 of	 higher	 sensitivity	 scores	 are	 considered	 to	 be	 more	
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important	than	the	variables	with	lower	sensitivity	scores.		After	determining	the	

variables’	importance,	the	performance	of	SGNO	is	evaluated	using	the	NN	module	

that	takes	various	numbers	of	variables	with	the	highest	global	sensitivity	scores	

as	the	inputs.	In	addition,	the	symbolic	relationship	between	a	group	of	variables	

with	 the	 highest	 global	 sensitivity	 scores	 and	 the	 model	 output	 is	 discovered	

using	the	Multiple‐Branch	Encoded	Genetic	Programming	(MBE‐GP).		

	

A	 total	 of	 four	 datasets	 have	 been	 used	 to	 evaluate	 the	 performance	 of	 SGNO.	

These	 datasets	 involve	 the	 prediction	 of	 short‐term	 greenhouse	 tomato	 yield,	

prediction	 of	 longitudinal	 dispersion	 coefficients	 in	 natural	 rivers,	 prediction	 of	

wave	overtopping	at	coastal	structures	and	the	modelling	of	relationship	between	

the	 growth	 of	 industrial	 inputs	 and	 the	 growth	 of	 the	 gross	 industrial	 output.	

SGNO	was	applied	to	all	these	datasets	to	explore	its	effectiveness	of	reducing	the	

dimensionality	 of	 the	 datasets.	 The	 performance	 of	 SGNO	 is	 benchmarked	with	

four	dimensionality	reduction	 techniques,	 including	Backward	Feature	Selection	

(BFS),	Forward	Feature	Selection	(FFS),	Principal	Component	Analysis	(PCA)	and	

Genetic	Neural	Mathematical	Method	(GNMM).	

	

The	 applications	 of	 SGNO	 on	 these	 datasets	 showed	 that	 SGNO	 is	 capable	 of	

identifying	 the	most	 important	 feature	 groups	of	 in	 the	datasets	 effectively	 and	

the	general	performance	of	SGNO	is	better	than	those	benchmarking	techniques.	

Furthermore,	 the	symbolic	 relationships	discovered	using	MBE‐GP	can	generate	

performance	competitive	to	the	performance	of	NN	models	in	terms	of	regression	

accuracies.		
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Abbreviations 

	

AI	 Artificial	Intelligence	

AN	 Artificial	Neuron	

ANN	 Artificial	Neural	Network	

BNS	 Biological	Neural	System	

BFS	 Backward	Feature	Selection	

CI	 Computation	Intelligence	

DM	 Data	Mining	

EA	 Evolutionary	Algorithm	

EC	 Evolutionary	Computation	

EP	 Evolutionary	Programming	

FD	 Feature	Derivation	

FE	 Feature	Extraction	

FFBP	 Feed	Forward	Back	Propagation	

FFS	 Forward	Feature	Selection	

FLS	 Fuzzy	Logic	System	

FNN	 Forward	Neural	Network	

FS	 Feature	Selection	

FST	 Fuzzy	System	Technique	

GA	 Genetic	Algorithm	

GNMM	 Genetic	Neural	Mathematical	Method	

GP	 Genetic	Programming	

IST	 Intelligent	System	Technique	

KD	 Knowledge	Discovery	

MBE	 Multi‐Branch	Encoding	

MBE‐GP	 Multi‐Branch	Encoding	Genetic	Programming	

MCS	 Monte	Carlo	Simulation	

MLP	 Multi‐Layer	Perceptron	

MSE	 Mean	Squared	Error	

NN	 Neural	Network	
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PC	 Principal	Component	

PCA	 Principal	Component	Analysis	

RBF	 Radial	Basis	Function	

RBFN	 Radial	Basis	Function	Network	

RMSE	 Root	Mean	Squared	Error	

RNN	 Recurrent	Neural	Network	

SA	 Sensitivity	Analysis	

SC	 Soft	Computation	

SFS	 Sequential	Feature	Selection	

SGNO	 Sensitive	Genetic	Neural	Optimisation	

SOM	 Self	Organising	Map	

TDNN	 Time‐Delay	Neural	Network	

VPD	 Vapour	Pressure	Deficit	

WHRI	 Warwick	Horticulture	Research	International	
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CHAPTER 1  
 

Introduction 
	
	

1.1 Overview 

The	modern	world	is	expending	at	an	unprecedented	speed	from	the	physical	into	

the	virtual.	Rapid	advances	 in	 communication	and	 storage	 technology	make	 the	

collection	and	distribution	of	data	(information)	more	and	more	mandatory	and	

convenient.	Along	with	the	improvements	in	data	collection,	the	capacity	of	data	

grows	 larger	 and	 the	 dimensionality	 of	 data	 grows	 higher.	 However,	 our	

understanding	 of	 the	 corresponding	 data	 and	 the	 discovery	 of	 valuable	

knowledge	 hidden	 in	 such	 large	 amounts	 of	 data	 has	 been	 growing	 at	 a	 much	

lower	rate.	Without	effective	data	access/extraction	and	knowledge	explanation,	

this	rapid	expansion	in	the	amount	of	data	will	not	become	a	useful	asset	(Liu	and	

Motoda,	2008;	Pappa	and	Freitas,	2010).		

	

Data	mining	(DM)	is	a	relatively	new	term	proposed	in	recent	decades,	though	the	

tasks	of	data	mining,	such	as	regression	and	classification,	have	existed	for	a	much	

longer	 time.	Generally	 speaking,	DM	refers	 to	 the	 analysis	of	data	 to	 reveal	 any	

hidden	relationships	and	construct	abstract	knowledge,	so	that	the	data	can	be	re‐

expressed	in	ways	that	are	more	understandable	and	useful	to	the	user	(Hand	et	

al.,	2001).		DM	covers	a	broad	range	of	techniques	and	is	being	used	to	analyse	a	

broad	 variety	 of	 data.	 Commonly	 used	 DM	 techniques	 include	 dimension	

reduction,	 regression	 modelling,	 model	 building	 and	 evolutionary	 algorithms	
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(Larose,	 2006).	 Feature	 selection	 (FS)	 and	 regression	 are	 two	 important	

techniques	in	DM.	FS	is	designed	to	extract	the	group	of	features/variables	of	the	

highest	relevance	 from	the	entire	dataset	and	thus	reduce	 the	dimensionality	of	

the	original	dataset	and	regression	aims	to	discover	any	relationship	which	may	

exist	in	the	data.		

	

1.2 Tasks and Procedures 

There	 are	 different	 ways	 to	 categorise	 DM	 techniques.	 For	 example,	 Tan,	

Steinbach	 and	 Kumar	 (2005)	 divide	 DM	 into	 two	 categories	 based	 on	 their	

applications,	 which	 are	 descriptive	 tasks	 and	 predictive	 tasks;	 while	 Hand,	

Mannila	and	Smyth	(2001)	suggested	that	there	should	be	more	groups,	such	as	

data	 exploration,	 pattern	 discovery,	 rule	 extraction,	 etc.	 Wang	 and	 Fu	 (2005)	

categorise	DM	 techniques	 into	 three	groups	based	on	 their	 activities,	which	are	

dimensionality	 reduction,	 classification	 and	 clustering,	 and	 rule	 extraction.	

However,	 their	 categories	 do	 not	 cover	 data	 regression.	 This	 thesis	 adopts	 the	

categories	suggested	by	Wang	and	Fu	(2005)	together	with	regression	as	a	new	

category.		

	

Dimensionality	 reduction	 generally	 involves	 FS	 and	 Feature	 Extraction	 (FE).	 FE	

generates	new	dataset	by	deriving	new	features	(less	than	the	amount	of	original	

ones)	to	reduce	the	amount	of	data	and	thus	increase	the	computational	efficiency.	

Extensive	 efforts	 have	 been	 put	 into	 FS	 research	 in	 recent	 years.	 One	 of	 the	

fundamental	motivations	of	FS	is	the	curse	of	dimensionality	in	data.	The	number	

of	features	is	the	key	factor	that	determines	the	complexity	of	the	collected	data.	
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The	more	features,	the	greater	the	complexity.	In	general,	a	linear	increase	in	the	

number	of	features	may	lead	to	an	exponential	increase	in	the	complexity	(Pappa	

and	 Freitas,	 2010).	 Commonly	 used	 dimensionality	 reduction	 techniques	 are	

Principal	 Component	 Analysis	 (PCA),	 Genetic	 Algorithms	 (GAs)	 and	 Sequential	

Feature	Selection	(SFS).		

	

Classification	 and	 clustering	 are	 the	 techniques	 of	 close	 relationships.	 The	

purpose	of	 clustering	 is	 to	 split	 data	 into	various	groups,	where	 the	data	 in	 the	

same	 group	 are	 of	 similarity	 or	 close	 relationship.	 Data	 classification	 takes	 the	

process	 one	 step	 further,	 it	 builds	 a	 model	 which	 can	 then	 be	 used	 to	 classify	

unseen	data	 instances	 (Larose,	2006).	Rule	extraction	 is	usually	 connected	with	

classification	 and	 clustering	 and	 aims	 to	 present	 data	 in	 such	 a	 way	 that	

interpretations	are	easily	understandable	and	decisions	can	be	made	based	on	the	

knowledge	 obtained	 from	 the	 data	 (Wang	 and	 Fu,	 2005).	 Regression	 is	 the	

technique	that	discovers	the	relationship	between	the	data	fields.	In	regression,	a	

group	of	data	is	used	as	the	regression	inputs	and	the	residual	data	is	used	as	the	

target.	The	job	of	regression	is	to	identify	the	relationship	between	the	inputs	and	

the	target.	Figure	1.1	illustrates	the	general	DM	procedures.	
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Figure	1.1:	General	procedures	in	DM	(adapted	from	Kamath,	2000)		

	

As	 illustrated	 in	 figure	1.1,	 a	 complete	process	 that	 transforms	 the	original	 raw	

data	 into	comprehensive	presentation	or	knowledge	 involves	 three	major	steps,	

which	 are	 data	 preprocessing,	 pattern	 recognition	 and	 result	 interpretation.	

These	major	steps	can	be	further	split	into	minor	processes,	which	are	explained	

briefly	below	(Venugopal	et	al.,	2009):	

 Data	 preprocessing	 is	 usually	 the	 first	 in	 data	 processing,	 it	 is	 generally	

time	consuming,	but	critical	as	it	determines	the	quality	of	the	data	subset	

extracted/converted	from	the	original	data	for	further	processing.	The	key	

techniques	in	data	preprocessing	are:	

o Data	cleaning.	This	step	aims	to	remove	noise,	 irrelevant	data,	and	

data	 fields	 that	 are	 not	 machine	 understandable,	 such	 as	 text	

comments	typed	in	along	with	the	numeric	measurements,	from	the	

collection.		
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o Data	condensation.	This	step	involves	combining	datasets	under	the	

topic	from	different	sources.	

o Normalisation	 is	 the	 rescaling	 of	 data.	 It	 brings	 data	 fields	 to	 a	

common	scale	and	makes	them	more	comparable.		

o FS	 and	 FE	 may	 be	 used	 interchangeably,	 but	 there	 are	 minor	

differences.	 They	 are	 both	 important	 dimensionality	 reduction	

techniques.	 FS	 generally	 refers	 to	 the	 selection	 of	 a	 group	 of	 data	

fields	from	the	original	data	without	modifying	the	contents.	FE,	on	

the	other	hand,	may	refer	to	not	only	what	FS	can	perform,	but	also	

the	extraction	(with	modification)	of	 the	key	 information	 from	the	

original	data.	To	sum	up,	 the	result	of	FS	 is	always	a	subset	of	 the	

original	data,	while	the	result	of	FE	is	a	new	dataset.		

o Data	transformation	is	the	step	to	reorganise	the	preprocessed	data	

into	 the	 forms	 that	 are	 acceptable	 by	 the	 further	

procedures/techniques.	

 Pattern	 recognition	 is	 the	most	 important	 procedure	 in	 DM.	 It	 generally	

concerns	 building	 abstract	models	 that	 can	 determine	 patterns	 from	 the	

observed	data	and	 the	models	will	be	used	 to	 induce	knowledge.	Models	

are	 simply	 computer	 algorithms;	 commonly	 used	 models	 include	

classification,	clustering	and	regression.		

 Result	 interpretation.	 In	 this	step,	comprehensive	knowledge	 is	extracted	

from	the	proposed	models	in	the	pattern	recognition	step	and	is	presented	

to	the	end	user	in	visualised	ways	or	symbolic	expressions.	

	



Introduction	

20	
	

1.3 Intelligent System Techniques (ISTs) 

In	the	modern	development	of	DM	techniques,	 ISTs	have	drawn	the	attention	of	

many	researchers.	More	and	more	IST	systems	have	been	developed	to	assist	DM.	

They	 have	 become	 an	 important	 group	 of	 techniques	 in	 DM	 (Karray	 and	 Silva,	

2005;	 Mitra	 et	 al.,	 2002).	 Commonly	 used	 IST	 systems	 in	 DM	 include	 Artificial	

Neural	 Networks	 (ANNs),	 Evolutionary	 Algorithm	 (EAs)	 and	 Fuzzy	 System	

Techniques	 (FSTs).	 These	 techniques	 have	 been	 successfully	 applied	 in	 DM,	

especially	 in	the	fields	of	dimensionality	reduction,	classification,	regression	and	

rule	extraction	(Ruan	et	al.,	2005;	Sumathi	and	Sivanandam,	2006;	Venugopal	et	

al.,	2009).		

	

The	term	IST	is	generally	used	interchangeably	with	the	terms	Soft	Computing	(SC)	

and	 Computational	 Intelligence	 (CI).	 ISTs	 are	 usually	 favourable	 to	 solve	

problems	 due	 to	 their	 flexible	 information	 processing	 capabilities	 for	 handling	

real‐life	problems.	They	differ	from	the	conventional	techniques	in	that	they	are	

tolerant	 to	 data	 imprecision,	 uncertainty,	 approximate	 reasoning,	 and	 partial	

truth	(Mitra	et	al.,	2002;	Venugopal	et	al.,	2009).	Fuzzy	sets	in	FST	can	provide	a	

natural	 framework	 in	 dealing	 with	 uncertainties;	 ANNs	 are	 widely	 used	 for	

classification,	 rule	 generation	 and	 regression.	 GAs	 are	 generally	 involved	 in	

various	optimisation	and	search	applications,	such	as	finding	the	global	minimum	

(Mitra	 et	 al.,	 2002).	 These	 techniques,	 ANNs,	 GAs	 and	 FST,	 are	 generally	

considered	 as	 the	 fundamental	 components	 of	 IST.	 Many	 researchers	 have	

attempted	 to	 develop	 hybrid	 ISTs	 by	 using	 these	 fundamental	 components	
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cooperatively	rather	than	exclusively	and	competitively	to	obtain	better	efficiency	

and	robustness	(Harris	et	al.,	2002;	Mitra	et	al.,	2002;	Yang,	2010).		

	

1.4 Research Objectives 

The	 overall	 objective	 of	 this	 thesis	 is	 to	 develop	 a	 general	 purpose	 IST	 system	

which	 can	 perform	 FS	 effectively	 to	 reduce	 the	 dimensionality	 of	 the	 original	

dataset	while	maintaining	flexible	amounts	of	information	carried	by	the	original	

dataset.	 Along	 with	 the	 discovery	 of	 effective	 features,	 regression	 models	 are	

constructed	to	determine	the	relationship	between	the	selected	features	and	the	

target	 data.	 In	 addition,	 symbolic	 expressions	 (symbolic	 rules)	 between	 the	

features	and	the	target	data	are	discovered.	

	

Apart	from	the	theoretical	development	of	the	IST	system,	this	thesis	also	aims	to	

explore	the	possible	applications	and	limitations	of	the	SGNO	and	the	associated	

techniques	 in	 plant	 science,	 civil	 engineering	 and	 economics.	 In	 addition,	 the	

thesis	also	conducts	benchmark	studies	between	the	SGNO	and	several	other	FS	

techniques	to	test	the	performance	of	the	SGNO.	

	

The	unique	contributions	of	this	thesis	are	summarised	below:	

 Developing	 a	 general	 purpose	 hybrid	 IST	 method,	 the	 Sensitive	 Genetic	

Neural	Optimisation	(SGNO),	which	ranks	the	features	in	a	dataset	in	terms	

of	their	importance	for	creating	mathematical	models	of	the	dataset.	

 Building	 mathematical	 models	 using	 ANNs	 to	 discover	 the	 relationships	

between	input	features	and	output	features	in	datasets.	
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 Discovering	and	expressing	 the	relationships	between	 input	 features	and	

output	features	using	mathematical	operators,	such	as	plus,	minus,	times,	

etc.	

 Demonstrating	 the	 application	 of	 SGNO	 in	 various	 areas,	 including	

horticulture,	engineering	and	economics.		

	

1.5 Thesis Outline 

The	current	chapter	presents	a	brief	overview	of	DM	concepts,	 including	FS	and	

regression,	 and	 the	 general	 applications	 of	 ISTs	 in	 the	 field	 of	 modern	 DM.	 In	

addition,	the	general	research	objective	and	the	overall	structure	of	the	thesis	are	

also	discussed	in	this	chapter.	

	

Chapter	2	briefly	reviews	some	fundamental	 IST	 techniques	 that	are	relevant	 to	

the	 development	 of	 the	 proposed	 hybrid	 technique,	 including	 ANNs,	 GAs	 and	

Genetic	 Programming	 (GP).	 In	 addition,	 another	 hybrid	 system,	 namely	 the	

Genetic	 Neural	 Mathematical	 Method	 (GNMM)	 is	 also	 reviewed	 in	 this	 chapter	

and	 will	 be	 used	 as	 one	 of	 the	 benchmarking	 techniques	 in	 the	 application	

chapters.	

	

Chapter	3	explains	the	implementation	of	the	proposed	SGNO	technique	in	detail	

and	 the	 construction	 of	 a	 GP	 based	 symbolic	 regression	 system,	which	 aims	 to	

extract	 symbolic	 rules	 from	 the	 result	 generated	 by	 SGNO.	 In	 addition,	 the	

implementations	of	the	benchmarking	techniques	are	discussed	in	this	chapter	as	

well.	
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Chapter	 4	 demonstrates	 the	 application	 of	 SGNO	 in	 horticulture	 concerning	 the	

short	term	prediction	of	the	weekly	greenhouse	tomato	yield.	The	performance	of	

SGNO	is	benchmarked	with	several	FS	techniques.		

	

Chapter	 5	 illustrates	 an	 application	 of	 SGNO	 in	 engineering	 to	 predict	 the	

longitudinal	dispersion	coefficients	in	natural	streams.		

	

Chapter	 6	 presents	 another	 application	 of	 SGNO	 in	 engineering	 to	 model	 the	

relationship	 between	 the	 overtopping	 discharges	 and	 several	 structural	 and	

hydraulic	properties	of	coastal	structures.		

	

Chapter	7	demonstrates	 the	 feasibility	of	SGNO	to	produce	economic	models.	 In	

this	chapter,	SGNO	 is	used	 to	model	 the	relationship	between	 the	growth	of	 the	

industrial	inputs	and	the	growth	of	the	gross	production	output.	

	

Chapter	 8	 concludes	 the	 discoveries	 presented	 in	 the	 previous	 chapters	 and	

suggests	some	possible	directions	of	further	research.	
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CHAPTER 2 
	

Intelligent Systems Techniques 
	
	

2.1 Overview 

In	 the	 previous	 chapter,	 the	 general	 concept	 and	 procedures	 of	 DM	 were	

introduced	and	the	research	objectives	of	 the	thesis	were	outlined.	This	chapter	

provides	the	theoretical	background	of	some	widely	used	ISTs	that	are	relevant	to	

the	development	of	SGNO.	

	

The	term	‘intelligence’	is	difficult	to	define	as	different	people	may	have	different	

personal	definitions	for	the	term.		In	the	popular	sense,	superior	mental	ability	to	

interact	with	 the	 environment	 and	 solve	 problems	 is	 considered	 as	 the	 sign	 of	

intelligence.	Thus,	 ‘intelligence’	is	usually	defined	as	the	ability	to	learn	from	the	

external	 environment,	 evaluate,	 judge	 and	 apply	 the	 knowledge/experience	 to	

manipulate	 the	 environment.	 The	 general	 abilities	 that	 are	 referred	 to	 as	 the	

behaviours	of	intelligence	include	the	following	abilities	(Nilsson,	1998):	

 to	adapt	to	a	new	environment	

 to	acquire	knowledge	

 to	evaluate	and	judge	

 to	think	in	an	abstract	manner	

 to	think	productively	
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The	 term	 ‘Artificial	 Intelligence’	 (AI)	 is	 again	 difficult	 to	 define.	 However,	 it	 is	

understood	 to	be	broadly	 concerned	with	 the	 intelligent	behaviours	of	humans.	

The	intelligent	behaviours	include	learning,	reasoning,	communicating	and	acting	

in	external	environments.	 In	 the	aspect	of	engineering	and	computer	science,	AI	

generally	 focuses	on	 the	 concepts	and	 ideas	underlying	 the	design	of	 intelligent	

machines/systems.	 This	 chapter	 concentrates	 on	 several	 Intelligent	 System	

Techniques	(ISTs),	which	are	an	offshoot	of	AI.	The	main	paradigms	of	IST	include	

Artificial	 Neural	 Networks	 (ANNs),	 Evolutionary	 Computation	 (EC),	 Fuzzy	

Systems	(FS)	and	Swarm	Intelligence	(SI)	(Engelbrecht,	2007).	

	

The	following	sections	of	this	chapter	provide	the	basic	theoretical	background	of	

some	IST	techniques	 that	are	 the	key	components	of	SGNO,	 including	ANNs	and	

EC.	 These	 techniques	 have	 been	 applied	 successfully	 in	 a	 wide	 range	 of	

applications,	 including	 prediction,	 pattern	 recognition,	 feature	 extraction,	

optimisation,	etc.	

	

2.2 Artificial Neural Networks (ANNs) 

The	brain	is	one	of	the	most	important	and	complex	organisms	for	human	beings.	

It	 is	 well	 known	 that	 biological	 neural	 systems	 (BNSs)	 can	 perform	

extraordinarily	complex	tasks	and	are	capable	of	learning	over	time	(Berthold	and	

Hand,	2007;	Haykin,	1999).	The	implementation	of	ANNs	was	inspired	from	brain	

modelling	studies.	
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2.2.1 Biological Roots 

Neurons	are	the	biological	cells	that	enable	the	brain	to	perform	all	the	complex	

functions.	There	is	of	the	order	of	10‐500	billion	neurons	and	60	trillion	synapses	

in	the	human	cortex	performing	pattern	recognition,	perception,	body	movement	

control,	 etc.	 during	 daily	 life.	 Each	 of	 these	 biological	 neurons	 is	 connected	 to	

about	10	thousand	others	 in	highly	complex	manners	(Beale	and	Jackson,	1990;	

Parks	et	al.,	1998).	

	

	

Figure	2.1:	Basic	representation	of	a	biological	neuron	

	

Under	 the	 microscope,	 neurons	 appear	 to	 be	 of	 different	 shapes	 and	 sizes.	

However,	all	the	neurons	have	similar	basic	structure	and	the	different	regions	of	

the	neuron	have	specific	 functions.	Figure	2.1	 illustrates	 the	basic	structure	of	a	

biological	 neuron.	 The	 dendrites	 receive	 biological	 electrical	 signals	 from	 other	

neurons.	The	soma	integrates,	processes	these	incoming	signals,	and	then	conveys	

the	 resulting	 information	 to	 the	 terminals	 along	 the	 axon.	 At	 the	 terminals,	

chemical	 substances,	 which	 are	 known	 as	 neurotransmitters,	 are	 released	 to	

activate	the	communication	with	adjacent	neurons	(Richards	et	al.,	2007).	
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In	order	to	perform	specific	functions,	such	as	process	information	and	producing	

appropriate	 responses,	 individual	 neurons	must	 be	 connected	 to	 each	 other	 to	

form	large	networks.	The	connectivity	between	neurons	is	referred	as	a	synapse.	

Learning	 is	 thought	 to	 be	 achieved	 by	 modifying	 the	 strengths	 of	 effective	

couplings	 at	 synapses	 between	 neurons.	 The	 modification	 of	 couplings	 to	

reinforce	good	connections	 is	an	 important	 feature	of	ANNs	(Beale	and	 Jackson,	

1990;	Haken,	1996).	

	

2.2.2 Artificial Neurons (ANs) 

As	ANNs	reflect	simplified	abstract	mathematical	models	of	the	nervous	systems,	

the	smallest	part/unit	of	an	ANN	is	a	simple	arithmetic	processing	unit,	namely	an	

Artificial	Neuron	 (AN),	which	 is	 the	mathematical	model	 of	 a	 biological	 neuron.	

Each	AN	is	responsible	for	acquiring	information	from	one	or	more	input	signals	

and	 generating	 a	 single	 output	 signal.	 	 There	 are	 three	 basic	 elements	 in	 the	

neuronal	model,	which	are	listed	below:	

 A	set	of	connection	links	(inputs).	These	links	represent	the	connections	to	

other	neurons	and	receive	input	signals	from	those	neurons.	Each	of	these	

connection	links	is	characterised	by	a	weight	or	strength.	

 	A	 linear	 combiner	 or	 adder	 which	 sums	 the	 input	 signals	 weighted	 by	

their	corresponding	weights.	

 An	activation	 function	which	 limits	 the	amplitude	of	 the	output	signal	by	

mapping	 the	signal	generated	by	the	 linear	combiner	 to	a	signal	within	a	

certain	range.	The	activation	function	could	be	linear	or	non‐linear.			



Intelligent	System	Techniques	

30	
	

	

Figure	2.2:	Schematic	structure	of	an	AN	

	

Figure	 2.2	 illustrates	 the	 schematic	 structure	 of	 an	 AN	 (Engelbrecht,	 2007;	

Haykin,	1999).	Apart	from	the	three	basic	elements	described	above,	there	is	an	

externally	 applied	 bias,	which	 adjusts	 the	 net	 output	 of	 the	 linear	 combiner.	 In	

mathematical	terms,	the	function	of	an	AN	can	be	expressed	as	follows:	

∑ 																																																							(2.1)	

where	 xi	 represents	 the	 ith	 input	 signal	 from	 the	 connected	 neurons,	wi	 is	 the	

corresponding	 weight	 assigned	 to	 that	 neuron,	 b	 is	 the	 bias,	 f	 is	 the	 activation	

function	and	y	is	the	output	of	the	AN.		

	

2.2.2.1	Activation	Functions		

The	 activation	 function	 is	 a	 key	 element	 in	 the	 ANs	 as	 it	 characterises	 the	

behaviours	(linear,	non‐linear,	discrete,	etc.)	of	ANs.	There	exist	several	types	of	

activation	 functions.	 Four	 of	 the	 commonly	 used	 activation	 functions	 are	

illustrated	below	(Zhang,	2009).	

1. Linear	 function.	 This	 produces	 a	 linearly	 modulated	 output	 and	 the	

mathematical	expression	of	this	function	is:	
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																																																										(2.2)	

where	a	is	the	output,	λ	is	the	slope	of	the	function,	which	is	generally	set	

to	1,	and	n	is	the	input.	Figure	2.3(a)	illustrates	this	function.	

2. Step	function,	also	known	as	the	hard	limit	function.	This	is	a	binary	output	

function	producing	one	of	 the	two	scalar	output	values	depending	on	the	

value	of	the	threshold	θ.	The	mathematical	expression	of	the	function	is:	

	
	

																																													(2.3)	

where	 θ	 is	 the	 threshold	 value	 and	 a1	 and	 a2	 are	 the	 two	 scalar	 values.	

Usually,	 the	 binary	 output	would	 be	 either	 of	 the	 pairs	 (0,	 1)	 or	 (‐1,	 1).	

Figure	2.3(b)	illustrates	this	function.	

3. Sigmoid	 function.	 This	 function	 is	 one	 of	 the	 most	 commonly	 used	

activation	 functions,	 whose	 graph	 is	 s‐shaped.	 It	 is	 defined	 as	 a	 strictly	

increasing	function.	The	expression	is:	

																																																					(2.4)	

where	 λ	 is	 the	 slope	 parameter,	 which	 controls	 the	 steepness	 of	 the	

function.	Figure	2.3(c)	illustrates	this	function.	

4. Hyperbolic	tangent	function,	also	known	as	tangent	sigmoid	function.	The	

graph	of	this	 function	is	s‐shaped	and	the	output	of	the	function	is	 in	the	

range	(‐1,	1).	The	expression	of	the	function	is:	

	 1 																																			(2.5)	

where	λ	is	the	slope	parameter.	Figure	2.3(d)	illustrates	this	function.	
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Figure	2.3:	Activation	functions.	(a)	linear	function;	(b)	step	function;	(c)	

sigmoid	function;	(d)	hyperbolic	tangent	function.	

	

2.2.3 Fundamental Artificial Neural Networks 

Similar	to	biological	neural	networks,	ANs	have	to	be	connected	in	certain	ways	to	

perform	specific	tasks.	The	connected	groups	of	ANs	are	known	as	ANNs.	Each	AN	

in	 the	 ANN	 receives	 inputs	 from	 either	 the	 external	 environment	 or	 another	

connected	AN	and	generates	 the	global	output	of	 the	ANN	or	provides	an	 input	

signal	to	another	neuron.	Depending	on	the	structure	of	the	inter‐connections	and	

the	way	to	adjust	or	train	the	strengths	of	the	inter‐connection	between	the	ANs,	

ANNs	 can	 be	 classified	 into	 various	 categories	 as	 described	 in	 the	 following	

section.		
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2.2.3.1	Structural	Categorisation	

In	terms	of	their	structures,	ANNs	can	be	divided	into	three	categories,	which	are	

Feedforward	Neural	Networks	 (FNNs),	 Recurrent	Neural	Networks	 (RNNs)	 and	

Self‐Organising	Maps	(SOMs)	(Haykin,	1999;	Haykin,	2009).	

	

In	an	FNN,	the	neurons	are	grouped	into	various	 layers	and	the	connections	are	

based	on	the	neurons	in	different	layers.		Signals	flow	from	the	input	layer	to	the	

output	layer	through	various	numbers	of	layers,	known	as	the	hidden	layers.	The	

connections	 in	 FNNs	 are	 unidirectional.	 An	 FNN	 may	 be	 considered	 as	 a	

hierarchical	system,	in	which	the	input	layers	are	placed	at	the	bottom	layer,	the	

output	 layers	are	 the	 topmost	 layers,	and	 the	hidden	 layers	are	placed	between	

the	 input	 and	output	 layers.	 The	ANs	 are	 connected	 from	one	 layer	 to	 the	next	

layer	 above	 it	 and	 there	 is	 no	 connection	 between	 the	 ANs	 in	 the	 same	 layer.	

Figure	2.4	illustrates	the	structure	of	a	simple	multi‐layer	FNN.	

	

	

Figure	2.4:	A	simple	multi‐layer	FNN	
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Popular	FNNs	include	Multi‐Layer	Perceptrons	(MLPs)	and	Radial	Basis	Function	

Networks	(RBFNs).		MLPs	are	the	most	popular	category	of	ANNs	and	are	widely	

used	 in	various	applications.	They	have	been	applied	successfully	 to	solve	some	

difficult	and	diverse	problems	by	training	them	in	a	supervised	manner	(Haykin,	

1999;	Haykin,	2009),	in	which	the	expected	outcomes	are	provided	along	with	the	

inputs.	RBFNs	have	similar	structures	to	MLPs.	But	 instead	of	applying	linear	or	

sigmoid	activation	functions,	neurons	in	RBFNs	use	radial	basis	functions	(RBFs)	

as	their	activation	functions.	Typical	RBFs	include	the	Gaussian	function	and	the	

Multiquadratic	function	(Rao	and	Srinivas,	2003).	The	expression	of	the	Gaussian	

function	is:	

exp 0																																						(2.6)	

and	the	expression	of	the	multiquadratic	function	is:	

√ 0																																									(2.7)	

	

MLPs	 and	 RBFNs	 are	 examples	 of	 non‐linear	 layered	 feedforward	 neural	

networks	and	they	are	both	universal	approximators.		

	

In	 a	RNN,	 the	 connections	 to	 a	 layer	 of	 neurons	 are	not	 only	 from	 the	 adjacent	

layer	below,	but	also	from	some	ANs	from	the	same	layer	or	the	layers	above.	The	

connections	from	the	same	layer	or	the	layers	above	are	generally	called	feedback	

connections,	which	add	 the	ability	 to	 learn	 from	 the	 temporal	 characteristics	of	

the	input	signals	as	they	can	‘memorise’	the	previous	states	of	the	network	(Pham	

and	Liu,	1995).	Figure	2.5	illustrates	the	structure	of	a	simple	RNN.	
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Figure	2.5:	A	simple	RNN	

	

SOM	 is	 a	 feed	 forward	 neural	 network	 using	 unsupervised	 learning	 algorithm	

(Hassoun,	1995;	Kohonen,	2001).	 	 In	SOMs,	neurons	are	placed	at	 the	node	of	a	

lattice,	 which	 usually	 contains	 one	 or	 two	 dimensions.	 Figure	 2.6	 illustrates	 a	

simple	SOM	network.	Neurons	 in	SOMs	have	 two	different	 types	of	connections,	

which	are	forward	connections	and	lateral	connections.	The	forward	connections	

connect	 the	 neurons	 in	 the	 input	 layer	 to	 the	 neurons	 in	 the	 output	 layer.	 The	

lateral	connections	are	the	connections	between	the	neurons	in	the	output	layer.	

	

Figure	2.6:	A	simple	SOM	(adopted	from	Yang,	2010)	
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2.2.3.2	Learning	Algorithm	Categorisation	

As	the	ANNs	learn	from	the	external	environment,	there	are	two	types	of	learning	

algorithms	allowing	 them	to	adapt	 to	 the	environment:	 supervised	 learning	and	

unsupervised	 learning.	 In	 addition	 to	 these	 two	 learning	 algorithms,	 there	 is	 a	

third	 type,	 the	 reinforcement	 learning,	 which	 is	 a	 special	 form	 of	 supervised	

learning	(Basheer	and	Hajmeer,	2000;	Nilsson,	1998).		

	

Supervised	 learning,	 also	 known	 as	 associative	 learning,	 requires	 a	 train	 set	

consisting	 of	 an	 input	 vector	 and	 it	 corresponding	 output	 vector.	 The	 output	

vector	 is	 used	 to	 determine	 how	 well	 the	 network	 is	 trained	 to	 adapt	 to	 the	

environment	 and	 the	 strengths	 or	 weights	 of	 the	 inter‐neuron	 connections	 are	

adjusted	according	to	the	difference	between	the	provided	output	vector	and	the	

actual	 network	 output	 vector	 to	 reduce	 the	 overall	 error.	 Among	 the	 ANNs	

mentioned	 in	 the	 previous	 section,	 FNNs	 and	 RNNs	 use	 supervised	 learning	

algorithms.		

	

Unsupervised	 learning	 aims	 to	discover	patterns	or	 features	 in	 the	 input	data	

without	 ‘knowledge’	 from	 the	 environment.	 It	 does	 not	 require	 the	 expected	

output	vector	to	be	provided.	During	training,	only	the	input	vectors	are	passed	to	

the	neural	network	and	the	strengths	or	weights	of	the	inter‐neuron	connections	

are	adjusted	automatically	to	group	the	input	vectors	into	different	clusters.	The	

SOM	network	is	a	good	example	of	unsupervised	learning.		

	

Reinforcement	learning,	also	known	as	graded	training,	is	defined	as	learning	by	

trial‐and‐error	from	feedback	from	the	environment.	Instead	of	providing	desired	
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outputs,	 a	 reinforcement	 learning	 algorithm	 evaluates	 the	 goodness	 of	 the	

network	output	corresponding	to	a	given	input	rather	than	an	explicit	target	to	be	

replicated.	Depending	on	the	performance	of	the	network,	a	reward,	which	can	be	

a	positive	or	negative	 signal,	will	 be	 issued.	 The	 reward	 causes	 a	 change	 in	 the	

network	and	therefore	affects	the	future	performance	of	the	network.		

		

2.2.4 Applications and Advantages of ANNs 

It	 has	 been	 decades	 since	 the	 first	 introduction	 of	 ANNs.	 Thousands	 of	

researchers	have	put	 their	efforts	 into	 improving	 the	ANN	models	and	applying	

ANNs	to	various	applications.	Nowadays,	ANNs	have	been	shown	to	be	useful	in	a	

wide	 variety	 of	 practical	 applications	 and	 their	 potential	 is	 far	 from	 realisation.	

Some	common	applications	of	ANNs	include	modelling,	data	analysis,	forecasting	

and	 optimisation	 in	 areas	 such	 as	 speech	 recognition,	 pattern	 recognition	 and	

classification,	 image	 processing,	 and	 system	 control	 (Rao	 and	 Srinivas,	 2003;	

Taylor,	1995;	Taylor,	1996).	The	characteristics	or	advantages	of	ANNs	that	make	

them	superior	in	these	practical	applications	are	discussed	below:	

 Computational	 ability.	 It	 has	 been	 proved	 mathematically	 by	 Cybenko	

(1989)	that	MLPs	can	be	used	as	universal	function	approximators.	MLPs	

can	virtually	approximate	any	function	with	any	level	of	desired	accuracy	if	

there	are	sufficient	numbers	of	ANs	in	the	hidden	layer	and	the	amount	of	

available	data	points	is	sufficient.		

 Non‐linearity.	 Depending	 on	 the	 type	 of	 activation	 function	 used	 in	 the	

ANs,	 ANNs	 can	 behave	 in	 either	 linear	 or	 non‐linear	 ways.	 Non‐linear	

systems	 have	 inputs	 that	 are	 not	 proportional	 to	 the	 outputs.	 The	 non‐
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linearity	of	ANNs	allows	them	to	 learn	the	nonlinear	relationships	within	

the	training	data	directly.	Traditional	linear	models	are	simply	inadequate	

when	modelling	non‐linear	data.	

 Flexibility/adaptability.	 This	 is	 the	 key	 characteristic	 that	makes	ANNs	

‘intelligent’.	 ANNs	 can	 learn	 from	 the	 external	 environment	 by	 using	

examples,	which	are	represented	by	a	set	of	training	data.	ANNs	adapt	to	

the	 environment	 by	 automatically	 adjusting	 the	 internal	 parameters,	

which	are	the	strengths	or	weights	of	the	connections	between	ANs.	ANNs	

generalises	 ‘knowledge’	 to	 produce	 adequate	 responses	 to	 unknown	

situations	based	on	the	‘relationship’	discovered	in	the	previous	examples.	

 Parallel	processing.	Neurons	 in	the	ANN	are	 individual	processing	units	

and	are	typically	placed	in	parallel	structures.	The	computations	in	ANNs	

may	be	carried	out	 in	parallel	as	well	depending	on	 the	structures	of	 the	

ANNs.	 The	 parallel	 processing	 allows	 the	 computation	 to	 be	 performed	

more	rapidly	and	special	hardware	implementations	are	being	designed	to	

take	advantage	of	this	feature.	

 Robustness	and	fault	tolerance.	ANNs	are	noise‐insensitive	and	capable	

of	 handling	 incomplete	 data	 (Basheer	 and	 Hajmeer,	 2000).	 As	 ANNs	 are	

distributed	information	systems	and	each	AN	is	an	arithmetic	element,	the	

parallel	processing	ability	makes	ANNs	relatively	fault	tolerant.	The	failure	

of	 one	 or	 more	 ANs	 or	 connections	 in	 the	 network	 may	 degrade	 the	

performance	and	accuracy	of	 the	system	but	 it	does	not	break	 the	entire	

network	(Du	and	Swamy,	2006;	Li,	1994).	
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2.2.5 Disadvantages of ANNs 

Although	 ANNs	 are	 undoubtedly	 powerful	 tools	 for	many	 applications,	 they	 do	

have	some	possible	weaknesses	in	them.	

 ANNs	 do	 not	 produce	 explicit	models.	 ANNs	 are	 regarded	 as	 ‘black	 box’	

processing	tools.	Apart	from	defining	the	structure	of	an	ANN	and	perhaps	

the	initial	weights	of	the	connections,	there	is	no	other	activity	to	interact	

with	 the	 network	 than	 to	 feed	 it	 with	 the	 available	 data.	 In	 the	 general	

applications	of	ANNs,	no	 information	 is	available	 in	 the	 form	of	symbolic	

expressions	representing	the	behaviours	of	the	ANNs	and	the	relationship	

between	 the	 inputs	 and	 outputs.	 The	 network	 itself	 is	 the	 expression	 of	

such	a	relationship.		

 ANNs	 are	 generally	 lack	 the	 means	 to	 explain.	 It	 is	 usually	 difficult	 to	

justify	 the	correctness	of	a	result	as	 the	connection	strengths/weights	do	

not	have	obvious	interpretations.		

 There	is	no	structured	methodology	for	choosing	the	appropriate	network	

topology,	 determining	 effective	 initial	 internal	 parameters,	 training	 the	

neural	 network,	 and	 verifying	 the	 network.	 It	 is	 known	 that	 the	

performance	 of	 an	ANN	 is	 generally	 determined	 by	 a	 number	 of	 factors,	

including	number	of	network	layers,	number	of	neurons	in	each	layer,	the	

connections	topology,	the	type	of	activation	functions	of	each	neuron,	the	

training	 process,	 etc.	 The	 selection	 of	 these	 determinant	 parameters	 is	

another	research	area.	In	general,	developers	would	conduct	several	trials	

to	identify	an	appropriate	configuration	of	the	network	(Li,	1994;	Shriver,	

1988).	
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2.3 Evolutionary Computation (EC) 

EC	 is	 a	 key	 subfield	 of	 AI	 that	 may	 generally	 be	 used	 to	 solve	 combinational	

optimisation	 problems.	 The	 term	 ‘evolution’	 usually	 refers	 to	 the	 optimisation	

process	 that	 aims	 to	 improve	 the	 ability	 of	 a	 species	 or	 system	 to	 survive	 in	 a	

competitive	 environment.	 A	 French	 biologist,	 Jean‐Baptiste	 Lamarck	 (1744‐

1829),	defines	evolution	as	heredity,	which	is	the	inheritance	of	acquired	traits,	in	

his	theory	of	evolution.	His	main	idea	is	that	individuals	adapt	to	the	environment	

during	 their	 lifetimes	 and	 pass	 the	 traits	 that	 make	 them	 survive	 to	 their	

offspring.	 The	 offspring	 then	 continue	 to	 adapt.	 Charles	 Darwin	 (1809‐1882),	

whose	theory	of	natural	selection	became	the	foundation	of	biological	evolution,	

states	 in	 his	 theory	 of	 evolution	 that	 in	 a	 world	 of	 limited	 resources,	 each	

individual	has	to	compete	with	others	in	order	to	survive.	Those	individuals	with	

the	 best	 traits,	 which	 make	 them	 outstanding,	 are	 more	 likely	 to	 survive	 and	

reproduce,	and	those	traits	will	be	passed	on	to	their	offspring	(Affenzeller,	2009;	

Banzhaf,	1998;	Engelbrecht,	2007).		

	

EC	 represents	 a	 powerful	 search	 and	 optimisation	 system	 that	 employ	 the	

computational	 models	 of	 evolutionary	 processes,	 such	 as	 natural	 selection	 and	

reproduction,	 as	 the	 fundamental	 elements	 of	 the	 system.	 Evolutionary	

Algorithms	(EAs)	 is	a	subset	of	EC	and	generally	refer	to	 the	generic	population	

based	metaheuristic	optimisation	algorithms.	Generic	components	in	EAs	include	

an	 encoding	 method,	 a	 fitness	 function,	 an	 initialisation	 function,	 a	 selection	

function	and	a	reproduction	function.	The	functionalities	of	these	components	are	

(Affenzeller,	2009;	Rothlauf,	2006):	
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Encoding.	This	converts	the	potential	solutions	into	the	data	format	that	can	be	

interpreted	by	the	EA.	In	the	biological	world,	the	traits	of	individuals	are	stored	

in	 their	 chromosomes.	 Chromosomes	 are	 structures	 of	 compact	 intertwined	

molecules	 of	 DNA	 in	 the	 nucleus	 of	 organic	 cells.	 Each	 chromosome	 contains	 a	

large	number	of	genes,	which	are	the	units	of	heredity.	In	the	context	of	EA,	each	

individual	is	a	candidate	solution	to	an	optimisation	problem.	The	characteristics	

or	traits	of	an	individual	are	represented	by	a	chromosome	and	the	variables	that	

need	to	be	optimised	are	referred	as	genes,	the	fundamental	units	of	information.	

Fitness	function.	In	the	Darwinian	model	of	evolution,	individuals	with	the	best	

traits	 are	 more	 likely	 to	 survive	 and	 reproduce.	 The	 fitness	 function	 is	 a	

mathematical	 function	 that	 is	 used	 to	 evaluate	 all	 the	 potential	 solutions	

represented	 as	 chromosomes	 and	 determine	 the	 ability	 of	 each	 individual	 to	

survive.	Generally,	the	fitness	function	would	issue	a	quantitative	fitness	score	to	

each	 candidate	 to	 quantify	 how	well	 the	 candidate	 fits	 the	 environment,	 or	 its	

ability	to	survive.		

Initialisation.	As	EAs	are	stochastic	population‐based	search	algorithms,	each	EA	

contains	 a	 group	of	 candidate	 solutions,	 known	as	 a	population.	 Initialisation	 is	

the	first	step	in	the	EA	process	and	it	generates	the	initial	population.	The	initial	

population	is	generally	generated	randomly	to	ensure	a	uniform	representation	of	

the	entire	search	space.	The	size	of	the	initial	population	has	consequences	in	the	

computational	 complexity	 and	 exploration	 ability.	 A	 Large	 population	 size	

generally	 increases	 diversity	 and	 improves	 the	 exploration	 ability,	 but	 it	 also	

leads	to	higher	computational	complexity.		

Reproduction.	This	 is	 the	process	of	producing	offspring	 from	selected	parents	

using	 crossover	 and	 mutation	 operators.	 Crossover	 creates	 offspring	 by	 the	
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combination/exchange	of	randomly	selected	genetic	information	in	chromosomes	

from	 the	 parents.	 Mutation	 is	 the	 process	 of	 randomly	 changing	 the	 genetic	

information	in	chromosomes	to	increase	genetic	diversity.	In	general,	mutation	is	

applied	as	a	low	probability	to	avoid	the	distortion	of	good	genetic	information.	

Selection.	This	is	one	of	the	key	operators	in	EA.	The	main	objective	of	selection	

is	to	emphasize	better	solutions.	The	selection	process	is	usually	carried	out	at	the	

end	 of	 each	 generation	 to	 select	 a	 new	 population	 of	 chromosomes.	 The	 new	

population	could	be	selected	from	only	the	offspring	or	from	both	the	parents	and	

offspring.	

	

In	addition	to	these	fundamental	operations,	there	is	another	key	operator	in	EA,	

the	stopping	condition.	The	evolutionary	operators	are	executed	iteratively	in	an	

EA	 process	 until	 the	 stopping	 condition	 is	 met.	 Commonly	 used	 stopping	

conditions	 include	 the	 discovery	 of	 an	 acceptable	 solution	 and	 the	 maximum	

number	of	EA	iterations	(generations).		

	

The	 different	 implementations	 of	 those	 EA	 components	 result	 in	 different	 EC	

paradigms.	There	are	a	variety	of	classes	of	evolutionary	computational	models,	

including	 Genetic	 Algorithms	 (GAs),	 Genetic	 Programming	 (GP),	 Evolutionary	

Programming	(EP),	etc.	
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2.3.1 Genetic Algorithms (GAs)  

GAs	 represents	 one	 of	 the	 key	 paradigms	 of	 EA.	 Although	 the	 idea	 of	 GA	 was	

proposed	by	Fraser	(1957)	and	 later	by	Bremermann	(1962),	Holland	(1975)	 is	

credited	for	popularising	GAs	and	is	generally	considered	as	the	father	of	GAs.	

	

GAs	 are	 based	 on	 the	 mechanics	 of	 natural	 selection	 and	 natural	 genetic	

recombination	using	a	simulated	version	of	the	survival	of	the	fittest.	The	driving	

operators	 of	 a	 GA	 are	 fitness	 evaluation,	 selection	 and	 reproduction.	 Figure	 2.7	

illustrates	 the	 generic	 GA	 procedures.	 An	 initial	 population	 of	 a	 number	 of	

individuals,	 in	 the	 format	 of	 a	 selected	 representation	 scheme,	 is	 generated	

randomly	 to	 represent	 potential	 solutions.	 The	 quality	 or	 fitness	 of	 each	

individual	in	the	initial	population	is	then	evaluated	using	a	fitness	function.	A	set	

of	parent	chromosomes	are	selected	based	on	their	fitness	scores	and	the	fittest	

are	 selected	 to	 be	 the	 parent	 chromosomes	 and	 are	 mated	 to	 produce	 new	

individuals	 or	 offspring	 using	 the	 genetic	 operators,	 including	 crossover	 and	

mutation.	 The	 offspring	 is	 believed	 to	 inherit	 the	 advantages	 or	 traits	 of	 their	

parents.	A	selection	mechanism	is	then	used	to	select	a	new	group	of	individuals	

from	 the	 parents	 and	 the	 offspring	 to	 form	 the	 new	 population.	 Finally,	 all	 the	

operations	 performed	 on	 the	 initial	 population,	 including	 fitness	 evaluation,	

parent	 chromosome	 selection,	 reproduction	 and	 new	 population	 selection,	 are	

carried	out	iteratively	until	the	predefined	stopping	condition	is	met.		
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Figure	2.7:	Simple	GA	procedures	

	

The	 canonical	 GA	 proposed	 by	Holland	 in	 1975	 follows	 the	 general	 procedures	

illustrated	in	Figure	2.7		and	is	implemented	as	follows:	

 A	bitstring	(binary)	of	fixed	length	is	used	to	represent	each	chromosome.			

 Proportional	selection	is	used	to	select	the	most‐fit	parents	for	

reproduction.	

 One‐point	crossover	operation	is	used	to	produce	offspring.	

 Uniform	mutation	is	used.	

	

Since	 the	 introduction	 of	 canonical	 GA,	 several	 variations	 have	 been	 developed	

based	 on	 different	 mechanisms	 in	 the	 fundamental	 elements,	 including	

chromosome	representation	scheme,	selection	operator,	 crossover	operator	and	

mutation	 operator.	 Some	 of	 the	 main	 variants	 are	 discussed	 in	 the	 following	

sections.	
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2.3.1.1	Binary	GA	vs.	Continuous	GA	

In	general,	there	are	two	common	types	of	chromosome	representation	schemes,	

which	 are	 the	 binary	 representation	 and	 continuous	 representation	 (floating‐

point	 representation).	 In	 the	 binary	 representation,	 each	 chromosome	 is	

represented	 by	 a	 string	 of	 binary	 numbers	 (0	 or	 1),	 while	 in	 the	 continuous	

representation	 each	 chromosome	 is	 a	 list	 of	 floating‐point	 numbers.	 Figure	 2.8	

illustrates	 the	 difference	 between	 the	 binary	 chromosome	 and	 the	 continuous	

chromosome.	

	

	

Figure	2.8:	Chromosome	types.	(a)	binary	chromosome,	(b)	continuous	

chromosome.	

	

Both	 the	 binary	 GA	 and	 the	 continuous	 GA	 follow	 the	 general	 processing	

procedures	 illustrated	 in	 figure	 2.7.	 However,	 the	 binary	 GA	 requires	 an	 extra	

procedure,	 decoding,	 before	 evaluating	 the	 candidate	 chromosomes.	 The	

decoding	procedure	converts	the	chromosomes	into	variables	of	various	formats	

(depending	 on	 the	 type	 of	 application)	 that	 can	 be	 processed	 by	 the	 fitness	

function.	
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2.3.1.2	Crossover	

Most	 of	 the	 crossover	 operators	 for	 binary	 representations	 are	 applied	 to	 two	

parent	chromosomes.	Several	crossover	operators	have	been	developed	and	these	

operators	can	be	divided	into	four	groups	(Sumathi,	2010):	

One‐point	crossover:	 this	operator	 randomly	selects	a	crossover	point	and	 the	

bitstrings	 after	 the	 crossover	 point	 are	 swapped	 between	 the	 two	 parent	

chromosomes.	Figure	2.9	(a)	illustrates	the	one‐point	crossover.	

Two‐point	 crossover:	 in	 this	 operation,	 two	 crossover	 points	 are	 selected	 at	

random	and	the	bitstrings	between	these	two	points	are	swapped.	Figure	2.9	(b)	

illustrates	the	two‐point	crossover.	

N‐point	 crossover:	 this	 operator	 is	 a	 generalised	 version	 of	 the	 two‐point	

crossover.	 In	 this	 case,	 N	 crossover	 points	 are	 selected	 at	 random.	 These	

crossover	 points	 divide	 the	 chromosome	 pairs	 into	 N+1	 sections	 indexed	 by	

positive	 integers,	 and	 the	bitstring	sections	of	even	 indices	are	 swapped.	Figure	

2.9	(c)	illustrates	a	four‐point	crossover.	

Uniform	crossover:	this	is	a	bit‐wise	crossover	operator.	Each	bit	in	the	bitstring	

has	a	probability	to	be	swapped.	A	binary	crossover	mask	can	be	used	to	indicate	

which	 bit	 of	 the	 parents	 should	 be	 swapped.	 This	 uniform	 crossover	 can	 be	

regarded	as	 the	generalised	operator	 for	all	 the	 crossover	operators.	 Figure	2.9	

(d)	illustrates	the	uniform	crossover.	
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Figure	2.9:	Crossover	operators.	(a)	one‐point	crossover;	(b)	two‐point	

crossover;	(c)	four‐point	(N‐point)	crossover;	(d)	uniform	crossover.	

	

2.3.1.3	Mutation	

Mutation	aims	to	add	diversity	to	the	genetic	characteristics	of	the	chromosomes	

by	introducing	new	traits	or	changes	to	the	existing	individuals.	It	prevents	the	GA	

from	 converging	 too	 fast	 into	 one	 region.	Mutation	 is	 generally	 applied	 to	 each	

gene	of	the	offspring	at	a	certain	probability.	Figure	2.10	illustrates	an	example	of	

binary	chromosome	mutation.	

	

	

	

Figure	2.10:	Mutation	example	
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2.3.1.4	Advantages	and	Disadvantages	of	GAs	

Some	of	the	advantages	of	GAs	over	the	conventional	optimisation	and	search	

methods	are:	

 GAs	can	 scan	 the	 solution	hyper‐space	quickly	and	bad	 initial	 candidates	

(individuals)	do	not	have	a	negative	effect	on	the	end	solutions	as	they	are	

simply	discarded.	

 GAs	work	with	a	coding	of	the	parameter	set,	which	is	to	be	optimised,	not	

the	parameters	themselves.	

 GAs	scan	the	solution	hyper‐space	with	a	population	of	points,	not	a	single	

point.	

	

Although	GAs	have	been	proven	to	be	an	efficient	and	powerful	optimisation	and	

search	 strategy,	 they	 have	 drawbacks	 as	well.	 The	main	 disadvantage	 of	 GAs	 is	

actually	 its	advantage,	evolution.	As	evolution	 is	 inductive,	 it	 is	generally	slower	

than	 traditional	 techniques	 to	 converge	 to	 a	 solution	 and	 the	 solution	 is	 not	

guaranteed	to	be	optimal	but	satisfactory	to	user’s	expectation.	

	

2.3.2 Genetic Programming (GP) 

GP	 is	 the	 extension	 of	 GA	 into	 the	 space	 of	 computer	 programs	 (Affenzeller,	

2009).	 In	GP,	 the	 individual	chromosomes	are	not	 fixed	 length	binary	strings	or	

numerical	lists	that	encode	possible	solutions,	they	are	programs	that	express	the	

solutions	to	the	problem.	In	the	late	1950s,	Friedberg	(1958,	1959)	was	the	first	

person	who	tried	to	produce	computer	programs	by	evolution.	The	first	attempt	
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to	 apply	 GAs	 to	 tree‐structured	 program	 induction	 was	 proposed	 by	 Cramer	

(1985).	 John	 Koza	 explored	 the	 power	 of	 evolutionary	 program	 induction	 and	

established	 the	 field	 of	 GP	 by	 extensive	 demonstrations	 of	 using	 GP	 to	 solve	

problems	 (Koza,	1992).	Compared	with	GAs,	 the	GP	 is	different	principally	 in	 it	

representation	but	 inherits	most	of	GA’s	 features,	 including	crossover,	mutation	

and	selection.		

	

The	GP	process	is	similar	to	the	GA,	it	starts	with	an	initial	population	of	randomly	

generated	programs	 (tree‐structured	chromosomes)	 composed	of	 functions	and	

terminals.	The	 functions	 include	 the	arithmetic	operators	 (+,	 ‐,	 *,	 /,	 etc.),	 logical	

operators	(AND,	OR,	NOT,	etc.)	and	programming	operators	(IF‐THEN‐ELSE,	etc.).	

The	 terminals	 are	 the	 input	 variables/parameters	 to	 the	 program.	 Figure	 2.11	

illustrates	two	simple	GP	chromosomes.		

	

Figure	2.11:	GP	chromosome	examples	

	

Each	 GP	 chromosome	 in	 the	 population	 is	 measured	 in	 terms	 of	 how	 well	 it	

performs	by	executing	the	expression/program	represented	by	the	chromosome	

and	 a	 fitness	 value	 indicating	 its	 performance	 will	 be	 associated	 with	 the	

chromosome.	 After	 evaluating	 all	 chromosomes	 in	 the	 population,	 a	 new	
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population	will	be	created	using	the	GP	operators,	 including	selection,	crossover	

and	mutation.	The	 selection	operator	 is	 adopted	 from	 traditional	GAs,	 it	 selects	

pairs	 of	 chromosomes	 (parents)	 to	 produce	 new	 chromosomes	 (offsprings).	

Commonly	 used	 selection	 methods	 include	 roulette‐wheel	 selection,	 random	

selection,	 stochastic	uniform	selection	and	 tournament	selection	 (Banzhaf	et	 al.,	

1998;	 Haupt	 and	 Haupt,	 2004).	 After	 selecting	 the	 parent	 chromosomes,	 the	

offspinrgs	 are	produced	using	 the	 crossover	 and	mutation	operators.	 Crossover	

and	 mutation	 operate	 on	 randomly	 selected	 subtrees.	 Figures	 2.12	 and	 2.13	

illustrate	GP	crossover	and	mutation.	

		

	

Figure	2.12:	GP	crossover	operation	
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Figure	2.13:	GP	mutation	operation	

	

In	general,	a	small	proportion	of	chromosomes	in	the	population,	which	have	the	

highest	fitness,	are	passed	to	the	new	generation	without	modification	(crossover	

and	 mutation).	 The	 new	 population	 usually	 has	 the	 same	 number	 of	

chromosomes	 as	 the	 previous	 population	 and	 the	 chromosomes	 are	 evaluated	

followed	 by	 selection,	 crossover	 and	 mutation.	 These	 processes	 (evaluation,	

selection,	crossover	and	mutation)	are	carried	out	iteratively	to	evolve	towards	a	

solution.	 However,	 due	 to	 the	 stochastic	 features	 in	 GP,	 an	 acceptable	 solution	

cannot	be	guaranteed.	Thus,	the	stopping	conditions	are	usually	set	to	prevent	GP	

from	 endless	 evolutions.	 Commonly	 used	 stopping	 conditions	 include	 the	

discovery	of	an	acceptable	solution,	a	maximum	number	of	GP	generations	have	

been	evolved	and	a	maximum	amount	of	processing	time	has	been	allowed.	Once	

the	GP	process	stops,	the	chromosome	of	the	best	performance	discovered	so	far	

is	generally	considered	the	solution	or	an	approximate	solution	to	the	problem.	
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GP	has	been	applied	successfully	 in	many	areas,	 such	as	circuit	design	(Lee	and	

zhang,	2000;	Wang	et	al.,	2007),	economics	(Potwin	et	al.,	2004;	Salcedo‐Sanz	et	

al.,	 2005),	 chemistry	 (Chen	 et	 al.,	 2004),	 and	 symbolic	 regression	 (Salhi	 et	 al.,	

1998).		

	

2.3.3 Genetic Algorithm vs. Genetic Programming 

As	GA	and	GP	are	both	evolutionary	algorithms	and	GP	is	a	derivation	of	GA,	they	

share	 many	 common	 characteristics,	 such	 as	 random	 hyper‐space	 exploration,	

stochastic	evolution,	long	processing	time,	etc.	The	main	characteristics	that	differ	

them	from	each	other	are	listed	below	(Banzhaf	et	al.,	1998;	Koza,	1992):	

 Design	 objective:	 the	 GA	 was	 designed	 to	 evolve	 optimal	 numerical	

solutions	while	GP	was	designed	to	evolve	expressions	or	programs.	

 Representation:	 in	 GA,	 chromosomes	 take	 various	 forms,	 such	 as	 bit	

strings	 or	 numeric	 lists.	 In	 GP,	 chromosomes	 are	 executable	 structures,	

such	as	computer	programs	or	symbolic	expressions.	

 Fitness	evaluation:	in	GA,	the	fitness	of	a	chromosome	is	usually	derived	

by	evaluating	the	chromosome	using	a	predefined	fitness	function	and	the	

chromosome	 itself	 is	 either	 the	 input	 to	 the	 fitness	 function	 or	 the	

representation	which	is	used	to	produce	 inputs	to	the	fitness	function.	 In	

GP,	the	fitness	is	usually	assessed	by	executing	the	chromosome	and	each	

chromosome	can	be	considered	as	a	fitness	function.			
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2.3.4 Genetic Neural Mathematical Method (GNMM) 

GNMM	is	a	general	purpose	hybrid	 intelligent	optimisation	technique	developed	

by	Jianhua	Yang	in	2007	(Yang,	2010;	Yang	et	al.,	2007).	GNMM	inherits	the	key	

characteristics	 of	 GA	 and	 ANNs,	 such	 as	 robustness	 and	 nonlinearity,	 and	 it	 is	

usually	used	as	a	pattern	classifier	and	analyser.	In	addition,	GNMM	incorporates	

GA	 and	 mathematical	 programming	 to	 perform	 feature	 selection	 and	 rule	

extraction	 respectively	 (Yang,	 2010).	 Yang	 (2007,	 2008	 and	 2010)	 has	

demonstrated	 the	 utility	 of	 GNMM	 in	many	 applications,	 such	 as	 predicting	 the	

longitudinal	 dispersion	 coefficient	 in	 rivers,	 optimising	 the	 number	 of	 e‐nose	

sensors,	selecting	effective	channels	in	EEG	signals,	and	more.	

	

GNMM	is	usually	performed	in	three	steps	(Yang,	2010;	Yang	et	al.,	2007;	Yang	et	

al.,	2008):	

1. GA	based	input	variable	selection.	 In	 this	step,	GA	 is	used	to	evolve	an	

optimal	set	of	variables	from	the	available	variables.	The	selected	variables	

are	used	as	 the	 inputs	 in	MLP	models,	which	are	also	used	as	 the	 fitness	

functions	in	the	GA.	An	adaptive	mutation	rate	is	used	in	the	GA	based	on	

the	average	fitness	of	successive	generations.	When	the	former	generation	

has	higher	fitness,	the	mutation	rate	is	reduced	to	encourage	exploitation	

of	 the	 current	 discoveries;	 conversely,	 when	 the	 fitness	 is	 lower,	 the	

mutation	 rate	 is	 increased	 to	 encourage	 further	 exploration	 in	 a	 wider	

search	 space.	GNMM	uses	 the	elite	group	and	appearance	percentages	of	

individual	 variables	 to	 minimize	 the	 randomness	 associated	 with	 GA.	

Instead	of	using	the	chromosome	of	the	best	performance	discovered	in	GA	

as	 the	 final	 solution,	 GNMM	 uses	 the	 appearance	 percentages	 of	 the	
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variables	in	the	winning	chromosome	(the	best	performing	chromosome)	

in	each	generation	as	indications	of	the	variables’	preferences.	Variables	of	

higher	appearance	percentages	are	more	preferable	than	those	with	lower	

appearance	percentages.	

2. MLP	modelling.	 In	 this	 step,	MLPs	 are	 used	 as	 the	 tools	 to	 perform	 the	

actual	tasks,	which	are	classification	or	regression.	The	input	variables	of	

these	 MLPs	 are	 the	 groups	 of	 variables	 of	 high	 appearance	 percentages	

selected	 from	 the	 results	 produced	 in	 the	 first	 step.	 The	 common	 MLP	

training	problem,	overfitting,	is	avoided	by	K‐fold	cross‐validation.	The	fast	

Levenberg‐Marquardt	(LM)	learning	algorithm	is	used	to	achieve	a	second‐

order	speedup	in	the	MLP	training.		

3. Rule	 extraction	 using	mathematical	 programming.	 In	 this	 step,	 the	

mathematical	programming	 technique	proposed	by	Tsaih	and	Lin	 (2004)	

is	 implemented	 to	 extract	 regression	 rules	 from	 the	 trained	 MLPs.	 This	

mathematical	 method	 is	 not	 only	 used	 to	 identify	 the	 polynomial	

regression	 rules,	 but	 is	 also	 used	 to	 explore	 features	 from	 the	 extracted	

rules	based	on	data	samples	associated	with	each	rule.		

	

2.3.5 Sensitive Genetic Neural Optimisation (SGNO) 

SGNO	performs	dimension	reduction	by	selecting	input	variables	relevant	to	the	

neural	modelling	of	the	input‐output	relationship	using	ANNs,	GAs	and	Sensitivity	

Analysis.	The	curse	of	dimensionality	is	a	serious	issue	on	models	of	multivariate	

data	processing	because	there	are	many	more	possible	combinations	of	variables	

that	 can	 be	 observed	 in	 datasets.	 As	 the	 data	 dimensionality	 increases,	 the	
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complexity	of	data	processing	increases,	in	some	cases	even	exponentially.	In	case	

of	ANN	applications,	additional	input	variables	require	extra	processing	(learning	

and	testing)	time	and	computer	resources.	However,	extra	input	variables	cannot	

guarantee	better	performance	(better	fitting)	as	the	extra	inputs	may	bring	extra	

noise	into	the	neural	model	and	the	learning	process	cannot	eliminate	the	noise	in	

dataset.	 In	addition,	an	ANN	treats	all	 input	variables	equally	and	it	 is	unable	to	

determine	 which	 variable	 or	 group	 of	 variables	 from	 all	 input	 variables	 can	

produce	the	best	fitting.		

	

GAs	 had	 been	 approved	 to	 be	 a	 good	 tool	 in	 FS.	 However,	 GA’s	 application	 is	

limited	 to	 the	variable	combinations	generated	during	 the	GA	evolution	and	the	

size	of	the	best	combination	is	unpredictable.	In	case	a	fixed	number	of	variables	

are	preferred,	a	common	approach	is	to	find	all	variable	combinations	generated	

during	 the	 evolution	 that	 meet	 the	 size	 requirement	 and	 use	 the	 combination	

giving	 the	best	 fitness.	 If	 the	situation	changed	and	more	variables	are	required	

instead	of	the	previous	group	of	variables,	a	completely	new	variable	group	needs	

to	 be	 discovered.	 This	 approach	 is	 unfavourable	 for	 the	 applications	 where	

reorganising	 the	whole	 input	 configuration	 is	 impractical	 (expensive	 sensors	or	

complicated	systems).	SGNO	simplifies	 this	process	by	selecting	variables	based	

on	their	importance	in	the	system	and	extra	variables	can	be	identified	by	looking	

up	in	the	variable	importance	rank	table.	
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2.4 Conclusion  

In	 this	 chapter,	 some	of	 the	well‐known	 ISTs,	 including	ANNs,	GAs	 and	GPs	 are	

reviewed	briefly.	In	addition,	a	recently	developed	hybrid	intelligent	optimisation	

technique,	GNMM,	is	introduced	as	well.	These	techniques	are	powerful	tools	that	

have	 been	 proved	 to	 be	 successful	 in	 many	 areas,	 such	 as	 machine	 learning,	

decision	support,	pattern	recognition,	and	data	regression.			

	

Among	 these	 techniques,	 ANNs	 are	 often	 referred	 to	 as	 ‘black	 box’	 models	 as	

there	 is	generally	no	 interactive	activity	with	an	ANN	apart	 from	feeding	 it	with	

the	available	data.	In	addition,	ANNs	are	generally	lack	of	explanation	capabilities	

and	 there	 is	 no	 information	 available	 to	 represent	 their	 behaviours	 and	 the	

relationship	 between	 the	 inputs	 and	 outputs.	 GAs	 and	 GPs	 are	 known	 as	

evolutionary	 algorithms	 due	 their	 biological	 background,	 which	 is	 natural	

evolution	 and	 selection.	 Due	 to	 their	 differences	 in	 solution	 representation	 and	

evolution	operations,	GAs	are	well	suited	to	perform	feature	selection,	while	GPs	

are	more	suitable	for	rule	extraction	and	decision	making.	GNMM	is	implemented	

using	ANNs	and	GAs,	 it	 inherits	 the	advantages	 from	these	 two	techniques.	As	a	

result,	it	is	able	to	optimise	the	number	of	inputs	and	perform	data	regression	and	

classification.	

	

In	 the	 following	chapter	3,	a	novel	hybrid	 intelligent	system,	known	as	SGNO,	 is	

introduced.	SGNO	is	a	general	purpose	optimisation	(feature	selection)	 tool	 that	

combines	 the	advantages	of	ANNs	and	GAs	 together	with	 the	ability	 to	quantify	

the	influence/importance	of	individual	variables	on	the	model	output.		
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CHAPTER 3  
 

Sensitive Genetic Neural Optimisation 
	

3.1 Overview 

Chapter	 2	 has	 provided	 the	 theoretical	 background	 to	 some	 important	 ISTs.	 As	

explained	in	section	2.3.1,	a	Genetic	Algorithm	(GA)	is	a	stochastic	heuristic	tool	

capable	of	generating	useful	global	solutions	to	optimisation	and	search	problem.	

An	 Artificial	 Neural	 Network	 (ANN),	 discussed	 in	 section	 2.2.3,	 is	 a	 non‐linear	

adaptive	 modelling	 tool	 which	 is	 usually	 used	 to	 model	 complex	 relationships.	

This	 chapter	 introduces	 a	 hybrid	 optimisation	 system,	 namely	 the	 Sensitive	

Genetic	 Neural	 Optimisation	 (SGNO)	 system	 based	 on	 GA,	 ANN	 and	 sensitivity	

analysis	(SA).	The	system	is	designed	to	identify	the	most	efficient	subset	of	input	

variables	from	all	the	available	ones,	also	known	as	dimensionality	reduction.		

	

One	obvious	advantage	of	dimensionality	reduction	is	that	it	reduces	the	amount	

of	data	and	thus	simplifies	the	problem.	In	term	of	ANNs,	reducing	dimensionality	

(number	 of	 variables)	 reduces	 the	number	 of	 input	 parameters	 of	 the	network.	

The	 selection	 of	 appropriate	 subset	 of	 variables	 is	 important	 to	 obtain	 good	

generalisation	for	data	driven	techniques	like	ANNs	with	finite	data	(Bishop,	2005;	

Tarassenko,	 1998).	 The	 dimensionality	 reduction	 is	 usually	 achieved	 either	 by	

selecting	features	from	the	raw	data,	commonly	known	as	feature	selection	(FS)	

or	 deriving	 new	 features	 from	 the	 raw	 data,	 known	 as	 feature	 derivation	 (FD)	

(Marsland,	2009).	Broadly	speaking,	the	SGNO	is	an	intelligent	FS	algorithm.	
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The	SGNO	system	combines	the	advantages	of	GA,	which	are	the	stochastic	search	

in	the	search	space	and	the	evolution	towards	better	solutions,	together	with	the	

strength	 of	 SA	 in	 the	 study	 of	 how	 the	 model	 responds	 to	 the	 changes	 in	 the	

inputs	 (Saltelli	 et	 al.,	 2000).	 The	 SA	 provides	 further	 and	 detailed	 study	 on	 the	

search	spaces	that	have	been	explored	by	the	GA.	 In	this	thesis,	 the	terms	ANNs	

and	Neural	Networks	 (NNs)	 are	used	 interchangeably.	 Figure	3.1	 illustrates	 the	

general	structure	of	this	optimisation	system.		

	

Figure	3.1:	General	structure	of	the	SGNO	system	

	

The	SGNO	system	can	be	divided	into	three	parts,	the	GA	module,	the	SA	module	

and	the	NN	module.	The	GA	module	defines	the	key	skeleton	of	the	entire	system,	

which	is	the	same	as	the	structure	of	a	standard	GA	optimisation	system.	The	NN	
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module	plays	 the	parts	of	 (a)	 the	 fitness	 function	 in	 the	GA	module	and	 (b)	 the	

final	modelling	tool	after	the	most	efficient	input	subset	is	selected.	Depending	on	

the	design	of	the	NN	module,	the	SGNO	can	be	used	to	optimise	and	solve	either	

regression	 modelling	 or	 classification	 problems.	 The	 SA	 module	 refines	 the	

stochastic	search	in	the	search	space	by	investigating	how	the	NN	model	responds	

to	the	variations	in	its	inputs	and	thus	identifying	the	variables	that	contribute	the	

most	to	the	output	variability.	The	input	variables	that	contribute	more	variation	

to	 the	 outputs	 are	 believed	 to	 be	 more	 influential	 than	 those	 variables	 that	

generate	less	variation	in	the	model	and	thus	the	model	is	more	sensitive	to	these	

variables	(Saltelli	et	al.,	2000).		

	

3.2 SGNO Explained 

The	 optimisation	 procedures	 of	 SGNO	 consist	 of	 three	 key	 steps	 including	 data	

pre‐processing,	 variable	 selection	 (optimisation)	 and	 system	 remodelling.	 The	

details	of	SGNO	are	explained	in	the	following	sections.	

3.2.1 Data Pre‐processing 

In	practice,	ANNs	rarely	operate	on	raw	data.	The	raw	data	is	usually	processed	

using	 initial	 pre‐processing	 procedure(s)	 that	 transforms	 the	 raw	 data	 into	

reasonably	 comparable	 ranges	 or	 eliminates	 some	 of	 the	 raw	 data	 that	 carry	

redundant	 information	 (Tarassenko,	 1998).	 For	 most	 applications,	 data	

transformation	 is	 necessary	 as	 the	 raw	 data	 usually	 contains	 noisy	 variables	

presented	 in	 different	 ranges.	 For	 ANNs,	 transforming	 the	 variables	 in	 the	 raw	
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data	 into	 similar	 or	 specific	 ranges	 allows	 the	 ANNs	 to	 learn	more	 quickly	 and	

perform	better	(Bishop,	2005).		

	

In	the	simplest	case,	data	transformation	takes	the	form	of	a	linear	transformation,	

such	 as	 Min‐Max	 normalisation,	 expressed	 as	 function	 3.1,	 and	 Mean‐Standard	

Deviation	normalisation,	expressed	as	function	3.2.	

	

	
																																																												(3.1)	

where	X	represents	the	samples	of	a	variable	in	the	raw	data	and	X’	represents	the	

transformed	variable.	

																																																																							(3.2)	

where	X	represents	the	samples	of	a	variable	in	the	raw	data,	μ	 is	the	mean	of	X	

and	σ	represents	the	standard	deviation	of	X.	

	

3.2.2 Variable Optimisation 

Variable	 optimisation	 is	 the	 most	 important	 step	 in	 SGNO,	 it	 employs	 three	

techniques,	which	are	GA,	ANN	and	SA.	These	techniques	are	known	as	the	core	

modules	 in	 SGNO.	 The	 GA	 module	 controls	 the	 progress	 of	 the	 algorithm	 and	

employs	 the	 NN	 module	 as	 its	 fitness	 function.	 The	 SA	 module	 quantifies	 the	

importance	 of	 each	 available	 variable	 using	 the	 results	 generated	 in	 the	 GA	

module.	The	main	procedures	 in	this	variable	optimisation	step	include	variable	

encoding,	 initial	 population	 generation,	 population	 evaluation,	 new	 population	

generation	and	variable	selection.	Each	is	now	considered	in	turn.	
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3.2.2.1	Variable	Encoding	

In	 the	 theory	 of	 evolutionary	 biology,	 evolution	 takes	 place	 by	 operations	 on	

chromosomes,	which	hold	 the	characteristics	of	 the	 living	subjects	 (Sivanandam	

and	Deepa,	2008).	 In	GAs,	 the	potential	 solutions	are	encoded	as	chromosomes,	

which	may	be	represented	(encoded)	in	different	formats	depending	on	the	type	

of	 application.	 General	 encoding	methods	 include	 bit	 strings	 and	 real	 numbers	

(Reeves	and	Rowe,	2003).	Real	number	encoding	 represents	 chromosomes	as	 a	

series	 of	 real	 numbers	 and	 is	 usually	used	when	 the	GA	 is	 used	 to	 search	 for	 a	

numerical	 solution.	 Bit	 string	 encoding,	 also	 known	 as	 binary	 encoding,	

represents	 chromosomes	 as	 collections	 of	 binary	 digits	 (1	 and	 0)	 and	 it	 is	

commonly	used	to	solve	optimisation	and	FS	problems	(Handels	et	al.,	1999;	Lu	et	

al.,	2008).		

	

In	this	case	in	SGNO,	binary	encoding	is	more	appropriate	as	the	binary	values	(0	

and	1)	are	efficient	and	effective	to	determine	the	absence	or	presence	of	a	certain	

variable.	The	 length	of	a	chromosome,	 i.e.	 the	number	of	binary	digits	 in	 the	bit	

string,	 corresponds	 to	 the	 number	 of	 potential	 variables.	 	 Each	 bit	 in	 the	

chromosome	represents	the	absence	or	presence	of	a	specific	variable.	In	general,	

1	indicates	that	the	variable	is	selected	(present)	and	0	indicates	that	the	variable	

is	not	selected	(absent).	

	

3.2.2.2	Initial	Population	Generation	

A	GA	begins	with	a	population	of	potential	solutions	encoded	in	the	chromosomes,	

known	 as	 the	 initial	 population.	 The	 initial	 population	 is	 generally	 generated	
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randomly	across	the	search	space.	The	size	of	the	initial	population	is	crucial	in	a	

GA.	 A	 small	 number	 of	 chromosomes	 may	 only	 search	 a	 small	 region	 of	 the	

solution	space	and	the	GA	may	take	a	very	long	time	to	find	a	reasonable	solution	

and	 it	 is	 likely	 to	 lock	 on	 a	 local	minimum	 or	maximum.	 A	 large	 population	 of	

chromosomes	covers	too	much	of	the	search	space.	It	often	lacks	genetic	diversity	

and	 may	 require	 a	 large	 number	 of	 generations	 to	 find	 high	 performance	

chromosomes	 (Cox,	 2005).	 The	 population	 size	 is	 generally	 dependent	 on	 the	

complexity	of	the	problem	and	there	is	no	broadly	agreed	‘optimal’	number	(Cox,	

2005;	 Sumathi,	 2010).	 Sivanandam	 and	 Deepa	 (2008)	 summarised	 that	 a	

population	 of	 around	 100	 chromosomes	 is	 frequently	 used.	 Sumathi	 (2010)	

suggests	 that	 a	 larger	 number	would	 be	 useful	 but	 demands	 excessive	 costs	 of	

memory	 and	 time.	 In	 SGNO,	 a	 rule	 of	 thumb	 suggested	 by	 Cox	 (2005),	 which	

calculates	 the	 minimum	 size	 of	 initial	 populations	 based	 on	 the	 number	 of	

variables	and	states,	 is	employed.	The	 formula	 is	expressed	 in	3.3	and	says	 that	

the	size	should	be	at	least	as	large	as	five	times	the	number	of	variables	or	half	the	

number	of	possible	states,	whichever	is	smaller.		

																																												 , 	 																																																												(3.3)	

where	p	is	the	estimate	of	the	population	size,	v	is	the	number	of	variables	and	s	is	

the	number	of	possible	states	in	the	search	space.	

		

For	 example,	 a	 GA	 containing	 10	 variables	 in	 binary	 encoding	 has	 210=1024	

possible	states	and	thus	the	suggested	initial	population	size	should	be	at	least		

, , 	
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3.2.2.3	Population	Evaluation	

Each	 chromosome	 in	 the	 population	 is	 evaluated	 by	 a	 fitness	 function	 and	 a	

goodness‐of‐fit	 or	 performance	measure	 is	 associated	with	 the	 chromosome.	 In	

SGNO,	 Multi‐Layer	 Perceptrons	 (MLPs)	 are	 used	 to	 determine	 the	 fitness	 of	

chromosomes.	Instead	of	generating	goodness‐of‐fit	value,	MLPs	produce	an	error	

measure	for	each	chromosome.	The	details	of	MLPs	are	discussed	in	the	following	

sub‐sections.	

	

3.2.2.3.1	MLP	Architecture	

As	 discussed	 in	 section	 2.2.5,	 the	 characteristic	 features	 of	 an	MLP	 include	 the	

number	of	inputs	and	outputs,	the	number	of	hidden	layers,	the	number	of	hidden	

neurons	 in	 each	 hidden	 layer,	 the	 weights	 of	 the	 neurons	 and	 the	 activation	

functions	for	the	neurons.		

	

In	SGNO,	the	number	of	inputs	is	determined	by	the	number	of	ON‐bits	(digit	1)	in	

the	binary	chromosome	and	the	number	of	outputs	depends	on	the	application.	In	

regression	problems,	 e.g.	 the	 applications	presented	 in	 chapters	4	 to	7,	 there	 is	

usually	only	one	output.	For	some	classification	problems,	the	number	of	outputs	

may	be	more	 than	one	and	each	output	 indicates	 the	association	with	 a	 certain	

type	 of	 class/group.	 The	 number	 of	 hidden	 layers	 is	 generally	 difficult	 to	

determine	a	priori.	The	 literature	 suggests	 that	one	hidden	 layer	 is	 adequate	 to	

approximate	 any	 function	 with	 arbitrary	 accuracy	 (Ghaffari	 et	 al.,	 2006;	

Moghaddam	et	al.,	2010;	Tarassenko,	1998).	Therefore,	MLPs	of	one	hidden	layer	

are	used.		



Sensitive	Genetic	Neural	Optimisation	

69	
	

	

The	number	of	neurons	in	the	hidden	layer	is	very	import	and	hard	to	determine.	

It	 affects	 the	 training	 time	 and	 generalisation	 of	 the	 MLP.	 A	 large	 number	 of	

hidden	 neurons	 may	 allow	 the	 ANN	 to	 memorise,	 also	 known	 as	 overfit,	 the	

pattern	 it	has	been	 trained	with,	whereas	 too	 few	hidden	neurons	may	waste	a	

great	deal	of	 training	time	in	order	to	try	to	generalise.	There	is	no	general	rule	

for	 determining	 the	 optimal	 number	 of	 hidden	 neurons.	 The	 most	 popular	

approach	 to	 finding	 the	optimal	number	of	hidden	neurons	 is	by	 trial	and	error	

(Ahmed,	 2005),	 which	 is	 an	 experimental	 method	 of	 reaching	 a	 satisfactory	

solution	 by	 trying	 out	 various	 means	 until	 error	 is	 eliminated	 or	 sufficiently	

reduced.	 However,	 a	 trial	 and	 error	 approach	 is	 impractical	 in	 SGNO	 as	 it	

increases	the	complexity	of	the	system	dramatically.	Therefore,	SGNO	employs	a	

simple	 rule	 of	 thumb	 approach,	 which	 dynamically	 determines	 the	 numbers	 of	

hidden	neurons	based	on	the	numbers	of	inputs	and	outputs	instead	of	assigning	

a	fixed	number	of	neurons	to	all	ANNs.	It	halves	the	sum	of	the	number	of	inputs	

and	outputs	as	expressed	in	equation	3.4.		

																																																			(3.4)	

where	 	is	the	ceiling	operator,	and	Nin	and	Nout	are	the	numbers	of	inputs	and	

outputs	respectively.	

	

The	activation	functions	of	the	neurons	are	determined	based	on	the	type	of	the	

application.	 In	general,	 sigmoid	 functions	are	commonly	used	 in	 forecasting	and	

regression,	while	 step	 functions	 are	 used	 for	 classification.	 Details	 of	 activation	

functions	 are	 discussed	 in	 section	 2.2.2.1.	 The	 commonly	 used	 weights	
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initialisation	 method,	 which	 generates	 random	 numbers	 between	 ‐1	 and	 1,	 is	

employed	to	initialise	the	neurons	in	MLPs	(Sumathi,	2010).		

3.2.2.3.2	Chromosome	Evaluation	

Evaluation	of	 a	 chromosome	 involves	 training	 the	MLP	with	 a	 certain	 subset	of	

the	available	data	and	testing	the	trained	MLP	with	the	rest	of	the	data,	which	has	

not	been	‘seen’	by	the	MLP.	However,	overfitting	may	occur	if	the	MLP	is	trained	

too	many	times,	which	leads	to	poor	generalisation	and	test	results.	To	overcome	

this	problem,	SGNO	performs	multi‐fold	cross‐validation	with	early	stopping.		

	

To	realise	this,	the	data	is	randomly	partitioned	into	5	approximately	equal‐sized	

groups	and	these	data	groups	are	used	for	training	(3	groups),	validation	(1	group)	

and	 testing	 (1	 group)	 in	 turn	 (MathWorks,	 2010;	 Setiono,	 2001).	 Figure	 3.1	

illustrates	the	five‐fold	cross‐validation.	

	

Figure	3.2:	Five‐fold	cross‐validation	
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The	training	subset	is	used	to	train	the	NN,	i.e.	updating	the	weights	in	neurons.	

The	validation	subset	is	used	to	determine	when	to	stop	training	(early	stopping)	

and	it	does	not	contribute	to	the	weights	update	in	neurons.	The	testing	subset	is	

used	to	measure	the	performance	of	the	trained	NN	by	evaluating	the	data	in	the	

subset.		

	

During	the	training	process,	the	trained	NN	is	monitored	continually	by	keeping	a	

close	watch	on	 the	 validation	error.	 Experience	 suggests	 that	 the	 training	error	

and	validation	error	decrease	at	the	early	stage	of	training.	After	a	certain	number	

of	 training	 cycles,	 the	 training	 error	 still	 decreases	 while	 the	 validation	 error	

stops	 decreasing	 or	 even	 starts	 to	 rise.	 It	 is	 a	 good	 indicator	 as	 the	 start	 of	

overfitting	(over	training)	and	training	should	stop.	Hence	the	stopping	criterion	

should	be	the	point	at	which	the	minimum	validation	error	is	reached	(Prechelt,	

1998;	Tarassenko,	1998).	Figure	3.2	illustrates	the	early	stopping	scenario.	

	

Figure	3.3:	Early	stopping	scenario	
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Finally,	the	performance	of	the	trained	NN	is	measured	using	the	test	subset.	The	

NN	takes	the	input	variables	from	the	testing	subset	and	generates	outputs.	The	

mean	 squared	 error	 (MSE)	 between	 these	 generated	 outputs	 and	 the	

corresponding	expected	outputs	 in	 the	 testing	 subset	are	 then	calculated	as	 the	

assessment	of	fitness.		

∑ ′ 																																																			(3.5)	

where	N	 is	 the	number	of	 input‐output	pair	 in	 the	 test	 subset,	yi	 represents	 the	

output	generated	by	the	NN	and	y’i	is	the	corresponding	expected	output.	

	

In	the	case	of	five‐fold	cross‐validation,	five	MLPs	are	required,	one	for	each	of	the	

possible	 sequential	 combinations	 of	 the	 training,	 validation	 and	 testing	 groups.	

The	mean	of	the	MSEs	from	the	five	MLPs	is	determined	and	used	as	the	fitness	of	

the	chromosome.	

	

3.2.2.4	New	Population	Generation	

After	evaluating	all	the	chromosomes	in	the	current	generation,	a	new	generation	

of	 chromosomes	 will	 be	 generated	 based	 on	 the	 fitness	 values	 using	 genetic	

operators,	 such	 as	 selection,	 crossover	 and	 mutation.	 Regeneration	 and	

evaluation	 are	 repeated	 until	 a	 predefined	 termination	 criterion	 is	 met.	

Commonly	 used	 termination	 criteria	 include	 fixed	 maximal	 number	 of	 evolved	

generations	or	the	attainment	of	an	acceptable	level	of	fitness	(Sumathi,	2010).	

	

Selection	 is	 an	 important	 operator	 in	 GAs,	 it	 chooses	 the	 parents	 from	 the	

chromosomes	 in	 the	 current	 generation	 based	 on	 their	 fitness	 to	 produce	
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offspring	 chromosomes	 in	 the	 new	 generation.	 Common	 selection	 methods	

include	 stochastic	 uniform	 selection	 and	 roulette	 wheel	 selection.	 In	 SGNO,	

stochastic	 uniform	 selection	 is	 used	 as	 it	 provides	 zero	 bias,	 which	 means	 an	

individual’s	 selection	 probability	 equals	 its	 expected	 number	 of	 trials,	 and	

minimum	 spread,	 which	 is	 the	 minimum	 number	 of	 trials	 in	 selection	 that	

theoretically	permits	zero	bias	 (Baker,	1987;	Zalzala	and	Fleming,	1997).	 It	 lays	

out	a	line	in	which	each	chromosome	in	the	generation	corresponds	to	a	portion	

of	the	line	and	the	length	of	that	portion	is	proportional	to	the	scaled	fitness	value.	

A	 pointer	 scans	 along	 the	 line	 in	 equal	 steps.	 At	 each	 step,	 the	 chromosome	

corresponding	 to	 the	 section	 it	 lands	 on	 is	 selected	 as	 a	 parent.	 Chromosomes	

with	higher	fitness	values	have	better	chances	to	be	selected.	Figure	3.3	illustrates	

stochastic	uniform	selection.	

	

Figure	3.4:	Stochastic	uniform	selection	operation	

	

Parent	 chromosomes	 will	 then	 be	 used	 to	 generate	 offspring.	 There	 are	 four	

common	crossover	methods	as	discussed	in	section	2.3.1.2.	In	SGNO,	the	N‐point	

(scattered)	crossover	is	used	as	it	is	the	most	flexible	crossover	operator	and	all	

other	 crossover	 operators	 can	 be	 considered	 as	 special	 cases	 of	 this	 operator.	

New	 chromosomes	 are	 generated	by	 swapping	 the	 bits	 at	 a	 number	 of	 random	
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positions	 of	 the	 parent	 chromosomes.	 Figure	 3.5	 illustrates	 the	 operation	 of	N‐

point	crossover.	

	

Figure	3.5:	N‐point	(scattered)	crossover	

	

In	 general,	 a	 small	 number	 of	 chromosomes	 with	 the	 highest	 fitness	 in	 the	

generation	 are	 guaranteed	 to	 be	 passed	 to	 the	 next	 generation	 without	

modification	 to	 ensure	 the	 best	 characteristics	 are	 ‘preserved’	 in	 the	 new	

generation.	These	are	called	the	elite	chromosomes	or	elite	children	(Haupt	and	

Haupt,	2004;	Sumathi,	2010).	

	

3.2.2.5	Variable	Selection	

After	the	termination	of	the	GA	process,	a	large	number	of	chromosomes	and	their	

fitness	for	 the	problem	will	be	available.	Among	them,	 those	chromosomes	with	

fitness	 in	 the	 upper	 quartile	 range	 in	 a	 generation	 are	 selected	 to	 carry	 out	

detailed	 study,	 the	 SA	 analysis,	 of	 the	 importance	 of	 the	 variables	 in	 those	

chromosomes.	

3.2.2.5.1	Sensitivity	Analysis	(SA)	of	High	Fitness	Chromosomes	

The	SA	is	a	group	of	statistical	evaluation	methods	in	mathematical	modelling.	It	

helps	 to	 determine	 how	 the	 changes	 in	 the	 values	 of	 parameters	 influence	 the	

outputs	of	 the	model,	 i.e.	how	 ‘sensitive’	 the	model	 is	 to	changes	 in	parameters.	
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The	sensitivity	of	an	input	variable	or	parameter	is	an	indication	of	the	effect	that	

a	 variation	 of	 that	 input	 will	 have	 on	 the	 output.	 An	 input	 variable	 of	 higher	

sensitivity	will	result	in	a	greater	variation	of	the	output	and	vice	versa.	In	general,	

the	variables	of	higher	sensitivity	would	draw	higher	level	of	interest	and	thus	are	

more	favourable	than	those	of	lower	sensitivity	(Saltelli	et	al.,	2000;	Saltelli	et	al.,	

2008).			

	

In	SGNO,	the	sensitivity	of	an	input	variable	is	defined	as	its	impact	on	the	outputs	

when	 it	 is	 replaced	 by	 arbitrary	 values	 instead	 of	 fixed	 values	 at	 a	 number	 of	

discrete	 levels	 as	 in	 the	 original	 SA.	 The	 SA	 analysis	 is	 implemented	 using	 the	

Monte	Carlo	Simulation	(MCS).	

	

3.2.2.5.2	Monte	Carlo	Simulation	(MCS)	

The	MCS	is	a	powerful	stochastic	technique	which	has	been	applied	in	many	fields	

of	 mathematics,	 physics	 and	 engineering.	 It	 is	 a	 method	 that	 uses	 random	

processes	or	random	numbers	and	performs	statistical	sampling	experiments	to	

find	 approximate	 solutions	 to	 problems.	 The	 key	 characteristic	 of	 MCS	 is	 the	

simulation	process	based	on	random	numbers	(Dimovivan,	2008;	Shonkwiler	and	

Mendivil,	2009).	

	

The	MCS	is	usually	used	to	simulate	complicated	problems	which	are	difficult	and	

time‐consuming	to	analyse	or	the	problems	have	some	components	behaving	in	a	

random	way.	 In	 SGNO,	 the	MCS	 used	 to	 estimate	 the	 sensitivity	 of	 a	 particular	

variable	in	a	given	chromosome	is	summarised	as	follows:	
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Step	 1:	 for	 a	 chromosome	 of	M	 selected	 variables,	 a	 group	 of	M+1	 random	

numbers	 is	 generated	 and	 each	 random	 number	 is	 within	 the	 domain	 of	 its	

corresponding	 variable	 in	 the	 chromosome.	 The	 extra	 random	 number	

represents	 an	 arbitrary	 value	 of	 the	 variable	 of	 interest	 and	 it	 is	 within	 the	

domain	of	that	variable.	

	

Step	2:	the	group	of	random	numbers	is	evaluated	using	the	following	equation	

and	the	generated	value	is	stored	at	the	end	of	a	numeric	list.	

, ,…, , , ,…, , ,…, , , ,…, 								(3.6)	

where	 x1,	 x2,…,	 xM	 represent	 the	 random	 numbers	 for	 those	 variables	 in	 the	

chromosome,	xi	 is	the	variable	of	 interest,	xM+1	 is	the	extra	random	number	to	

replace	xi,	and	Y	represents	the	trained	NN,	which	has	M	input	variables.		

	

Step	3:	repeat	step	1	and	step	2	for	a	fixed	number	of	cycles,	say	10	or	20,	and	

then	calculate	the	mean	of	the	values	stored	in	the	numeric	list.		

	

Step	4:	repeat	all	the	previous	steps	until	the	mean	values	converge.	Then	the	

latest	 mean	 value,	 which	 is	 calculated	 using	 a	 large	 number	 (hundreds	 or	

thousands)	of	Ii,	is	used	as	an	approximation	of	the	sensitivity	of	the	ith	variable.	

	

These	4	steps	are	repeated	to	approximate	the	sensitivities	of	all	the	variables	in	

the	 chromosome.	 	Hence	 the	variables	of	higher	 sensitivity	 scores	 are	of	higher	

importance	as	they	generate	higher	variation	in	the	outputs.		
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3.2.2.5.3	Variable	Ranking	

By	 repeating	 the	 MCS	 described	 in	 the	 previous	 section,	 3.2.2.5.2,	 a	 sensitivity	

matrix	 containing	 all	 the	 sensitivity	 scores	 of	 all	 the	 selected	 chromosomes	 is	

produced.	 The	 rows	 in	 the	 sensitivity	 matrix	 represent	 those	 selected	

chromosomes	and	each	column	holds	the	sensitivities	of	a	particular	variable	 in	

different	chromosomes.	The	global	sensitivity	score	(the	mean	sensitivity	score)	

of	a	variable	will	be	calculated	by	 taking	 the	mean	of	 its	sensitivity	scores	 in	all	

chromosomes.	This	can	be	expressed	as	the	following	equation:	

∗ ∑ , 																																																									(3.7)	

where	 S*i	 is	 the	 global	 sensitivity	 score	 of	 the	 ith	 variable,	N	 is	 the	 number	 of	

chromosomes	 in	 the	 sensitivity	matrix	 and	 Sj,i	 is	 the	 sensitivity	 score	 of	 the	 ith	

variable	in	the	jth	chromosome.	

	

Based	on	the	global	sensitivity	scores,	the	variables	can	be	ranked.	The	variables	

with	higher	global	sensitivity	scores	are	preferable	over	those	of	lower	scores	as	

they	are	 considered	more	 important/influential	 to	 the	model.	 It	 is	possible	 that	

some	 of	 the	 variables	 are	 missing,	 i.e.	 they	 are	 not	 present	 in	 the	 selected	

chromosomes.	These	variables	will	not	be	considered	as	they	are	‘eliminated’	by	

the	GA	process.	

	

3.2.3 System Remodelling using MLP 

In	SGNO,	MLPs	are	not	only	 the	evaluation	 functions	during	 the	GA	process	but	

they	are	also	used	as	the	modelling	tool	to	generate	the	efficient	solutions	using	

the	optimised	variables.	Following	the	determination	of	variables’	importance,	the	
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performance	 of	 SGNO	 is	 evaluated	 by	 MLPs	 taking	 various	 numbers	 of	 input	

variables	with	the	highest	global	sensitivity	scores.	The	architectures	of	the	MLPs	

used	 in	 this	 evaluation	 are	 estimated	 in	 the	 same	way	as	 the	MLPs	used	 as	 the	

fitness	functions	in	the	GA	process	(see	section	3.2.2.3.1	for	details).	

	

	As	 discussed	 previously	 in	 section,	 2.2.5,	 the	 key	 features	 that	 affect	 the	

performance	of	MLPs	include	the	number	of	hidden	layers,	the	number	of	neurons	

in	each	hidden	 layer,	 the	 initial	weights	and	activation	functions	of	 the	neurons,	

the	number	of	training	cycles	and	the	training	functions.	

	

It	 is	 well‐known	 that	 an	 MLP	 without	 a	 hidden	 layer	 is	 only	 capable	 of	

representing	 linearly	 separable	 functions	 or	 decisions;	 one	 hidden	 layer	 is	

generally	 sufficient	 for	 approximating	 any	 functions	 containing	 continuous	

mapping	 from	one	 finite	space	to	another;	an	extra	hidden	 layer	helps	to	model	

any	 functions	 of	 any	 shape	 including	 discontinuities.	 In	 addition,	 there	 is	 no	

theoretical	reason	to	use	MLPs	of	more	than	two	hidden	layers	(Heaton,	2005).	

	

There	is	also	no	clear	determination	of	the	numbers	of	hidden	neurons	to	be	used	

in	an	MLP	of	best	performance.	However	there	are	many	rules‐of‐thumb	methods	

to	approximate	the	number	of	hidden	neurons.	Some	of	them	are	summarised	as	

follows	(Heaton,	2005):	

 The	number	of	 hidden	neurons	 should	 be	between	 the	 input	 layer	 size	 and	

the	output	layer	size.	

	



Sensitive	Genetic	Neural	Optimisation	

79	
	

 The	number	of	hidden	neurons	 should	be	 two	 thirds	of	 the	 input	 layer	 size	

plus	the	size	of	the	output	layer.	

2
3

	

 The	number	of	hidden	neurons	should	be	no	more	than	twice	the	input	layer	

size.	

2 	

	

These	 rules‐of‐thumb	methods	 are	 guidance	only.	To	 find	 the	most	 appropriate	

architecture	for	a	particular	problem,	the	selection	is	normally	made	by	trial	and	

error	 (Heaton,	 2005).	 In	 SGNO,	 the	 architecture	 of	 the	 best	 performance	 is	

achieved	 by	 applying	 a	 ‘forward’	 selection	 which	 is	 an	 iterative	 operation	 that	

gradually	 increases	 the	 number	 of	 hidden	 neurons	 in	 the	 MLP	 until	 either	 an	

acceptable	error	level	is	achieved	or	increasing	the	number	of	neurons	would	not	

improve	the	performance	further.	Again,	the	five‐fold	cross‐validation	with	early	

stopping	criterion	and	random	initial	weights	in	the	neurons	are	applied	(Setiono,	

2001).	

	

3.2.4 Symbolic Rule Discovery using Genetic Programming 

Genetic	 Programming	 (GP)	 is	 an	 extension	 of	 GA,	 differing	 principally	 in	 its	

operators	 and	 representations.	 In	 GP,	 the	 individuals	 (chromosomes)	 are	

expressions,	 such	 as	 a	 piece	 of	 computer	 program	 or	 an	 equation,	 instead	 of	

binary	 strings.	 One	 of	 the	 advantages	 of	 Genetic	 Programming	 (GP)	 is	 the	 tree‐

structured	 representation	 of	 chromosomes,	 which	 is	 particularly	 useful	 to	

generate	 tree‐based	 solutions,	 such	 as	 mathematical	 expressions	 and	 decision	
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trees.	 In	 SGNO,	 a	 specially	 tuned	 GP	 method	 using	 Multiple‐Branch	 Encoding	

(MBE)	 is	employed	 to	 find	an	appropriate	and	concise	mathematical	expression	

for	 the	 best	 performing	NN	discovered.	 The	 key	 features	 of	 the	GP	method	 are	

discussed	in	the	following	subsections.		

3.2.4.1	Multiple‐Branches	Encoding	

MBE	was	proposed	by	Rodríguez‐Vázquez	and	Oliver‐Morales	(2003)	and	aims	to	

produce	 simple	 syntax	 expressions	 of	 good	 quality	 avoiding	 the	 problem	 of	

oversized	 expressions,	 which	 is	 also	 known	 as	 bloat	 (Rodríguez‐Vázquez	 and	

Oliver‐Morales,	 2003;	 Rodríguez‐Vázquez	 and	 Oliver‐Morales,	 2004).	 In	 MBE,	

instead	of	using	a	single	tree	structure	as	a	chromosome,	the	weighted	sum	of	a	

group	of	single	trees	(multiple	branches)	and	a	constant	value	is	used	as	the	MBE	

chromosome.	Figure	3.4	illustrate	the	construction	of	an	MBE	chromosome.	

	

Figure	3.6:	MBE	chromosome	example	

	

The	mathematical	expression	for	the	MBE	chromosome	is	as	follows:	

∑ 																																																(3.8)	
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																																																													(3.9)	

where	Y	represents	the	output,	C0	 is	the	constant	value,	Bi	 is	the	 ith	branch,	Ci	 is	

the	weight	of	the	ith	branch,	Fi	 is	the	function	expressed	in	the	ith	branch,	and	X	

represents	all	the	inputs.	

	

The	weight	for	each	branch	is	determined	using	multiple	linear	regression	(MLR)	

based	 on	 the	 set	 of	 training	 data	 and	 the	 performance	 (fitness)	 of	 the	 MBE	

chromosome	is	measured	using	the	test	data	set.		

	

Compared	with	the	conventional	GPs,	MBE‐GP	can	be	more	effective	theoretically	

to	deliver	an	acceptable	solution	due	to	the	encoding	method.	 Instead	of	relying	

on	 the	 proposed	 individual	 chromosome,	 MBE‐GP	 establishes	 connections	 (the	

weight	 compositions)	 between	 tree‐structured	 branches,	 which	 are	 used	 as	

individual	chromosomes	in	conventional	GPs.	Thus,	MBE‐GP	is	more	likely	to	find	

a	solution.	

	

3.2.4.2	MBE	Population	Initialisation	

In	this	MBE‐GP,	a	syntax	tree	is	constructed	using	input	variables	and	operators	in	

an	 operator	 pool,	 i.e.	 +,	 –,	 *,	 /,	 etc.	 Instead	 of	 using	MBE	 chromosomes	 of	 fixed	

length	 (the	number	of	 trees	 in	 a	 chromosome)	proposed	by	Rodríguez‐Vázquez	

and	Oliver‐Morales	(2003),	the	length	of	a	chromosome	is	dynamic	up	to	an	upper	

limit.	 The	 depth	 of	 the	 trees	 in	 chromosomes	 is	 limited	 to	 3	 in	 the	 initial	

population	i.e.	there	are	at	most	three	operators	and	four	terminals	(variables)	in	

a	tree.		
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It	 is	 not	 hard	 to	 imagine	 that	 the	 problems	 using	 GP	 are	 generally	 more	

complicated	 than	 those	 applying	 GA.	 The	 GA	 based	 optimisation	 using	 binary	

string	representations	attempts	to	find	the	‘optimal’	combination	of	binary	digits	

in	chromosomes,	while	GP	chromosomes	consists	not	only	of	the	input	variables,	

but	also	the	available	mathematical	operators	and	the	syntax	trees	that	represent	

the	 potential	 relationships.	 Hence,	 the	 population	 size	 of	 GP	 is	 considerable,	

usually	several	hundred	or	thousand	(Iba	et	al.,	2009;	Poli	et	al.,	2008).	

	

Similar	 to	 the	 GA	 process	 discussed	 previously	 in	 section	 3.2.2,	 the	 initial	

population	 of	 this	 MBE‐GP	 is	 generated	 randomly.	 Again,	 the	 estimate	 of	

population	size	is	a	problem.	There	is	no	agreed	way	to	estimate	an	appropriate	

number	and	researchers	choose	population	sizes		up	to	several	thousand	at	their	

own	 wills	 (Koza,	 1992;	 Xie	 et	 al.,	 2007).	 In	 the	 MBE‐GP	 proposed	 here,	 the	

population	 size	 is	 determined	 using	 an	 extension	 of	 Cox’s	 formula	 for	 GA	

population	 size	 estimation	 (see	 equation	 3.3).	 Thus,	 the	 population	 size	 is	

determined	using	the	following	expression:	

																																												 5 ∗ ∗                                                         (3.10) 

where	p	is	the	population	size,	v	is	the	number	of	inputs	(terminals)	and	op	is	the	

number	of	operators.	

	

After	generating	 the	 initial	population,	all	chromosomes	will	be	evaluated	and	a	

new	generation	will	be	produced	using	the	evaluation	results.	
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3.2.4.3	Chromosome	Evaluation	

As	 expressed	 in	 Equations	 3.8	 and	 3.9,	 each	 chromosome	 represents	 a	 linear	

composition	 of	 a	 group	 of	 functions,	 which	 can	 be	 linear	 or	 non‐linear.	 The	

coefficient	(weight)	of	each	function	is	not	determined	when	the	chromosome	is	

produced.	 Hence	 the	 evaluation	 of	 a	 chromosome	 takes	 two	 steps,	 which	 are	

coefficient	 determination	 using	 MLR,	 and	 testing.	 Five‐fold	 cross‐validation	 is	

used	in	this	evaluation	as	well.	Instead	of	dividing	the	data	set	into	three	groups,	

which	are	 training	 (60%),	validation	 (20%)	and	 testing	 (20%),	GP	chromosome	

evaluation	requires	only	two	groups,	which	are	training	(80%)	and	testing	(20%).	

The	training	data	set	is	used	to	determine	the	coefficients	in	the	chromosome	and	

the	testing	data	set	is	used	evaluation	its	performance.		

	

3.2.4.4	New	Population	Generation	

The	main	genetic	operators,	crossover	and	mutation,	in	MBE‐GP	are	defined	in	a	

similar	 way	 as	 those	 in	 GA.	 The	 crossover	 between	 two	 MBE	 chromosomes	 is	

performed	 on	 the	 basis	 of	 branches,	 a	 subset	 of	 trees	 (branches)	 in	 each	

chromosome	is	randomly	selected	and	the	selected	branches	are	crossed	over	in	

the	 traditional	 way.	 The	 mutation	 operation	 can	 be	 performed	 at	 any	 level	

(individual	branch	or	 sub‐branch).	The	 selected	 tree/sub‐tree	 in	a	 chromosome	

would	 be	 replaced	 by	 a	 newly	 generated	 tree/sub‐tree	 up	 to	 the	 current	

maximum	depth	of	trees	(Ghanea‐Hercock,	2003;	Rodríguez‐Vázquez	and	Oliver‐

Morales,	2003).	
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In	this	MBE‐GP,	there	are	two	different	methods	to	generate	the	new	population,	

i.e.	low	level	generation	and	high	level	generation.	Low	level	generation	is	similar	

to	the	generation	method	used	in	GAs	as	discussed	in	section	3.2.2.4.	It	generates	

offspring	 by	 applying	 crossover	 and	 mutation	 operators	 to	 the	 chromosomes	

selected	using	stochastic	uniform	selection	(Banzhaf	et	al.,	1998;	Koza,	1992).	In	

addition,	a	small	group	of	chromosomes	of	high	fitness	(elite	group)	is	passed	to	

the	new	generation	without	modification.	

	

The	role	of	high	level	generation	is	to	increase	the	complexity	(depth	of	the	trees)	

of	 the	 chromosomes	 every	 time	 it	 is	 applied.	 This	 should	 only	 be	 applied	 if	 an	

acceptable	solution	has	not	been	discovered	after	a	certain	number	of	generations,	

say	 50.	 High	 level	 generation	 selects	 a	 relatively	 large	 portion	 of	 the	

chromosomes,	say	30%,	of	high	fitness	in	the	populations	that	have	been	explored	

so	 far	 and	 passes	 them	 to	 the	 new	 population	 without	 modification.	 New	

chromosomes	with	higher	complexity	are	generated	to	fill	the	new	population,	e.g.	

assuming	 the	 current	 tree	 depth	 limit	 is	 4	 and	 the	 new	 chromosomes	 would	

contain	branches	up	to	5	levels.	

	

These	 two	 generation	 methods	 work	 together	 to	 gradually	 expend	 the	 search	

space	and	 look	 for	 the	 ‘optimal’	 solution.	The	stopping	criterion	of	 this	MBE‐GP	

would	 be	 the	 discovery	 of	 an	 acceptable	 solution,	 or	 that	 a	 certain	 number	 of	

generations	 have	 been	 evaluated,	 or	 the	 chromosomes	 reach	 a	 certain	 level	 of	

complexity	(overcomplicated),	in	which	case	the	MBE‐GP	fails	to	derive	a	solution.	

In	 the	 case	 that	 an	 acceptable	 solution	 cannot	 be	 found	 after	 a	 few	 trials,	

modifications	can	be	made	to	the	population	size	and	the	complexity	of	branches	
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to	cover	a	larger	search	space.	Figure	3.5	illustrates	the	general	operations	of	the	

MBE‐GP.	

Figure	3.7:	MBE‐GP	structure	

	

3.3 Benchmarking Techniques 

In	 order	 to	 assess	 the	 relative	 performance	 of	 SGNO,	 several	 commonly	 used	

dimensionality	reduction	techniques	are	implemented	in	this	thesis	to	benchmark	

the	 SGNO.	 The	 selected	 benchmarking	 techniques	 include	 Principal	 Component	

Analysis	 (PCA),	 Forward	 Feature	 Selection	 (FFS),	 Backward	 Feature	 Selection	

(BFS)	 and	 the	 Genetic	 Neural	 Mathematical	 Method	 (GNMM).	 The	 following	

sections	explain	these	benchmarking	techniques	in	turn.	
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3.3.1 Principal Component Analysis (PCA) 

PCA	 is	 one	 of	 the	 most	 famous	 mathematical	 techniques	 widely	 used	 in	 data	

dimensionality	 reduction.	 It	 performs	 vector	 space	 transformation	 on	 the	 given	

data	 set	 to	rearrange	 the	data	 into	a	new	coordinate	system	(Dunteman,	1989).	

The	transformed	data	 is	the	 linear	combinations	of	the	original	data.	 In	the	new	

coordinate	system,	the	number	of	coordinates	 is	generally	equals	to	the	original	

coordinate	 system	 and	 all	 coordinates	 are	 orthogonal	 to	 each	 other.	 The	 new	

coordinates	 are	 ordered	 so	 that	 the	 first	 coordinate	 accounts	 for	 most	 of	 the	

variations	 in	 the	 original	 data;	 the	 second	 coordinate	 explains	 the	 maximum	

variances	for	the	residual	data;	 the	third	coordinate	explains	the	majority	of	the	

variation	 for	 the	 next	 residual	 data	 and	 so	 on.	 Hence,	 the	 first	 coordinate	 is	

considered	 to	 be	 the	 most	 important	 coordinate,	 known	 as	 the	 first	 principal	

component	 (PC);	 the	 second	 coordinate	 is	 called	 the	 second	 PC,	 and	 so	 on.	

Generally	speaking,	a	certain	number	of	PCs,	less	than	the	number	of	coordinates	

in	the	original	data,	are	enough	to	account	for	most	of	the	variance	in	the	original	

data.	This	is	to	say	that	PCA	can	transform	a	high	dimensional	data	set	to	a	lower	

dimensional	 space	 without	 losing	 significant	 amounts	 of	 information	 when	

compared	with	the	original	data	set	(Dunteman,	1989;	Zhang	et	al.,	2006).	

	

In	 general,	 a	 PCA	 transformation	 can	 be	 performed	 using	 the	 following	 4	 steps	

(assuming	 X	 is	 an	 n‐by‐p	 matrix,	 where	 n	 is	 the	 number	 of	 variables	 and	 p	 is	

number	of	records	in	each	variable):	

Step	1:	subtract	the	mean	value	

																																																			(3.11)	

Where	 	is	 an	n‐by‐1	 vector	 containing	 the	mean	of	 each	 variable	 in	 data	 set	 X,	
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and	X’	is	the	new	data	set.	

Step	2:	calculate	the	covariance	matrix			

																																																					 ′ ′ / 1 																															(3.12)	

Where	S	represents	the	covariance	matrix,	X’T	is	the	transpose	of	matrix	X’	and	p	

is	the	size	of	each	variable.	

Step	3:	calculate	the	eigenvectors	and	the	eigenvalues	of	the	covariance	matrix	

																																																				(3.13)	

0																																																(3.14)	

det 0																																														(3.15)	

Where	A	is	the	square	covariance	matrix	derive	in	step	2,	I	is	the	identity	matrix,	λ	

is	a	vector	of	eigenvalues	and	x	is	the	matrix	of	eigenvectors.	

Step	4:	reorder	the	eigenvectors	based	on	their	associated	eigenvalues,	from	the	

highest	to	the	lowest,	which	represent	the	explained	variance	of	the	eigenvectors.	

 

3.3.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS) 

FFS	 and	 BFS	 are	 two	 widely	 used	 conventional	 FS	 techniques.	 These	 are	 also	

known	as	 the	 sequential	methods	 as	 they	both	 select	 features/variables	 one	by	

one.	FFS	starts	with	an	empty	selection	list	and	repetitively	adds	features	to	the	

list.	At	each	step,	all	 the	variables	 that	are	not	 in	 the	 list	 are	 tested	 individually	

with	the	variables	already	in	the	list	and	the	one	that	generates	the	lowest	error	is	

added	to	the	list.	This	process	is	repeated	until	all	features	are	included	in	the	list	

or	 when	 certain	 predefined	 conditions	 (stopping	 criteria)	 are	 met,	 such	 as	

acceptable	level	of	accuracy	or	limitation	on	the	number	of	selected	variables.	In	

the	 case	 where	 all	 the	 variables	 are	 added	 to	 the	 list,	 the	 order	 in	 which	 the	
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variables	are	added	to	the	list	could	be	considered	to	be	the	preference	order	of	

the	variables	 and	 the	variables	added	at	 earlier	 times	are	more	preferable	 than	

the	latter	ones.	Table	3.1	illustrates	the	general	routine	of	the	FFS	(Rub	and	Kruse,	

2010).	

Table	3.1:	FFS	algorithm	

S	=	[	]																																															{solution	list}	
F	=	features																																			{available	features	list}	
		REPEAT	
							E	=	[	]																																								{temporatory	evaluation	results}	
							FOR	j	=	1	TO	length(F)	
											f	=	F[j]																																		{select	jth	feature}	
											Sj	=	[S,	f]																														{add	jth	feature	to	current	solution}	
											M	=	model(Sj)																			{create	a	regression	model}	
											Ej	=	evaluate(M)														{evaluate	the	regression	model}	
											E	=	[E,	Ej]																												{save	evaluation	result}	
							END	FOR	
			S	=	[S,	F[min(E)]]																					{add	the	best	feature	to	solution	list}	
			F	=	F‐F[min(E)]																								{remove	the	best	feature	from	features	list}	
END	REPEAT	IF	min(E)<threshold	OR	F=[	]	OR	length(S)>threshold			
RETURN	S	
	

On	the	other	hand,	BFS	tries	to	solve	problems	from	another	direction;	it	starts	

with	a	list	containing	all	the	variables	and	iteratively	removes	variables	from	the	

list.	At	each	step,	the	variables	in	the	list	are	tested	and	the	one	that	produces	the	

lowest	error	when	eliminated	is	removed	from	the	list.	This	process	is	repeated	

until	the	following	conditions	are	met:	

1. All	variables	are	removed,	or	

2. A	certain	level	of	estimation	error	is	reached,	or		

3. A	certain	number	of	variables	are	eliminated.	

	

Unlike	 the	FFS,	 the	variables	selected	 to	be	eliminated	at	early	 times	 in	BFS	are	

considered	 unfavourable.	 Table	 3.2	 illustrates	 the	 procedures	 in	 BFS	 (Jain	 and	
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Zongker,	1997;	Karagiannopoulos	et	al.,	2007;	Pudil	et	al.,	2002;	Rub	and	Kruse,	

2010).	

	
Table	3.2:	BFS	algorithm	

S	=	[	]																																															{solution	list}	
F	=	features																																			{available	features	list}	
		REPEAT	
							E	=	[	]																																								{temporatory	evaluation	results}	
							FOR	j	=	1	TO	length(F)	
											f	=	F[j]																																		{select	jth	feature}	
											Fj	=	F	‐	f																															{remove	jth	feature	from	feature	list}	
											M	=	model(Fj)																			{create	a	regression	model}	
											Ej	=	evaluate(M)														{evaluate	the	regression	model}	
											E	=	[E,	Ej]																												{save	evaluation	result}	
							END	FOR	
			S	=	[F[min(E)],	S]																					{add	the	worst	feature	to	solution	list}	
			F	=	F‐F[min(E)]																								{remove	the	worst	feature	from	features	list}	
END	REPEAT	IF	min(E)>threshold	OR	F=[	]	OR	length(S)>threshold			
RETURN	S 
	

In	this	thesis,	the	implementation	of	the	FFS	and	BFS	uses	NNs	as	the	regression	

models,	while	the	FFS	and	BFS	only	set	out	the	routine	of	the	selection	procedures.	

These	NN	models	employ	 the	 same	architectures	as	 the	NN	module	 in	SGNO	as	

discussed	previously	 in	 section	3.2.2.3.1,	 e.g.	 single	hidden	processing	 layer	and	

the	number	of	hidden	neurons	is	estimated	by	halving	the	total	number	of	inputs	

and	outputs	of	the	NN	model.	

	

3.3.3 Genetic Neural Mathematical Method (GNMM) 

GNMM	 is	a	general	purpose	 intelligent	FS	 technique	developed	by	Yang	 (2007).	

The	technique	is	implemented	using	GAs	and	ANNs.	In	GNMM,	the	preferences	of	

variables	are	determined	by	their	appearance	percentages	during	the	GA	process.	

The	variables	of	higher	appearance	frequencies	are	more	preferable	than	those	of	
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lower	 appearance	 frequencies.	 The	 implementation	 details	 were	 discussed	 in	

section	2.3.4.	

	

3.4 Theoretical Computational Complexity 

The	 efficiency	 of	 an	 algorithm	 is	 generally	 measured	 by	 its	 computational	

complexity.	 In	 the	 literature,	 this	 concerns	 determining	 an	 expression	 for	 the	

number	 of	 steps	 (operations)	 needed	 to	 finish	 the	 task	 as	 a	 function	 of	 the	

problem	 size.	 As	 the	 exact	 step	 count	 is	 generally	 difficult	 to	measure	 and	 the	

complete	 expression	might	 be	 hard	 to	 interpret,	 instead	 of	 obtaining	 the	 exact	

step	count,	one	attempts	only	to	get	asymptotic	bounds,	denoted	using	the	Big‐O	

notation,	on	the	step	count	(Sait	and	Youssef,	1999;	Yang,	2008).		

	

In	 the	 case	 of	 this	 work,	 the	 conventional	 Big‐O	 notation,	 which	 indicates	 the	

upper	bound	of	operational	steps,	is	inappropriate	as	GAs	and	ANNs	are	both	non‐

deterministic	 systems,	 in	 which	 the	 intermediate	 processing	 states	 and	 the	

outputs	 cannot	 be	 predicted.	 Thus,	 instead	 of	 representing	 the	 efficiency	 of	 an	

algorithm	using	the	number	of	operational	steps,	a	simple	notation	method,	which	

measures	the	number	of	ANN	training	processes,	is	used	to	indicate	the	efficiency	

of	 an	 algorithm.	This	notation	method	 is	 feasible	 as	ANN	 is	 the	 key	 functioning	

component	 to	 evaluate	 the	 performance	 of	 the	 proposed	 solutions	 (subsets	 of	

input	variables)	in	SGNO	and	all	the	benchmarking	techniques,	including	BFS,	FFS,	

GNMM	and	PCA.	ANN	training	is	probably	the	most	time	consuming	operation	in	

the	implementation	of	all	these	techniques,	as	it	involves	repetitive	updates	of	the	

hidden	 neurons’	 weights,	 which	 are	 represented	 as	 matrices	 in	 complexly	
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structured	data	blocks.	 In	 addition,	 the	number	of	 update	 cycles	 in	 the	 training	

process	 is	 unpredictable	 (Blum	 and	 Rivest,	 1992;	 Wang,	 1995).	 In	 modern	

implementations	 of	 ANNs,	 the	 training	 process	 is	 usually	 limited	 by	 three	

conditions	to	ensure	that	it	can	terminate	within	acceptable	times	and	thus	these	

conditions	can	be	considered	as	 the	upper	bounds	of	ANNs’	complexities.	These	

conditions	are	(MathWorks,	2010):	

1. The	total	number	of	training	cycles,	or	

2. The	detection	of	convergence,	or	

3. An	acceptable	level	of	testing	error.	

	

In	 BFS,	 FFS,	 GNMM,	 PCA	 and	 SGNO,	 the	 ANN	 components	 are	 of	 similar	

architectures	and	are	trained	and	evaluated	using	the	identical	five‐fold	data	set.	

All	 these	 ANN	 components	 only	 have	 a	 single	 hidden	 processing	 layer;	 the	

number	of	hidden	neurons	in	BFS,	FFS,	PCA	and	SGNO	is	estimated	by	halving	the	

numbers	 of	 inputs	 and	 outputs,	 while	 GNMM	 employs	 fixed	 number	 of	 hidden	

neurons,	which	is	estimated	by	halving	the	number	of	all	available	input	variables.	

Hence,	 the	 ANNs	 in	 these	 techniques	 are	 likely	 to	 have	 similar	 training	

complexities.		

	

As	discussed	in	section	3.2,	SGNO	employs	a	GA	to	outline	the	general	structure	of	

the	 algorithm	 and	 uses	 ANNs	 as	 the	 fitness	 functions	 to	 evaluate	 the	

chromosomes.	Hence,	the	number	of	ANN	trainings	involved	in	the	SGNO	process	

is	dependent	on	the	number	of	GA	chromosomes	evaluated.	The	number	of	ANN	

trainings	can	be	expressed	as:	

∗ ∗ ∗ 																											(3.10)		
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where	 PopSize	 is	 the	 size	 of	 a	 GA	 population,	 GenSize	 is	 the	 number	 of	 GA	

generation	evolved	and	N	is	the	total	number	of	variables	to	be	optimised.	

	

As	GNMM	was	structured	in	the	same	way	as	SGNO,	the	number	of	ANN	trainings	

involved	is	of	similar	level	as	SGNO	and	thus	Equation	3.10	applies	to	GNMM.	

	

BFS	 and	 FFS	 are	 of	 similar	 levels	 of	 complexity.	 Although	 they	work	 towards	 a	

solution	 from	 distinct	 directions,	 the	 total	 number	 of	 ANN	 evaluations	 in	 these	

two	 techniques	 is	 the	 same.	They	both	 start	with	 a	number	of	ANN	evaluations	

which	 equals	 the	 total	 number	 of	 variables	 in	 the	 first	 processing	 cycle;	 in	 the	

second	processing	cycle,	the	number	of	ANN	evaluations	is	reduced	by	1	as	one	of	

the	 variables	 is	 either	 removed	 or	 added	 to	 the	 solution	 list;	 in	 the	 third	

processing	cycle,	the	number	of	ANN	evaluations	is	reduce	further	by	1,	and	so	on.	

Hence,	the	total	number	of	ANN	evaluations	in	BFS	and	FFS	can	be	expressed	as:	

																																																															(3.11)	

where	N	represents	the	total	number	of	variables.	

	

In	PCA	benchmarking,	ANNs	are	only	used	to	evaluate	the	performance	of	various	

numbers	of	PCs.	Hence	 the	 total	number	of	ANN	evaluations	 is	 the	 same	as	 the	

number	of	all	available	variables,	which	can	be	expressed	as:	

																																																																	(3.12)	
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Based	on	the	derived	expressions	3.10,	3.11	and	3.12,	PCA	is	no	doubt	the	most	

efficient	technique;	BFS	and	FFS	are	more	expensive	than	PCA.	The	complexities	

of	 GNMM	 and	 SGNO	 are	 not	 directly	 comparable	 to	 BFS,	 FFS	 and	 PCA	 as	 their	

complexities	 are	 dependent	 on	 the	 number	 of	 generations	 as	well.	 However,	 in	

the	 case	 of	 applications	 presented	 in	 Chapters	 4	 to	 7,	 in	 which	 the	 GA	 usually	

evolves	for	50	generations	and	the	total	number	of	variables	is	generally	no	more	

than	50,	BFS	and	FFS	are	more	efficient	than	GNMM	and	SGNO.	

3.5 SGNO Computation Times 

The	implementation	of	SGNO	and	the	examinations	of	its	feasibility	together	with	

the	benchmarking	techniques	were	all	completed	using	MATLAB®	2009a	on	a	PC	

with	an	 Intel®	Core	at	2.13	GHz,	4GB	memory	and	a	150GB	3.5’’	 standard	hard	

drive	running	Microsoft®	Windows	XP	service	pack	3.	Table	3.3	summarises	the	

computation	times	of	SGNO	on	four	different	types	of	applications.	The	details	of	

the	applications	will	be	explained	in	following	chapters.	

Table	3.3:	Computations	of	SGNO	

Application	 Data	Size	
Number	of	
Features	 Computation	Time

Tomato	Yield	Prediction	 884	 50	 19.50	hrs	

Longitudinal	Dispersion	
Coefficient	Prediction	 127	 20	 2.26	hrs	

Wave	Overtopping	
Prediction	 5277	 14	 72.52	hrs	

Industrial	Production	
Growth	Prediction	 493	 50	 22.35	hrs	
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Based	 on	 the	 numeric	 entries	 in	 Table	 3.3,	 direct	 relationships	 between	

computation	times	and	dataset	characteristics	(data	size	and	number	of	features)	

are	not	observable.	The	 trend	of	numeric	entries	 in	 the	bottom	3	rows	suggests	

that	 the	 computation	 time	 is	 approximately	 proportional	 to	 the	 product	 of	 the	

data	size	and	 the	number	of	 features.	However,	 the	 first	numeric	entry	opposes	

this.	Hence	the	actual	computation	time	may	depend	on	the	size	of	the	dataset,	the	

number	 of	 features	 to	 be	 optimised	 and	 the	 complexity	 of	 the	 problem	 itself,	

which	is	hard	to	measure	but	it	determines	how	quickly	NNs	can	learn	from	the	

dataset.	

	

3.6 Conclusion 

In	this	chapter,	the	general	procedures	of	SGNO	have	been	explained	in	detail.	The	

SGNO	 consists	 of	 three	 key	modules,	which	 are	 the	GA	module,	 the	NN	module	

and	 the	 SA	module.	 The	GA	module	 controls	 the	 progress	 of	 the	 algorithm	 and	

employs	 the	 NN	module	 as	 its	 fitness	 function	 to	 evaluate	 the	 performance	 of	

proposed	chromosomes,	which	represent	potential	solutions.	 In	 the	NN	module,	

five‐fold	 cross‐validation	with	 early‐stopping	 is	 used	 in	 the	 training	 process	 to	

prevent	 the	 overfitting	 problem.	 After	 the	 execution	 of	 the	 GA	module,	 the	 SA	

module	takes	a	quarter	of	the	population	from	each	GA	generation	and	calculates	

the	 sensitivity	 measures	 of	 the	 selected	 variables	 in	 those	 chromosomes.	 The	

global	 sensitivity	 measure	 of	 a	 variable	 is	 derived	 by	 taking	 the	 average	 of	 its	

sensitivity	 measures	 in	 the	 chromosomes.	 The	 importance	 or	 influence	 of	 a	

variable	is	determined	by	its	global	sensitivity	measure	and	a	variable	with	higher	

value	is	considered	more	important/influential	than	those	with	lower	values.		
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Compared	with	4	benchmarking	techniques,	which	are	BFS,	FFS,	GNMM	and	PCA,	

SGNO	 has	 a	 similar	 complexity	 level	 to	 GNMM	 in	 terms	 of	 the	 number	 of	 ANN	

trainings.	PCA	 is	 the	most	efficient	among	these	 techniques.	The	complexities	of	

BFS	and	FFS	are	more	efficient	than	GNMM	and	SGNO	in	the	case	of	applications	

presented	in	chapters	4	to	7	in	this	thesis.		
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CHAPTER 4 
 

Greenhouse Tomato Weekly Yield Prediction	
	
	

4.1	Overview	

In	the	previous	chapter,	the	procedures	of	SGNO	were	described	in	detail	together	

with	the	explanations	of	the	benchmarking	techniques,	which	are	BFS,	FFS,	GNMM	

and	PCA.	 This	 chapter	 introduces	 a	 greenhouse	 tomato	weekly	 yield	 prediction	

system	 developed	 using	 SGNO	 to	 process	 the	 environmental	 data,	 such	 as	

temperature,	 radiation,	CO2	concentration,	vapour	pressure	deficit	and	previous	

yields,	without	relying	on	complex	physiological	models.		

	

Both	supermarkets	and	tomato	growers	require	reliable	supplies	of	high	quality	

fruit	in	agreed	quantities.	Growers	have	increased	fruit	quality	and	yields	in	many	

parts	 of	 the	 world	 through	 the	 use	 of	 greenhouses	 where	 the	

growing/environmental	 conditions	 can	 be	 controlled	 and	 by	 selecting	 better	

cultivars.	 However,	 weekly	 yields	 can	 fluctuate	 and	 this	 can	 pose	 problems	 of	

both	 over‐demand	 and	 over‐production	 if	 the	 yield	 cannot	 be	 predicted	

accurately.	In	this	respect	growers	and	scientists	are	looking	for	ways	to	forecast	

tomato	 yield	 in	 order	 to	 plan	 greenhouse	 operations	 and	 marketing	 and	 thus	

reduce	 costs	 and	 increase	 profits.	 A	 large	 number	 of	 prediction	 models	 and	

prototypes	 have	 been	 developed	 in	 the	 past	 few	 decades,	 based	 on	 specialist	

knowledge	of	tomato	physiology	and	growing	conditions.	However,	 they	tend	to	

deal	accurately	with	total	yields,	but	poorly	with	weekly	yield	fluctuations.		
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4.2	Background	

As	outlined	in	section	4.1	above,	tomato	growers	are	sometimes	contracted	to	sell	

agreed	quantities	of	produce	to	supermarkets.	However,	tomato	yields	often	vary	

from	week	 to	week,	 and	 so	 the	ability	 to	accurately	predict	 future	yields	would	

give	 them	 a	 competitive	 advantage.	 If	 a	 grower	 is	 forecast	 to	 have	 insufficient	

fruits	in	a	given	week	they	could	source	additional	produce	from	elsewhere,	and	if	

they	are	predicted	to	have	excess	fruits	they	could	look	for	alternative	markets	or	

arrange	promotions	(Zhang	et	al.,	2010).	As	a	result	there	has	been	considerable	

interest	 from	 growers	 and	 researchers	 in	 developing	 tomato	 yield	 prediction	

systems.		

	

Modern	plant	production	systems	are	very	complex.	The	fruit	yield	as	the	output	

is	determined	to	be	the	result	of	complex	interactions	of	many	factors.	There	is	no	

doubt	that	the	environment	at	a	fixed	period	in	the	past	is	a	major	factor	that	has	

an	effect	on	the	present	plant	growth	and	development.	Environmental	conditions	

that	 influence	 the	 growth	 and	 development	 of	 tomato	 plants	 include	 air	

temperature	(day	and	night),	fruit	temperature,	radiation,	CO2	concentration,	fruit	

load,	 nutrients,	 plant	 density	 and	 stress.	 Scientists	 have	 put	 considerable	 effort	

into	the	relationships	between	crop	yields	and	various	environmental	conditions.	

The	research	work	of	Willits	and	Peet	(1998)	suggests	that	warmer	conditions	in	

the	 greenhouse	 at	 night	 can	 significantly	 improve	 the	 quality	 and	 quantity	 of	

tomatoes.	The	fluctuation	of	temperature	affects	mostly	the	time	of	fruit	ripening	

and	 rate	 of	 fruit	 growth.	 The	 relationship	 between	 temperature	 and	 yield	 is	
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complex	 and	 studies	 have	 shown	 that	 the	 sensitivity	 of	 fruits	 to	 temperature	

changes	 over	 time,	 as	 fruits	 become	 more	 sensitive	 to	 temperature	 as	 they	

approach	maturity.	This	explains	why	raising	the	greenhouse	temperature	results	

in	 a	 peak	 in	 yield	 followed	 a	 few	 days	 later	 by	 a	 yield	 reduction	 (Adams	 and	

Valdes,	 2002;	 Mulholland	 et	 al.,	 2003).	 However,	 although	 temperature	

fluctuations	 influence	 the	 weekly	 tomato	 yields	 in	 greenhouses,	 they	 do	 not	

significantly	 influence	 the	 overall	 tomato	 yields	 when	 compared	 with	

temperature	controlled	growing	conditions	(de	Koning,	1988;	de	Koning,	1990).	

Other	work	showed	that	the	primary	cause	of	fluctuations	in	yield	was	due	to	the	

effect	 of	 temperature	 on	 fruit	 ripening	 and	 the	 variation	 in	 ripening	 time	

smoothes	 out	 the	 effect	 on	 the	 yield	 that	 the	 fruit	 set	may	 have	 (Adams	 et	 al.,	

2001a;	 Adams	 et	 al.,	 2001b).	 Another	 important	 environmental	 factor	 is	 CO2,	

which	is	a	key	source	in	photosynthesis.	Nilsen,	et	al.	(1983)	discovered	that	the	

tomato	total	yield	showed	a	significantly	positive	responsive	to	CO2	enrichment	in	

greenhouses	provided	that	this	is	provided	throughout	the	entire	harvest	period.	

Recent	work	by	Li,	et	al.	(2007)	showed	that	tomato	plants	could	benefit	from	CO2	

enrichment.		

	

In	general	the	prediction	systems	are	based	on	the	development	of	various	types	

of	mathematical	and	empirical	models	applied	to	parameters	routinely	monitored	

in	a	greenhouse.	Mathematical	model	based	systems	consider	the	parameters	that	

may	influence	the	growth	of	tomato	plants	as	the	input	variables	and	generate	the	

estimated	yields	as	the	outputs	using	their	uniquely	developed	algorithms.	O’Kane	

(1973)	stated	that	the	amount	of	solar	radiation	received	by	the	plant	would	be	

the	 main	 factor	 that	 affects	 the	 growth	 rate	 of	 plants	 in	 the	 greenhouse	 and	
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introduced	 a	 model	 of	 accumulated	 useful	 solar	 radiation	 to	 estimate	 the	

development	time	of	greenhouse	tomatoes.	Kano	and	van	Bavel	(1988)	developed	

a	 deterministic	 model	 based	 on	 a	 photosynthesis	 equation	 and	 a	 carbon	

accumulation	model.	The	model	takes	the	concentration	of	CO2,	temperature	and	

light	level	as	inputs	to	calculate	tomato	yield,	total	dry	matter	and	leaf	area	index.	

Their	simulation	results	show	that	their	model	can	achieve	up	to	69%	accuracy.	In	

1995,	Tang	(1995)	introduced	a	multiple	linear	regression	based	empirical	model	

using	 cumulative	 light	 intensity	 and	 temperature.	 The	 empirical	 model	 could	

estimate	the	clear	long‐term	trend	of	tomato	yields	and	produce	estimation	errors,	

Root	Mean	Squared	Errors	 (RMSEs),	 as	 low	 as	 0.4kg/m2.	 In	 addition,	 Tang	 also	

determined	 the	 strong	 linear	 correlation	between	 the	 cumulative	 light	 intensity	

and	 the	 total	 yield	 discovered	 by	 McAvoy	 (1989).	 A	 topological	 case‐based	

modelling	system	was	developed	by	Hoshi	(2000)	to	predict	the	daily	harvest	of	

cherry	tomatoes	 in	 Japan.	The	system	makes	use	of	previous	daily	harvest,	 total	

man‐hours	of	daily	working,	daily	solar	radiation	and	daily	air	temperature	as	the	

input	variables.	The	evaluation	results	showed	that	 the	main	 factors	 influencing	

the	 daily	 harvest	 were	 the	 past	 yield	 and	 the	 total	 working	man‐hours,	 rather	

than	the	environmental	factors.	

	

Attempts	have	been	made	 to	use	 IS	 techniques,	 such	 as	NNs	 and	 fuzzy	 logic,	 to	

determine	plant	development	and	production	modelling	for	decades	(Kaul	et	al.,	

2005;	 Kehagias	 et	 al.,	 1998;	 Pandey	 et	 al.,	 2010;	 Prasad	 et	 al.,	 2006;	 Simpson,	

1994;	Stoikos,	1995).	In	the	recent	work	of	Fitz‐Rodriguez	and	Giacomelli	(2009),	

time‐delay	neural	networks	(TDNNs)	were	 implemented	to	predict	 the	seasonal	

and	weekly	 yield	 variation	 taking	 into	 account	 over	 10	 factors,	 including	 plant	
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observations	 (stem	 diameter,	 number	 of	 leaves,	 etc.),	 aerial	 environmental	

conditions	 (air	 temperature,	 solar	 radiation,	 carbon	dioxide,	 etc.)	 and	 root	 zone	

environment	conditions	(irrigation,	hydrogen	ion	concentration,	etc.).	The	results	

showed	that	the	TDNN	model	can	accurately	estimate	the	weekly	fluctuations	of	

fruit‐related	parameters	with	determination	coefficients	(R2)	up	to	0.92.	

	

4.3	Datasets	

The	 dataset	 used	 in	 this	 chapter	 was	 collected	 during	 a	 series	 of	 experiments	

carried	 out	 at	 Warwick	 Horticultural	 Research	 International	 (WHRI)	 over	 the	

period	1999	and	2007	to	study	the	influence	of	various	environmental	conditions	

on	the	growth	and	yields	of	greenhouse	tomatoes.	In	the	experiments,	the	weekly	

tomato	 yields	 in	 a	 greenhouse	 and	 the	 daily	 internal	 environmental	

measurements	of	the	greenhouse,	comprising	of	temperature	(day	time	average,	

night	 time	 average	 and	 24hr	 average),	 solar	 radiation	 (day	 average),	 CO2	

concentration	(day	average)	and	vapour	pressure	deficit	(VPD,	day	time	average,	

night	time	average	and	24	hr	average),	were	collected.	The	yield	data	used	in	the	

development	of	the	prediction	system	was	recorded	on	a	weekly	basis	since	mid	

or	late	March	(around	the	12th	calendar	week)	when	the	first	fruits	were	picked.	

The	harvest	generally	lasts	about	30	weeks	(ends	around	the	42nd	calendar	week).	

During	the	harvest	season,	the	tomato	yields	are	measured	in	three	ways,	kg	per	

m2,	number	of	fruits	per	m2	and	average	fruit	weight.	

	

In	 all	 the	 experiments,	 the	 greenhouse	 was	 divided	 into	 four	 compartments,	

namely	 B8,	 B9,	 B10	 and	 B11.	 The	 compartments	 were	 subject	 to	 different	
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environment	regimes,	such	as	temperature	difference,	lighting	difference,	etc.	The	

environment	 conditions	 in	 the	 compartments	 were	 monitored	 and	 stored	

separately.	 The	 tomato	 plants	 placed	 in	 each	 compartment	 might	 be	 under	

different	treatments,	e.g.	pruning	a	truss	to	five	fruits,	removing	leaves	around	a	

truss,	 etc.	 The	 complete	 cultivation	 procedures	 and	 related	 treatments	 are	

described	by	Adams	(Adams	et	al.,	2001b;	Adams	&	Valdes,	2002).	 In	this	work,	

only	the	yield	data	collected	on	the	control	plants,	which	grow	naturally	without	

treatment	 in	 the	 greenhouse,	 are	 taken	 into	 consideration	 to	 minimise	 the	

potential	influences	from	human	operations	(plant	pruning).	

	

Based	 on	 the	 literature,	 all	 environmental	 factors	 may	 influence	 the	 growth	 of	

tomato	 plants	 and	 thus	 cause	 the	 fluctuations	 in	 weekly	 yields.	 Tomato	 fruits	

become	more	 sensitive	 to	 temperature	 as	 they	 approach	maturity	 (Adams	 and	

Valdes,	 2002;	 Adams	 et	 al.,	 2001a);	 solar	 radiation	 and	 CO2	 are	 the	 sources	 of	

photosynthesis	 and	 thus	 the	 key	 factors	 in	 tomato	 growth	 and	 production	

(O'Kane,	 1973;	 Willits	 and	 Peet,	 1998);	 high	 VPD	 enhances	 the	 variability	 of	

tomato	 fruit	weight	 (Leonardi	 et	 al.,	 2000);	 past	 yield	was	 identified	 as	 a	main	

factor	influencing	tomato	harvest	(Hoshi	et	al.,	2000).		

	

In	the	dataset,	the	environmental	factors	were	stored	daily	and	the	tomato	yields	

were	 stored	 weekly.	 In	 this	 work,	 instead	 of	 using	 the	 daily	 environmental	

measurements,	 the	weekly	averages	are	calculated	based	on	the	calendar	weeks	

to	be	used	as	the	inputs	due	to	the	fact	that	tomato	growth	and	the	environmental	

influence	are	long‐term	processes.	The	tomato	fruit	growing	cycle	(from	anthesis	

to	maturity)	is	about	60	days	(Adams,	2002;	Adams	et	al.,	2001a),	depending	on	
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their	genetic	species	and	environmental	condition	and	the	earliest	harvest	season	

started	 at	 the	 11th	 calendar	 week	 for	 the	 experiments.	 Based	 on	 these,	 an	

assumption	is	made	that	the	yield	of	fruits	might	be	related	to	the	environmental	

factors	up	 to	10	weeks	 in	 the	past.	This	 assumption	 (10	weeks)	 should	be	 long	

enough	 to	 cover	 the	 development	 cycle	 of	 greenhouse	 tomatoes	 under	 various	

conditions.	 In	 addition,	 the	 yields	 in	 previous	 weeks	 might	 also	 be	 used	 as	

indicators	 for	 the	yield	 in	 the	upcoming	week.	For	 those	non‐harvest	weeks	(1st	

week	 –	 10th	week),	 the	weekly	 yields	 are	 padded	with	 zeros	 as	 the	 inputs	 to	 a	

regression	model	 cannot	 be	 blank	 and	 zero	 is	 a	 fair	 value	 to	 replace	 any	 non‐

recorded/missing	 value.	 Among	 all	 these	 variables,	 the	 environmental	 data,	

including	 temperature,	 radiation,	 VPD	 and	 CO2	 density,	 are	 considered	 as	 the	

independent	variables	and	 the	yield	 is	 the	dependent	variable.	The	 relationship	

with	the	yield	in	a	certain	week	could	be	expressed	using	the	following	equation:	

Yn=F(Yn‐1,…,Yn‐10,	Rn‐1,…,Rn‐10,	Tn‐1,	…,Tn‐10,	Cn‐1,	…,Cn‐10,	Vn‐1,	…,Vn‐10)									(0.1)	

where	Y	represents	the	yield,	R	represents	radiation,	T	represents	temperature,	C	

represents	 CO2	 density,	 V	 represents	 VPD	 and	 the	 subscripts	 n,	 n‐1,	 …,	 n‐10	

indicate	the	corresponding	week,	i.e.	nth	week,	(n‐1)th	week,	etc.	

Table	4.1:	Basic	statistics	of	the	variables	

	 Unit	 Min.	 Max.	 Mean	
Standard	

Deviation	

Yield	 Kg/m2	 0.03	 3.61	 1.61	 0.64	

Temperature	 oC	 16.50	 24.44	 19.27	 1.54	

Radiation	 MJ/m2/day	 1.05	 17.41	 7.71	 3.85	

VPD	 kPa	 0.33	 1.03	 0.61	 0.14	

CO2	density	 p.p.m.	 385.74	 1152.00	 691.86	 161.74	
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Table	4.1	lists	the	basic	statistics	of	the	dataset	after	taking	the	weekly	averages	of	

the	 environmental	 data.	 It	 is	 evident	 that	 these	 variables	 are	 in	 distinct	 ranges,	

especially	the	measurements	of	the	CO2	density.		

	

4.4	Data	Pre‐processing	

All	 these	 variables	 (CO2	 density,	 radiation,	 temperature,	 VPD	 and	 yield)	will	 be	

scaled	 individually	using	min‐max	scaling	(equation	3.1)	 to	 transform	them	into	

the	 range	 [0,	 1].	 After	 rescaling,	 the	 variables	 are	 restructured	 into	 a	 standard	

format	(50	inputs	and	1	output)	based	on	equation	4.1.	For	the	prediction	of	yield	

in	 a	 certain	week,	 10	past	measurements	 from	each	 of	 the	 variables	 (radiation,	

temperature,	CO2,	VPD	and	yield)	are	required	as	the	input	variables	for	the	NNs.	

After	 the	 restructuring,	 the	 size	 of	 the	 input	 variables	 increased	 to	 50	

representing	 10	 past	 measurements	 from	 each	 of	 the	 variables.	 Figure	 4.1	

illustrates	the	restructuring	process.		

	

Figure	4.1:	Restructuring	the	variables	
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As	introduced	in	the	previous	section,	3.2.2.3.2,	five‐fold	cross‐validation	will	be	applied	

to	 test	 the	performance	of	 the	NNs.	Hence	 the	 restructured	dataset	 is	divided	 into	 five	

groups	of	roughly	equal	size,	so	that	60%	of	the	samples	are	assigned	to	the	training	set,	

20%	to	the	validation	set	and	20%	to	the	test	set.	Table	4.2	 lists	 the	distribution	of	 the	

samples.	

Table	4.2:	Sample	distribution	in	the	five‐fold	cross‐validation	

	 Set	A	 Set	B	 Set	C	 Set	D	 Set	E	 Total	

Count	 178	 176	 184	 171	 175	 884	

	
	

4.5	Variable	Selection	using	Sensitive	Genetic	Neural	Optimisation	

(SGNO)	

The	 reason	 for	 using	 SGNO	 in	 this	 application	 is	 to	 determine	 the	

influence/importance	of	each	input	variable	in	the	production	of	the	output.	Then,	

a	small	group	of	variables	of	high	influence	can	be	used	as	the	representatives	for	

all	the	variables.	As	introduced	in	the	previous	section	3.2,	SGNO	consists	of	three	

key	components,	which	are	the	Genetic	Algorithm	(GA)	module,	Neural	Network	

(NN)	module	 and	 Sensitivity	 Analysis	 (SA)	module.	 The	 GA	module	 determines	

the	general	structure	of	the	optimisation	algorithm.	The	NN	module	functions	as	

part	of	 the	GA	module	and	evaluates	 the	performance	of	 the	potential	 solutions	

generated	in	the	GA	module.	The	SA	module	provides	a	refined	analysis	of	a	group	

of	potential	solutions	of	high	performance,	i.e.	low	prediction	errors,	to	determine	

the	global	influence	of	each	variable.		
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4.5.1	Neural	Network	module	

NNs	 are	 not	 only	 used	 as	 part	 of	 the	 SGNO	 algorithm	 to	 evaluate	 the	

chromosomes	 in	 the	GA	module,	 they	are	also	used	as	 the	modelling	 tool	 to	 re‐

evaluate	the	input	variables	selected	by	the	SGNO.	When	a	NN	is	used	as	the	NN	

module	in	SGNO,	the	number	of	hidden	layers	is	fixed	to	be	1,	as	NNs	of	a	single	

hidden	layer	are	known	to	be	good	universal	approximators	and	training	NNs	of	

single	 hidden	 layer	 is	 more	 computationally	 efficient	 than	 NNs	 with	 multiple	

hidden	 layers	 (Csaji,	 2001;	 Heaton,	 2005;	 Hornik	 et	 al.,	 1989).	 The	 number	 of	

hidden	neurons	in	NNs	is	estimated	dynamically	as	half	of	the	sum	of	inputs	and	

outputs	 (Equation	 3.5)	 instead	 of	 using	 a	 fixed	 number	 of	 hidden	 neurons.	 In	

addition,	random	initial	weights	are	used	 in	the	NNs.	The	selection	of	activation	

functions	 is	 generally	 application	 oriented	 and	 an	 activation	 function	may	 only	

work	 well	 for	 a	 specific	 type	 of	 application.	 In	 the	 case	 of	 this	 tomato	 yield	

prediction	application,	 the	well‐known	tangent	sigmoid	 function,	aka	hyperbolic	

sigmoid	 function,	 (Equation	 2.5)	 is	 used	 in	 the	 hidden	 neurons	 and	 the	 output	

neuron.	 The	 tangent‐sigmoid	 function	 is	 continuous	 non‐linear	 and	 scales	 the	

input	in	the	range	[‐∞,	∞]	to	[‐1,	1].		

	

4.5.2	Genetic	Algorithm	module	

The	 GA	 module	 constructs	 the	 general	 structure	 of	 the	 SGNO	 algorithm	 as	

illustrated	 in	 Figure	 3.1	 (see	 Section	 3.1).	 In	 this	 tomato	 yield	 prediction	

application,	 the	 initial	GA	population	consists	of	a	group	of	 randomly	generated	

50‐bit	binary	chromosomes	(potential	solutions).	The	size	of	the	initial	population	

is	 estimated	using	 the	 rule	 of	 thumb,	 equation	3.3	 (Cox,	 2005).	As	 there	 are	50	
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input	variables,	the	total	search	space	would	have	250‐1	≈	1x1015	states.	Hence	the	

size	of	the	initial	population	is	estimated	to	be	250.		

	

Evaluation	of	 the	chromosomes’	 fitness	 is	performed	using	 the	NN	module	with	

five‐fold	cross‐validation.	In	each	generation,	an	elite	group	of	chromosomes	with	

the	 highest	 fitness	 in	 the	 population	 are	 selected	 and	 passed	 to	 the	 new	

generation	 without	 going	 through	 the	 crossover	 and	 mutation	 operations	 to	

ensure	 some	 of	 the	 good	 features	 are	 preserved	 in	 the	 new	 generation.	 In	 this	

application,	12	elite	chromosomes,	which	are	approximately	5%	of	the	population,	

are	selected	 in	each	generation.	The	chromosome	mutation	rate	 is	 set	 to	be	5%	

and	the	GA	stopping	criterion	is	the	evaluation	of	50	generations.	

	

	

Figure	4.2:	Performance	of	chromosomes	in	GA	generations.	
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Figure	4.2	illustrates	the	performance	of	the	chromosomes	in	each	generation.	As	

the	GA	evolves,	 it	can	be	seen	in	the	figure	that	the	mean	error	of	chromosomes	

decreases	rapidly	in	the	first	10	generations	and	then	slows	down	in	the	following	

20	generations.	The	mean	error	of	a	generation	tends	to	converge	from	the	30th	

generation.	For	the	individual	chromosomes,	the	error	of	a	chromosome	in	later	

generations	is	not	guaranteed	to	be	lower	than	the	ones	in	former	generations.		

	

	

Figure	4.3:	Number	of	selected	variables	(ON	bits)	in	each	generation.	

	

Figure	 4.3	 illustrates	 the	 changes	 in	 the	 sizes	 of	 chromosomes,	 which	 are	 the	

numbers	 of	 selected	 variables	 (ON	 bits)	 in	 individual	 chromosomes,	 as	 the	 GA	

evolves.	 It	 clearly	 shows	 that	 the	 mean	 chromosome	 size	 increases	 from	

approximately	12.5	in	the	first	generation	to	39	in	the	50th	generation.	The	mean	

chromosome	 size	 grows	 rapidly	 in	 the	 first	 12	 generations	 then	 increases	
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gradually	at	a	reduced	rate	until	approximately	the	40th	generation,	beyond	which	

it	tends	to	converge.		

	

	

Figure	4.4:	Chromosome	Evaluation	Error	vs.	Number	of	Selected	Variables.	

	

Figure	4.4	illustrates	the	relationship	between	the	performance	error	(RMSE)	and	

the	 number	 of	 ON	 bits	 in	 the	 chromosomes.	 A	 near‐linear	 relationship	 is	

observable	between	the	mean	performance	error	and	the	number	of	ON	bits.	The	

performance	 error	 decreases	 as	 the	 number	 of	 ON	 bits	 increases.	 The	 general	

negative	 correlation	 trend	 suggests	 that	 almost	 all	 the	 input	 variables	 are	

contributing	to	the	output.	However,	 it	 is	not	necessarily	 the	case	that	more	ON	

bits	would	 produce	 lower	 error.	 Chromosomes	 of	 the	 same	 number	 of	 ON	 bits	

produce	different	errors	covering	a	broad	range	of	RMSEs.	Possible	 factors	 that	

cause	the	variation	in	performance	include:	
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 The	 various	 combinations	 of	 the	 ON	 bits	 in	 chromosomes.	 Different	

variables	may	have	different	influences	in	the	NN	models;	some	variables	

may	have	 strong	 contributions	 towards	 the	model	output	 and	 some	may	

have	minor	 or	 even	 negative	 contributions,	 i.e.	 instead	 of	 improving	 the	

NN	model’s	performance,	they	reduce	its	performance	when	added	to	the	

NN	model.		

 The	performance	of	the	NN	module	that	evaluates	the	chromosome.	Every	

chromosome	 is	 evaluated	 by	 a	 number	 of	 NNs	 with	 randomised	 initial	

weights,	which	usually	lead	to	minor	differences	in	the	outputs	produced.	

Hence,	 even	 identical	 chromosomes	 will	 have	 different	 fitness	 values	

generated	by	the	NN	module.	

	

4.5.3	Sensitivity	Analysis	module	

In	the	SA	module,	a	quarter	of	the	chromosomes	evaluated	in	each	generation	of	

the	 GA	 module	 that	 produces	 the	 lowest	 errors	 are	 selected	 to	 carry	 out	 the	

refined	 SA	 analysis	 on	 each	 of	 the	 input	 variables.	 In	 this	 application,	 the	 GA	

population	size	is	250	and	they	have	been	evaluated	for	50	generations.	Hence,	62	

(250/4≈62)	 chromosomes	 will	 be	 selected	 from	 each	 generation	 and	 the	 total	

number	 of	 chromosomes	 to	 carry	 out	 the	 SA	 analysis	 is	 3100	 (62x50=3100).	

Figure	 4.5	 illustrates	 the	 size	 (number	 of	 selected	 variables)	 of	 these	

chromosomes	 selected	 for	 the	 SA	 analysis.	 It	 shows	 clearly	 that	 most	 of	 the	

selected	chromosomes	have	a	 large	number	of	ON	bits	(over	30)	due	to	the	 fact	

that	the	number	of	ON	bits	in	the	chromosomes	increases	as	the	GA	evolves	(see	
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Figure	4.3)	and	the	chromosomes	with	larger	numbers	of	ON	bits	are	more	likely	

to	produce	better	performance	(see	Figure	4.4).	

	

Figure	4.5:	Size	of	the	chromosomes	selected	for	SA	analysis	

	

	

Figure	4.6:	Monte	Carlo	simulation	
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The	SA	analysis	used	in	SGNO	is	based	on	the	Monte	Carlo	simulation	(MCS).	The	

sensitivity	 score	 of	 a	 certain	 variable	 is	 defined	 as	 the	 mean	 difference	 if	 it	 is	

replaced	by	an	arbitrary	number.	Figure	4.6	illustrates	the	MCS	of	a	variable	in	a	

randomly	 picked	 chromosome.	 In	 this	 figure,	 the	 mean	 error	 plot	 starts	

converging	after	taking	approximately	160	random	samples.	The	converged	mean	

error	 is	 considered	 as	 the	 sensitivity	 score	 of	 the	 variable	 in	 that	 randomly	

selected	 chromosome.	 Although	 the	 Monte	 Carlo	 simulation	 converges	 after	

taking	about	160	samples,	more	random	samples	were	actually	taken	as	shown	in	

Figure	4.6.	The	reason	for	taking	more	samples	is	due	to	the	fact	that	the	training	

and	evaluation	(simulation)	of	NNs	in	Matlab®	is	operationally	expensive.	Hence,	

it	is	preferable	to	perform	training	and	evaluation	on	a	large	chunk	of	data	rather	

than	repetitively	performing	the	operations	on	the	same	amount	data	in	smaller	

blocks.		

	

After	computing	the	variables’	sensitivity	scores	in	all	the	selected	chromosomes,	

the	 global	 sensitivity	 score	 of	 each	 variable	 can	 be	 derived	 by	 calculating	 the	

mean	value.	Figure	4.7	illustrates	the	global	sensitivity	scores	for	all	variables.		
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Figure	4.7:	Global	sensitivity	scores	for	all	variables	

	

As	the	sensitivity	score	of	an	input	variable	reflects	its	influence	or	contribution	to	

the	output	of	the	model,	a	variable	of	higher	sensitivity	score	is	considered	more	

important/influential	 than	 a	 variable	 of	 lower	 sensitivity	 score.	 By	 rearranging	

the	input	variables	according	to	their	sensitivity	scores,	an	importance	rank	table	

can	be	 constructed,	which	 is	 listed	below.	The	 list	 is	 the	 importance	 rank	 table	

containing	 the	 variable	 indices	 in	GA	 chromosomes	 arranged	 in	 the	 descending	

order	of	sensitivity	scores	from	the	highest	to	the	lowest.		

[18,	49,	15,	2,	16,	19,	23,	39,	7,	17,	30,	32,	22,	44,	28,	24,	21,	10,	50,	14,	20,	34,	

29,	35,	37,	38,	31,	12,	43,	25,	11,	4,	40,	5,	26,	48,	36,	13,	1,	47,	9,	41,	42,	3,	45,	

27,	46,	6,	8,	33]	

	

The	ordered	variable	indices	in	the	importance	rank	table	represent	the	positions	

in	 the	 chromosome.	 Table	 4.3	 shows	 the	 indices	 in	 the	 chromosomes	 and	 their	
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corresponding	information.	

Table	4.3:	GA	Chromosome	explained	

CO2	
Index	in	chromosome	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Represent	data	collected	in	week	

n‐10	 n‐9	 n‐8	 n‐7	 n‐6	 n‐5	 n‐4	 n‐3	 n‐2	 n‐1	
	

Radiation	
Index	in	chromosome	

11	 12	 13	 14	 15	 16	 17	 18	 19	 20	
Represent	data	collected	in	week	

n‐10	 n‐9	 n‐8	 n‐7	 n‐6	 n‐5	 n‐4	 n‐3	 n‐2	 n‐1	
	

Temperature	
Index	in	chromosome	

21	 22	 23	 24	 25	 26	 27	 28	 29	 30	
Represent	data	collected	in	week	

n‐10	 n‐9	 n‐8	 n‐7	 n‐6	 n‐5	 n‐4	 n‐3	 n‐2	 n‐1	
	

VPD	
Index	in	chromosome	

31	 32	 33	 34	 35	 36	 37	 38	 39	 40	
Represent	data	collected	in	week	

n‐10	 n‐9	 n‐8	 n‐7	 n‐6	 n‐5	 n‐4	 n‐3	 n‐2	 n‐1	
	

Yield	
Index	in	chromosome	

41	 42	 43	 44	 45	 46	 47	 48	 49	 50	
Represent	data	collected	in	week	

n‐10	 n‐9	 n‐8	 n‐7	 n‐6	 n‐5	 n‐4	 n‐3	 n‐2	 n‐1	
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Figure	4.8:	Appearance	of	Variable	Groups	in	the	Rank	Table	

	

Based	 on	 the	 importance	 rank	 table,	 the	 appearance	 of	 a	 certain	 group	 of	

variables	 (CO2,	 radiation,	 etc.)	 can	 be	 calculated.	 Figure	 4.8	 illustrates	 the	

accumulated	appearance	frequencies	of	the	five	variable	groups	in	the	rank	table.	

In	 the	 figure,	 the	 appearance	 of	 radiation	 is	 dominant	when	 a	 small	 number	 of	

variables,	 say	 15,	 is	 selected	 to	 represent	 the	 original	 data.	 The	 appearance	 of	

temperature	quickly	rises	following	the	radiation.	When	20	variables	are	selected	

to	 represent	 the	 original	 data,	 temperature	 and	 radiation	 become	 the	 most	

important	 variable	 groups.	 The	 appearances	 of	 the	 CO2	 and	 yield	 variables	

gradually	 increase	 indicating	that	these	two	groups	are	generally	 less	 important	

than	 the	 other	 variable	 groups.	 To	 sum	 up,	 the	 radiation	 is	 no	 doubt	 the	most	

influential	 variable	 group	 as	 it	 always	 has	 the	 highest	 appearance	 frequencies.	

The	 temperature	group	 is	 of	 similar	 level	 of	 importance	as	 the	 radiation	group.		

The	VPD	group	is	of	medium	influence	in	general,	while	the	CO2	and	yield	are	less	
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influential	on	average.		

	

4.6	System	Remodelling	

As	mentioned	in	the	previous	section	3.2.3,	NNs	are	not	only	used	as	the	fitness	

functions	 in	the	GA	module,	but	are	also	used	to	re‐evaluate	the	performance	of	

variables	 selected	 in	 the	 SGNO.	 By	 selecting	 various	 numbers	 of	 variables	 from	

the	beginning	of	the	importance	rank	table,	it	is	presumed	that	a	greater	number	

of	variables	would	produce	better	results.	Table	4.4	lists	the	re‐evaluation	results,	

including	RMSE	and	coefficient	of	determination	(R2).	The	‘Size’	rows	indicate	the	

number	of	variables	selected	from	the	rank	table.	Figure	4.9	illustrates	the	results	

of	 taking	 5,	 10	 and	 15	 inputs	 from	 the	 importance	 rank	 table	 and	 figure	 4.10	

illustrates	 the	 re‐evaluation	 results	 (RMSE)	 as	 compared	 to	 the	 chromosomes	

evaluated	in	the	SGNO’s	GA	module.		

Table	4.4:	SGNO	remodelling	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.1392	 0.1377	 0.1374 0.1333 0.1282 0.1261	 0.1217	 0.1198 0.1194
R2	 0.3678	 0.3815	 0.3839 0.4204 0.4643 0.4815	 0.5173	 0.5317 0.535

	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.1193	 0.1169	 0.1144 0.1136 0.1131 0.1089	 0.1088	 0.1063 0.1069
R2	 0.5357	 0.5546	 0.5733 0.5792 0.583 0.6134	 0.6142	 0.6312 0.627

	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.1019	 0.103	 0.1061 0.1035 0.1027 0.1015	 0.1015	 0.1001 0.101
R2	 0.6616	 0.6541	 0.6326 0.6505 0.6559 0.6637	 0.6643	 0.6731 0.6675

	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.101	 0.098	 0.0968 0.0971 0.0986 0.0954 0.0944	 0.0945 0.0966
R2	 0.667	 0.6868	 0.6946 0.6926 0.6832 0.703 0.7092	 0.7088 0.6958
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Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.093	 0.0935	 0.0938 0.0948 0.0926 0.0917 0.0889	 0.0924 0.0911
R2	 0.718	 0.7147	 0.7132 0.7068 0.7203 0.7256 0.7423	 0.7215 0.7293

	
Size	 46	 47	 48	 49	 50	
RMSE	 0.0917	 0.0898	 0.0879 0.0906 0.0889
R2	 0.726	 0.7373	 0.7483 0.7324 0.7423

	

Figure	4.9:	Remodelling	results	of	various	numbers	of	inputs	

	

Figure	4.10:	Performance	of	variables	in	SGNO	rank	table	against	

chromosomes	evaluated	in	the	GA	module	
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As	 illustrated	 in	 Figure	 4.10,	 the	 variables	 selected	 from	 the	 SGNO	 rank	 table	

always	 perform	 better	 than	 the	 average	 performance	 of	 the	 same	 number	 of	

variables	selected	by	chromosomes	in	the	GA	module.	The	advantage	of	using	the	

variables	in	the	rank	table	gradually	reduces	as	the	number	of	selected	variables	

increases.	 The	 plot	 of	 the	 SGNO’s	 performance	 shows	 a	 decreasing	 trend.	

However,	there	are	certain	points	on	the	plot	that	do	not	follow	the	trend	nicely.	

This	 is	 due	 to	 the	 fact	 that	 NNs	 are	 non‐deterministic	 models;	 different	 initial	

weights	in	hidden	neurons	may	lead	to	different	generalised	states	after	training,	

and	thus	generating	different	outputs.	On	the	other	hand,	some	of	the	variables	or	

the	 combinations	 of	 some	 variables	may	have	negative	 contributions	 to	 the	NN	

models	and	thus	reduce	the	performance	of	the	NN	models	when	they	are	used	as	

the	inputs.	

		

The	architectures	of	 the	NNs	used	so	 far	are	not	optimal	as	 the	architectures	of	

the	NN	models	are	estimated	using	rule	of	 thumbs,	which	suggests	 that	a	single	

layer	 of	 hidden	 neurons	 is	 sufficient	 and	 the	 number	 of	 hidden	 neurons	 is	

determined	by	halving	the	sum	of	the	numbers	of	inputs	and	outputs.	Hence	the	

regression	 results	 produced	using	 the	proposed	 variable	 combinations	may	not	

be	 optimal.	 To	 explore	 the	 best	 performance	 achievable	 using	 the	 variable	

combinations	in	the	importance	rank	table,	NNs	of	 ‘optimal’	architectures	taking	

various	numbers	of	 input	variables	(5‐variable,	10‐variable,	15‐variable	and	20‐

variable)	are	discovered.	The	‘forward’	selection	procedure,	which	was	explained	

in	section	3.2.3,	is	implemented	to	find	the	best	architecture,	in	which	the	number	

of	 hidden	 neurons	 gradually	 increases	 until	 a	 certain	 condition	 is	 reached.	 The	
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following	restrictions	are	implemented	to	limit	the	search	domain	of	the	‘forward’	

selection	procedure	(Heaton,	2005):	

 The	number	of	hidden	neurons	should	be	no	more	than	twice	the	input	layer	

size.	

	 																																																			(4.1)	

 There	are	no	more	than	two	hidden	layers.	

	

The	‘optimal’	architecture	of	a	certain	NN	is	discovered	using	the	following	steps:	

1. A	single	hidden	 layer	NN	of	only	1	hidden	neuron	 is	 first	evaluated	 (The	

NN	 is	 trained	 using	 the	 dataset	 and	 the	 training	 error	 is	 obtained	 to	

represent	the	performance	of	the	NN).	

2. An	extra	hidden	neuron	is	added	to	the	NN	and	the	NN	is	evaluated.	

3. Step	2	is	repeated	until	the	number	of	hidden	neurons	is	equal	to	twice	the	

number	of	input	variables.	

4. An	extra	hidden	layer	with	one	hidden	neuron	is	added	to	the	NN,	the	first	

hidden	layer	is	reset	to	1	hidden	neuron	and	re‐evaluation	is	performed.	

5. An	extra	hidden	neuron	is	added	to	the	first	hidden	layer	and	re‐evaluation	

is	performed.	

6. Step	 5	 is	 repeated	 until	 the	 total	 number	 of	 hidden	 neurons	 is	 equal	 to	

twice	the	input	variables.	

7. An	 extra	 hidden	 neuron	 is	 added	 to	 the	 second	 hidden	 layer,	 the	 first	

hidden	layer	is	reset	to	1	hidden	neuron	and	re‐evaluation	is	performed.	

8. Steps	5	to	7	are	repeated	until	the	number	of	hidden	neurons	in	the	second	

hidden	layer	is	equal	to	twice	the	input	variables.	
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9. The	evaluation	results	at	each	stage	are	stored	in	a	matrix.	The	row	index	

of	the	matrix	represents	the	number	of	hidden	neurons	in	the	first	hidden	

layer,	 i.e.	 the	 first	 row	 indicates	 the	 presence	 of	 1	 hidden	 neuron,	 the	

second	row	indicates	2	hidden	neurons,	etc.	The	column	index	represents	

the	number	of	hidden	neurons	in	the	second	hidden	layer	minus	1,	i.e.	the	

first	 column	 indicates	 that	 the	 second	 hidden	 layer	 does	 not	 exist,	 the	

second	 column	 indicates	 the	 presence	 of	 1	 hidden	 neuron	 in	 the	 second	

hidden	layer,	etc.	

10. The	best	performance	can	be	 identified	by	 locating	 the	 lowest	evaluation	

result	 in	 the	matrix	 and	 the	 location	 of	 the	 result	 indicates	 the	 ‘optimal’	

architecture.			

	

Figure	 4.11	 illustrates	 the	 matrix	 containing	 the	 evaluation	 results	 for	 the	 NN	

with	 5	 input	 variables	 selected	 from	 the	 importance	 rank	 table.	 The	 x‐axis	

indicates	 the	 number	 of	 hidden	 neurons	 in	 the	 second	 hidden	 layer;	 the	 y‐axis	

indicates	 the	number	of	hidden	neurons	 in	 the	 first	hidden	 layer;	 the	colours	of	

the	pixels	indicate	the	evaluation	results.		
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Figure	4.11:	Architecture	trials	for	NNs	of	5	input	variables	

	

As	 can	be	seen	 in	Figure	4.11,	 the	 lowest	performance	occurred	at	 the	point	 [0,	

10]	representing	the	NN	architecture	of	10	neurons	in	the	first	hidden	layer	and	

no	second	layer.	In	this	5‐variable	situation,	a	single	hidden	layer	performs	well	in	

general	and	the	extra	hidden	layer	does	not	contribute	positively	to	the	NN	under	

the	 predefined	 restrictions.	 Table	 4.5	 shows	 the	 ‘optimal’	 architectures	

discovered	 for	 the	 various	 key	 points	 and	 their	 corresponding	 performance.	

Based	on	 the	discovery	 listed	 in	Table	4.5,	 all	 the	 ‘optimal’	 architectures	have	a	

single	hidden	 layer	with	 a	 large	number	of	 hidden	neurons	 as	 compared	 to	 the	

number	of	input	and	output	neurons.	
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Table	4.5:	Discovery	of	‘optimal’	architectures	and	their	performances	

Number	of	input	variables
‘Optimal’	architecture	

[1st	layer,	2nd	layer]	

Performance	

(RMSE)	

5	 [10,	0]	 0.1247	

10	 [18,	0]	 0.1103	

15	 [30,	0]	 0.0977	

20	 [33,	0]	 0.0917	

	
	

	

Figure	4.12:	Performance	of	NNs	of	‘optimal’	and	of	estimated	architectures	

	

Figure	4.12	illustrates	the	performance	of	the	NNs	of	‘optimal’	architectures	those	

NNs	with	estimated	architectures.	As	illustrated	in	the	figure,	the	NNs	of	‘optimal’	

architectures	perform	significantly	better	than	the	architectures	estimated	using	

the	rule	of	thumb.		

	



Prediction	of	Longitudinal	Dispersion	Coefficient	in	Natural	Streams	

126	
	

4.7	Symbolic	Regression	using	Genetic	Programming	

NNs	are	generally	known	as	black‐box	models	as	the	physical	parameters	of	the	

NNs	are	generally	not	understandable.	In	SGNO,	Genetic	Programming	(GP)	with	

Multiple	Branches	Encoding	 (MBE)	 is	 implemented	 to	discover	 simple	 symbolic	

relationships	(symbolic	regression)	between	the	selected	input	variables	and	the	

outputs.	 The	 size	 (depth)	 of	 the	 tree	 structured	 expressions	 and	 the	number	of	

number	 of	 tree	 branches	 in	 the	 GP	 chromosomes	 are	 restricted	 to	 a	 certain	

number,	 which	 can	 only	 be	 changed	 when	 necessary	 to	 control	 (limit)	 the	

expansion	 of	 the	 expressions.	 In	 this	 application,	 seven	 commonly	 used	

mathematical	 operators	 are	 selected	 as	 the	 source	 of	 expressions.	 These	

operators	are	listed	in	Table	4.6.	

Table	4.6:	Mathematical	operators	in	GP	

Operator	Name	 Expression	 Arity	

Plus	 +	 2	

Minus	 ‐	 2	

Times	 *	 2	

Divide	 /	 2	

Power	 POW	 1	

Logarithm	 LOG	 1	

Square	root	 SQRT	 1	

	

For	 the	 case	 of	 5	 input	 variables,	 the	 population	 size	 is	 estimated	 at	 175	

(5x7x5=175)	 using	 the	 rules	 of	 thumb	 (Equation	 3.10),	 the	 initial	 maximum	

number	 of	 expression	 tree	 branches	 in	 a	 chromosome	 is	 5	 and	 the	 initial	

maximum	tree	depth	is	3.	In	addition,	8	elite	chromosomes,	which	are	about	5%	
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of	the	population,	in	each	GP	generation	are	passed	to	the	new	generation	without	

modification.		

	

Figure	4.13:	Evolution	of	GP	for	5	variables.	(a)	mean	chromosome	error	in	

each	generation;	(b)	minimum	chromosome	error	in	each	generation	

	

Figure	 4.13	 illustrates	 the	 evaluation	 of	 the	 GP	 process	 in	 the	 case	 of	 5	 input	

variables	from	the	rank	table.	It	shows	that	the	chromosome	of	the	lowest	error,	

0.1260,	 is	produced	at	 the	61st	generation	and	the	chromosome	 is	expressed	by	

the	equation	4.3.	This	MBE‐GP	chromosome	produces	comparable	performance	to	

the	‘optimal’	NNs	with	the	same	input	variables,	which	generates	a	mean	error	of	

0.1247	as	listed	in	table	4.5.	Comparing	with	the	NNs	of	estimated	architectures,	

which	produce	a	mean	error	of	0.1282	(see	table	4.4),	this	symbolic	expression	is	

of	minor	advantage.		

∗ 	 ∗ ∗ ∗ . 	 ∗ 	 									(4.2)	

where	A,	B,	C,	D	and	E	are	the	coefficients	to	be	determined	during	the	evaluation	
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of	the	chromosome;	x1,	x2,	x3,	x4	and	x5	are	the	corresponding	variables	in	the	rank	

table.	

	

The	 following	 symbolic	 expression,	 equation	 4.4,	 is	 discovered	 if	 10	 input	

variables	are	selected.	This	GP	chromosome	produces	an	average	error	as	low	as	

0.1214.	Comparing	with	 the	 ‘optimal’	NNs	with	 the	 same	 input	variables,	which	

produce	an	average	error	of	0.1103	and	the	NNs	of	estimated	architectures	that	

generate	 an	 average	error	 of	 0.1193,	 this	 symbolic	 expression	 is	 competitive	 to	

the	‘non‐optimal’	NNs	but	not	as	the	‘optimal’	NNs.	

∗ 	 	 ∗ 	 													(4.3)	

	

4.8	Benchmarking	with	other	Feature	Selection	(FS)	Techniques	

In	 this	 section,	 the	 performance	 of	 SGNO	 is	 benchmarked	 against	 several	 other	

dimensionality	 reduction	 techniques,	 including	 BFS,	 FFS,	 GNMM	 and	 PCA,	 by	

evaluating	the	variable	rank	tables	explored	by	all	these	techniques.	

	

4.8.1	Principal	Component	Analysis	(PCA)	

PCA	 is	 a	 famous	mathematical	 procedure	 that	 transforms	 a	 set	 of	 multivariate	

data	linearly	into	a	new	coordinate	system	of	the	same	number	of	dimensionality.	

The	 dimensionality	 reduction	 using	 PCA	 is	 to	 replace	 the	 original	 data	 with	 a	

number	of	PCs,	usually	less	than	the	number	of	variables	in	the	original	data	but	

carrying	 a	 significant	 amount	 of	 variations	 (Dunteman,	 1989).	 The	 detailed	

procedures	of	PCA	are	discussed	previously	in	section	3.3.1.		
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In	this	tomato	yield	prediction	application,	PCA	is	used	to	transform	the	original	

dataset	of	50	input	variables	into	a	new	coordinate	system.	Then	various	numbers	

of	PCs	are	selected	and	used	as	inputs	to	the	NN	models	to	perform	tomato	yield	

prediction.	 The	 performance	 of	 PCA	 is	 compared	 with	 SGNO	 by	 evaluating	 the	

same	number	 of	 variables	 selected	 from	 the	 variable	 rank	 table	 constructed	 by	

SGNO.		

	

Figure	4.14:	Variance	accounted	for	or	explained	in	PCs	

	

Figure	4.14	illustrates	the	variance	accounted	for	by	each	PC	and	there	are	only	

10	PCs	present	in	the	figure.	As	illustrated	in	the	figure,	the	first	PC	explains	about	

48%	of	the	variance	in	the	original	dataset,	which	is	significantly	greater	than	the	

other	PCs.	The	accumulated	variance	plot	(the	blue	thin	plot)	shows	that	the	first	

3	PCs	explain	about	70%	of	the	variance	and	the	first	6	PCs	explain	around	80%.		
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Following	 PCA	 transformation,	 NN	models	 are	 employed	 to	 predict	 the	 tomato	

yield	using	various	numbers	of	PCs.	The	NN	models	employed	contains	a	 single	

hidden	 processing	 layer	 and	 the	 number	 of	 hidden	 neurons	 is	 estimated	 by	

halving	 the	 sum	 of	 the	 inputs	 and	 output.	 Table	 4.7	 lists	 the	 evaluation	 results	

(RMSEs)	 of	 the	NN	models.	 The	 ‘size’	 rows	 indicate	 the	 number	 of	 PCs	 used	 as	

input	variables.	

Table	4.7:	PCA	evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.174	 0.1727	 0.1656 0.165 0.1546 0.1485 0.1431	 0.1436 0.1385
	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.1371	 0.1303	 0.1288 0.1292 0.1283 0.1243	 0.1234	 0.1205 0.1188
	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.1182	 0.1181	 0.1154 0.1153 0.1111 0.108 0.1072	 0.1062 0.1053
	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.1065	 0.1062	 0.1038 0.0994 0.1024 0.099 0.0985	 0.0979 0.0963
	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.0961	 0.0948	 0.0977 0.0939 0.097 0.0928 0.0934	 0.0926 0.0918
	
Size	 46	 47	 48	 49	 50	
RMSE	 0.0903	 0.0917	 0.0906 0.0893 0.0881
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Figure	4.15:	Performance	of	ANN	models	using	PCA	discovery	against	SGNO	

	

Figure	4.15	illustrates	the	performance	of	the	NN	models	using	various	numbers	

of	 PCs	 against	 the	 performance	 of	 the	 NN	 models	 taking	 the	 same	 number	 of	

variables	selected	from	the	SGNO’s	importance	rank	tale.	The	figure	shows	clearly	

that	both	performance	plots	gradually	decrease	as	the	number	of	input	variables	

increases	and	the	SGNO’s	rank	table	is	always	superior	to	the	PCA.	The	advantage	

of	 SGNO	 is	 significant	when	 the	 number	 of	 input	 variables	 is	 small.	 The	 largest	

difference	between	the	performance	of	SGNO	and	PCA	occurs	when	only	one	or	

two	variables	are	used	as	 inputs,	 and	 the	difference	 is	up	 to	 the	value	of	0.035.	

The	advantage	of	SGNO	weakens	as	the	number	of	input	variables	increases	and	

finally	vanishes	when	 the	number	of	variables	exceeds	35	and	 the	performance	

plots	start	to	overlap.	
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4.8.2	Forward	Feature	Selection	(FFS)	and	Backward	Feature	

Selection	(BFS)	

FFS	and	BFS	are	conventional	FS	 techniques.	The	detailed	explanations	of	 these	

two	 techniques	 are	 discussed	 in	 section	 3.3.2.	 In	 this	 application,	 FFS	 and	 BFS	

employ	NN	models	to	evaluate	the	variables	in	the	variable	lists	and	decide	which	

variable	to	be	added	or	removed	based	on	the	feedback	from	the	NN	models.	The	

ANN	 models	 employ	 the	 same	 architectures	 as	 the	 NN	 module	 in	 the	 SGNO	

process,	i.e.	single	hidden	layer	with	the	number	of	hidden	neurons	estimated	by	

halving	the	sum	of	the	inputs	and	outputs.	The	following	lists	present	the	variable	

preference	tables	constructed	using	BFS	and	FFS.	The	variables	are	in	descending	

order	of	preferences	in	both	lists.	

BFS:			[50,	17,	24,	43,	16,	21,	36,	49,	40,	28,	47,	30,	8,	1,	14,	35,	10,	29,	11,	46,	

48,	15,	3,	20,	44,	22,	27,	13,	5,	19,	42,	45,	2,	34,	12,	26,	6,	7,	18,	38,	37,	

25,	39,	31,	41,	23,	9,	4,	33,	32]	

		

FFS:			[50,	20,	48,	23,	18,	30,	43,	42,	14,	39,	41,	28,	7,	36,	38,	16,	8,	32,	47,	44,	

49,	2,	9,	21,	33,	22,	6,	34,	15,	1,	29,	10,	17,	26,	5,	46,	40,	45,	12,	25,	31,	

13,	11,	27,	37,	4,	24,	35,	3,	19]	

	

Comparing	with	the	preference	list	generated	using	SGNO,	which	is	[18,	49,	15,	2,	

16,	19,	23,	39,	7,	17,	30,	32,	22,	44,	28,	24,	21,	10,	50,	14,	20,	34,	29,	35,	37,	

38,	31,	12,	43,	25,	11,	4,	40,	5,	26,	48,	36,	13,	1,	47,	9,	41,	42,	3,	45,	27,	46,	6,	8,	

33],	these	three	preference	lists	are	distinct	from	each	other.	However,	both	BFS	

and	FFS	identify	the	50th	variable	as	the	most	favourable,	and	both	SGNO	and	BFS	

consider	the	33rd	variable	to	be	unfavourable.	Table	4.8	lists	the	evaluation	results	
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(RMSEs)	 of	 the	 preference	 lists	 constructed	 using	 BFS	 and	 FFS	 when	 various	

numbers	of	input	variables	are	selected.		

Table	4.8:	BFS	and	FFS	evaluation	results	(RMSEs)	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
BFS	 0.1367 0.1313	 0.1303 0.1304 0.126 0.1255 0.1246	 0.1231 0.1193
FFS	 0.1367 0.1311	 0.13 0.1263 0.1229 0.1226 0.1213	 0.1212 0.1199
	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
BFS	 0.12 0.1189	 0.1181 0.1165 0.1176 0.1152 0.1126	 0.1129 0.1131
FFS	 0.1197 0.1185	 0.1177 0.1174 0.1162 0.1168 0.1169	 0.114 0.1139
	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
BFS	 0.1123 0.1108	 0.112 0.1107 0.1085 0.108 0.1064	 0.1067 0.1056
FFS	 0.1134 0.1129	 0.1093 0.1078 0.1075 0.1065 0.1065	 0.1054 0.1039
	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
BFS	 0.1063 0.1049	 0.1038 0.1022 0.1026 0.1026 0.1017	 0.0995 0.1004
FFS	 0.1036 0.0993	 0.1018 0.0997 0.0984 0.0995 0.0992	 0.0975 0.0971
	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
BFS	 0.1003 0.0975	 0.0987 0.0949 0.0961 0.0952 0.0945	 0.0913 0.0916
FFS	 0.0964 0.0968	 0.0934 0.094 0.0933 0.0931 0.0929	 0.0935 0.0927
	
Size	 46	 47	 48	 49	 50	
BFS	 0.089	 0.0906	 0.0926 0.0886 0.0894
FFS	 0.091	 0.094	 0.0914 0.0904 0.0894
	

Figure	4.16	illustrates	the	difference	in	performance	of	BFS	and	FFS	against	SGNO	

in	this	task	of	estimating	weekly	tomato	yields	using	various	numbers	of	variables	

from	the	preference	lists.		
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Figure	4.16:	Performance	of	NN	models	using	BFS	and	FFS	against	SGNO	

	

	

As	shown	in	Figure	4.16,	all	these	plots	show	gradually	decreasing	patterns.	The	

plots	 for	BFS	 and	FFS	 are	of	 similar	patterns	 and	when	 the	number	of	 selected	

variables	is	greater	than	26,	the	performance	of	FFS	selected	variables	is	slightly	

better,	i.e.	lower	RMSEs.			SGNO	performs	the	worst	when	the	number	of	variables	

is	 less	 than	 6.	 However,	 as	 the	 number	 of	 variables	 increases,	 SGNO	 gradually	

gains	 its	 advantage	 and	 generates	 the	 lowest	 RMSEs	 when	 the	 number	 of	

variables	 is	between	10	and	40.	When	the	number	of	selected	variables	exceeds	

40,	these	performance	plots	start	to	overlap.		

	

4.8.3	Genetic	Neural	Mathematical	Method	approach	

The	GNMM	is	a	hybrid	data	mining	technique	implemented	by	Yang	(2007,	2010)	

using	 GA	 and	 NNs.	 The	 selection	 of	 variables,	 i.e.	 the	 construction	 of	 the	
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importance	 rank	 table,	 is	 performed	 using	 the	 appearance	 percentage	 of	 each	

individual	variable	during	the	GA	process.	The	detailed	procedures	of	GNMM	are	

discussed	 in	 section	3.3.3.	Figure	4.17	 illustrates	 the	appearance	percentage	 for	

the	variables	in	this	tomato	prediction	application.	

	

Figure	4.17:	GNMM	Appearance	Percentage	

	

Rearranging	 the	 variables	 in	 descending	 order	 based	 on	 their	 appearance	

percentages	as	derived	by	GNMM,	the	following	rank	table	was	constructed.	This	

rank	table	is	distinct	from	the	one	produced	by	SGNO.	

[24,	30,	31,	34,	3,	7,	13,	1,	4,	6,	10,	21,	25,	43,	45,	47,	14,	16,	46,	19,	29,	42,	9,	

35,	49,	8,	12,	18,	36,	37,	40,	22,	23,	5,	11,	32,	2,	27,	28,	50,	17,	26,	44,	41,	15,	

20,	33,	38,	48,	39]	
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Figure	 4.18	 illustrates	 the	 appearance	 frequencies	 of	 each	 variable	 group	 (CO2,	

radiation,	 temperature,	etc.)	 in	the	rank	table.	This	 figure	clearly	shows	that	the	

CO2	group	is	the	most	important	variable	group	in	general.		

	

Figure	4.18:	Appearance	Frequencies	of	Variable	Groups	

	

Table	4.9	lists	the	performance	of	GNMM	by	evaluating	various	number	of	

variables	selected	the	rank	table	above	using	NNs.		

Table	4.9:	GNMM	evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.1747	 0.1628	 0.1573 0.1577 0.1468 0.1446	 0.133	 0.1295 0.1286

	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.1317	 0.1295	 0.1238 0.125 0.1225 0.1226 0.1205	 0.1189 0.1158

	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.1185	 0.1169	 0.1134 0.1157 0.1133 0.1139	 0.1125	 0.1106 0.1089

	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.1112	 0.1058	 0.1066 0.1094 0.1059 0.1032	 0.1033	 0.1015 0.1006
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Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.0963	 0.101	 0.0947 0.0993 0.0946 0.0982 0.0978	 0.0945 0.0925

	
Size	 46	 47	 48	 49	 50	
RMSE	 0.0904	 0.0899	 0.0931 0.0892 0.0903
	

	

Figure	4.19:	Performance	of	GNMM	vs.	SGNO	

	

Figure	 4.19	 illustrates	 the	 average	 performance	 of	 GNMM	 as	 compared	 to	 the	

variables	selected	by	SGNO	under	the	same	conditions	(the	same	of	variables	and	

the	same	NN	architectures).	This	figure	indicates	that	the	rank	table	produced	by	

SGNO	performs	better	than	the	rank	table	generated	by	GNMM.	The	advantage	of	

SGNO	 is	 significant	 when	 the	 number	 of	 input	 variables	 is	 less	 than	 7	 and	 the	

largest	difference	is	up	to	the	value	of	0.0355	(1	input	variable).	As	the	number	of	

input	variables	increases,	the	performance	difference	between	SGNO	and	GNMM	

gradually	reduces	and	the	performance	plots	start	to	overlap	when	the	number	of	

variables	exceeds	43.	
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4.8.4	Benchmarking	summary	

Figure	 4.20	 summarises	 the	 performance	 of	 all	 the	 benchmarking	 techniques	

against	 SGNO	 by	 plotting	 the	 RMSEs	 produced	 using	 the	 preference	 lists.	 As	

shown	in	the	figure,	all	plots	show	gradually	decreasing	patterns	as	the	number	of	

selected	variables	increases.	When	the	number	of	variables	is	small,	less	than	10,	

PCA	 and	 GNMM	produce	 the	 highest	 RMSEs	 among	 these	 plots,	while	 BFS,	 FFS	

and	 SGNO	 generate	 significantly	 lower	 RMSEs.	 As	 the	 number	 of	 variables	

increases,	 all	 plots	 are	 getting	 closer	 indicating	 that	 BFS,	 FFS	 and	 SGNO	 start	

losing	 their	 advantages	 and	 all	 techniques	 managed	 to	 include	 favourable	

variables	in	the	evaluated	variable	lists.	Among	all	these	techniques,	BFS,	FFS	and	

SGNO	 are	 superior	 to	 PCA	 and	 GNMM.	 Furthermore,	 SGNO	 is	 of	 similar	

performance	against	BFS	and	FFS	when	the	number	of	variables	 is	 less	 than	10,	

and	becomes	superior	to	BFS	and	FFS	thereafter.	

	

Figure	4.20:	Performance	of	all	benchmarking	techniques	against	SGNO	
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4.9	Conclusion	

In	 this	 chapter,	 SGNO	 is	 applied	 to	 a	 dataset	 consisting	 of	 environmental	

conditions	 and	 tomato	 weekly	 yields	 collected	 between	 1999	 and	 2007	 in	 a	

greenhouse.	 The	 environmental	 conditions	 include	 CO2	 density,	 solar	 radiation	

level,	 temperature	and	VPD	 inside	 the	greenhouse.	The	purpose	of	SGNO	in	 this	

application	is	to	establish	NN	models	to	estimate	the	tomato	weekly	yields	based	

on	the	environmental	conditions	and	weekly	yields	data	collected	previously,	and	

identifies	 the	 influences	 of	 those	 data	 in	 the	 established	 model.	 Apart	 from	

producing	 the	 estimation	model,	 the	 symbolic	 relationships	 between	 the	model	

inputs	and	output	are	discovered	using	a	MBE‐GP.		

	

Analysis	 of	 the	 SGNO’s	 results	 shows	 that	 almost	 all	 the	 input	 variables	 are	

contributing	 to	 the	 output	 as	 increasing	 the	 number	 of	 input	 variables	 would	

generally	 increase	 the	 accuracy	 of	 estimation.	 Among	 the	 five	 variable	 groups,	

radiation	 is	 the	most	 important	 as	 it	 always	has	higher	 appearance	 frequencies	

than	other	variable	groups	(see	Figure	4.8).	The	models	established	are	capable	of	

producing	average	errors	within	the	range	(0.09,	0.14)	depending	on	the	number	

of	 input	 variables	 and	 the	 conditions	 (network	 architecture	 and	 initial	 neural	

weights)	 of	 the	 NNs.	 In	 addition,	 the	 discoveries	 of	 several	 ‘optimal’	 NNs	 with	

various	 numbers	 of	 input	 variables	 show	 that	 the	 prediction	 errors	 can	 be	

improved	significantly	(see	Figure	4.12).	
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After	 identifying	 the	 input	 variables	 that	 have	 the	most	 influence,	 the	 MBE‐GP	

successfully	 constructed	 the	 concise	 relationships	 (symbolic	 expressions)	

between	the	input	variables	and	the	output.	The	symbolic	expressions	discovered	

can	predict	the	tomato	weekly	yield	with	accuracies	competitive	to	the	NN	models	

with	estimated	architectures	but	not	as	good	as	the	NN	models	with	the	‘optimal’	

architectures.		

	

Comparing	with	 four	 benchmarking	 FS	 techniques	 (PCA,	 BFS,	 FFS	 and	 GNMM),	

SGNO	performs	better	than	PCA	and	GNMM	as	the	prediction	errors	produced	by	

SGNO	 are	 always	 lower	 than	 the	 errors	 generated	 by	 PCA	 and	 GNMM,	 and	 the	

largest	difference	 is	up	to	the	value	of	0.035.	BFS	and	FFS	produce	performance	

patterns	similar	to	SGNO.	When	the	number	of	input	variables	is	less	than	6,	SGNO	

performs	 the	 worst	 comparing	 to	 BFS	 and	 FFS.	 However,	 as	 the	 number	 of	

variables	increases,	SGNO	gradually	gains	its	advantage	and	generates	the	lowest	

prediction	 errors	 (the	 largest	 difference	 is	 about	 0.01	 when	 the	 number	 of	

variables	is	around	20).	When	the	number	of	variables	becomes	large	(over	40),	

all	these	5	techniques	produce	similar	level	of	performance	(see	Figure	4.20).	
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CHAPTER 5 
 

Prediction  of  Longitudinal  Dispersion  Coefficient  in 
Natural Streams 
	
	

5.1 Overview 

In	 the	 previous	 chapter,	 SGNO	 was	 used	 to	 select	 input	 variables	 for	 the	 NN	

models	 that	predict	 the	weekly	yields	of	 tomatoes	 in	greenhouses.	This	 chapter	

demonstrates	 the	application	of	SGNO	to	optimise	NN	models	 for	predicting	 the	

longitudinal	dispersion	coefficient	in	natural	rivers.	

	

River	contamination/pollution	has	received	great	attention	in	recent	decades.	The	

contaminant	being	spilled	accidentally	or	intentionally	into	the	water	supply	is	a	

constant	concern	for	those	using	it.	Travel	time	and	mixing	of	water	are	the	basic	

stream	flow	characteristics	that	should	be	understood	in	order	to	study	the	rate	of	

stream	 movement	 and	 pollution	 dilution	 in	 case	 it	 is	 introduced	 into	 streams	

(Jobson,	 1996).	 Dispersion,	 in	 hydrodynamic	 terms,	 is	 the	 spreading	 of	 solutes	

from	 highly	 concentrated	 areas	 to	 areas	 of	 less	 concentration	 in	 flowing	 fluid.	

Dispersion	 generally	 takes	 place	 along	 all	 three	 dimensions	 of	 the	 stream	 and	

these	dispersions	are	known	as	 longitudinal	dispersion,	which	takes	place	along	

the	 stream	 flow,	 transversal	 dispersion,	 which	 refers	 to	 the	 mixing	 of	 solutes	

towards	banks,	and	vertical	dispersion,	which	takes	place	towards	the	stream	bed	

and	 surface	 (if	 applicable)	 (Jobson,	 1996;	 Veliskova	 et	 al.,	 2009).	When	 soluble	

substances	are	discharged	 into	a	 river,	 the	 current	of	 the	 stream	 transports	 the	
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substance	downstream	while	 the	substance	mixes	with	the	stream.	 	 In	 the	early	

stages,	 advection	 is	 the	 most	 important	 hydrodynamic	 behaviour	 in	 the	

transportation	 of	 the	 solute.	 Vertical	 dispersion	 generally	 completes	 rapidly	

within	 the	 distance	 of	 a	 few	 river‐depths	 and	 transversal	 dispersion	 is	 much	

slower	but	usually	completes	within	a	few	kilometres	(Ahsan,	2008).	In	the	later	

stages,	 longitudinal	dispersion,	which	continues	indefinitely	without	boundaries,	

becomes	 the	 important	 mixing	 process	 when	 the	 cross‐sectional	 (vertical	 and	

transversal)	 dispersions	 completes	 (Jobson,	 1996).	 The	 longitudinal	 dispersion	

coefficient,	 a	 measure	 of	 the	 rate	 of	 mixing	 of	 contaminants	 in	 rivers,	 is	 an	

important	fundamental	parameter	in	hydrodynamic	modelling.	Knowledge	of	the	

accurate	 value	 of	 longitudinal	 dispersion	 coefficient	 is	 essential	 in	 solving	

problems	 of	 pollution	 transport	 and	 modelling	 water	 quality	 (Sahay,	 2010;	

Veliskova	et	al.,	2009).		

	

5.2 Background 

It	has	been	found	that	 the	dispersion	process	of	pollutants	 in	natural	rivers	and	

streams	 is	 complicated.	Many	 hydrodynamic	 and	 geometrical	 parameters	 affect	

the	 longitudinal	dispersion	coefficient,	 especially	 in	natural	 rivers,	 including	 the	

stream	velocity,	bed	configuration,	secondary	flow,	and	many	other	factors.	Hence	

the	 longitudinal	 dispersion	 coefficients	 will	 vary	 under	 different	 stream	

characteristics	especially	in	different	rivers.		

	

In	 general,	 direct	 measurement	 of	 longitudinal	 dispersion	 coefficients	 by	

measuring	 the	 concentrations	 of	 contaminant	 samples	 at	 various	 locations	 of	 a	
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river	is	time	consuming.	For	those	cases	when	the	dispersion	data	is	not	available,	

alternative	methods,	 including	 theoretical	 and	 empirical	 regression	models,	 are	

developed	to	estimate	the	longitudinal	dispersion	coefficients	(Deng	et	al.,	2002;	

Kashefipur	and	Falconer,	2002;	Sahay,	2010).	

	

Back	 in	 1954,	 Taylor	 (1954)	 introduced	 the	 term	 ‘longitudinal	 dispersion	

coefficient’	 and	 proposed	 his	 study	 of	 the	 dispersion	 of	 soluble	 matters	 in	

laboratory‐based	pipes.	Elder	(1959)	expanded	Taylor’s	studies	and	derived	the	

well‐known	equation	

.
∗		 			 . ∗																																			(5.1)	

where	Dl	 represents	 the	 longitudinal	dispersion	coefficient,	k	 is	 the	von	Karman	

constant	(approximately	equal	to	0.41),	H	is	the	depth	of	flow	and	U*	is	the	shear‐

stress	velocity.	

	

Elder’s	 equation	 has	 been	 widely	 used	 due	 to	 its	 simplicity.	 However,	 Elder’s	

equation	 does	 not	 accurately	 describe	 the	 longitudinal	 dispersion	 in	 natural	

rivers	and	significantly	underestimates	the	longitudinal	dispersion	in	real	streams	

as	 the	 equation	 is	 derived	 based	 on	 laboratory	 measurements	 (Fischer	 et	 al.,	

1979;	 Kashefipur	 and	 Falconer,	 2002;	 Seo	 and	 Baek,	 2004).	 Using	 the	 lateral	

velocity	profile,	Fischer	(1967)	presented	a	new	integral	equation	for	Dl		

′ 																																		(5.2)	

where	Dl	is	the	longitudinal	dispersion	coefficient,	A	is	the	cross‐sectional	area	of	

the	stream,	W	is	the	channel	width,	h	is	the	local	depth	of	flow,	u’	is	the	deviation	

of	 the	 velocity	 from	 the	 cross‐sectional	 mean	 velocity,	 y	 is	 the	 Cartesian	
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coordinate	measured	from	the	left	bank	and	εt	is	the	transverse	mixing	coefficient	

(Fischer,	1967;	Seo	and	Baek,	2004).	

	

Equation	5.2	is	rather	difficult	to	use	as	elaborate	transverse	velocity	profiles	and	

cross‐sectional	 geometry	 are	 not	 readily	 available	 to	 the	 field	 engineers.	 Thus,	

Fischer	(1979)	developed	a	simpler	equation	by	replacing	the	triple	 integration,	

velocity	 deviation	 and	 transverse	 mixing	 coefficient	 with	 reasonable	

approximations	

.

∗
																																																															(5.3)	

where	Dl	 is	 the	 longitudinal	dispersion	coefficient,	U	 is	 the	cross‐sectional	mean	

velocity,	W	is	the	channel	width,	H	is	the	cross‐sectional	mean	depth	of	flow	and	

U*	is	the	shear‐stress	velocity	(Seo	and	Baek,	2004).	

	

Since	 1976,	 several	 researchers	 have	 presented	 empirical	 or	 experimental	

equations	to	express	longitudinal	dispersion	coefficient	as	a	function	of	hydraulic	

and	geometric	parameters.	The	general	form	of	the	equations	can	be	expressed	as	

∗
∗

																																																			(5.4)	

where	a,	b	and	c	are	constants	proposed	by	the	researchers	(Seo	and	Baek,	2004).	

	

Table	5.1	lists	some	of	the	constants	proposed	by	some	researchers	

Table	5.1:	List	of	constants	in	the	proposed	equations	

Proposed	Equation	 a	 b	 c	

Fischer	(1979)	 0.011	 2.0	 2.0	

Seo	and	Cheong	(1998)	 5.92	 1.43	 0.62	
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Koussis	and	Rodriguez‐Mirasol	

(1998)	
0.6	 0.0	 2.0	

	

In	 recent	 years,	 researchers	 have	 successfully	 applied	 artificial	 intelligence	

techniques	 to	 a	 number	 of	 multivariate	 forecasting	 problems	 in	 hydrology.	

Rowinski,	 Piotrowski	 and	 Napiorkowski	 (2005)	 	 employed	 NNs	 to	 estimate	

longitudinal	dispersion	coefficient	using	channel	depth	and	width,	cross‐sectional	

mean	flow	velocity,	shear	velocity	and	sinuosity	index.	Their	work	demonstrated	

that	 conventional	 feed‐forward	 back‐propagation	 (FFBP)	 NNs	 are	 promising.	

Tayfur	and	Singh	(2005)	developed	five	NN	models	taking	various	geometric	and	

hydraulic	parameters	as	model	inputs.	The	best	performing	model	in	their	work	

achieved	up	 to	90%	accuracy	and	used	mean	channel	depth,	 channel	width	and	

mean	 flow	 velocity	 as	 input	 parameters.	 Yang	 et	 al.	 (2007)	 proposed	 a	 novel	

hybrid	 method,	 GNMM,	 utilising	 GA	 and	 NNs.	 They	 determined	 that	 the	 daily	

mean	 flow	 rate	 and	 instant	 flow	 rate	 at	 the	 gauging	 stations	 are	 the	 most	

important	 factors	 and	 their	 regression	 model	 can	 predict	 the	 longitudinal	

dispersion	coefficient	with	a	determination	coefficient	(R2)	up	to	the	value	of	0.72.	

Toprak	and	Cigizoglu	(2008)	employed	three	different	types	of	NNs	and	showed	

that	 FFBP	 NN	 generates	 the	 best	 performance.	 Sahay	 (2010)	 	 studied	 the	

performance	of	NNs	with	various	numbers	of	input	parameters	and	showed	that	

the	 combination	 of	 channel	 width,	 channel	 depth,	 mean	 cross‐sectional	 flow	

velocity,	shear	velocity	and	sinuosity	gives	the	best	performance	with	up	to	65%	

accuracy.		
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Apart	from	the	use	of	NNs,	Toprak,	Savcl	and	Avcl	(2004)	demonstrated	that	the	

application	of	fuzzy	logic	has	significant	advantage	over	the	empirical	models.	In	

recent	works	by	Azamathulla	and	Wu	(2011)	and	Azamathulla	and	Ghani	(2010)		

applied	 Support	 Vector	 Machines	 (SVMs)	 and	 Genetic	 Programming	 (GP)	

respectively	 to	 estimate	 longitudinal	dispersion	 coefficient	using	 channel	width,	

channel	depth,	mean	flow	velocity	and	shear	velocity.	The	results	show	that	SVM	

can	produce	RMSEs	as	low	as	0.0078	with	a	corresponding	correlation	coefficient	

between	the	predictions	and	the	actual	values	of	up	to	0.95;	and	GP	is	capable	of	

producing	 excellent	 predictions	 with	 RMSE	 as	 low	 as	 0.085	 and	 correlation	

coefficient	up	to	0.99.	

	

5.3 Dataset 

In	 the	 last	 decade,	 the	 UK	 Environment	 Agency	 (EA)	 has	 completed	 a	 great	

number	 of	 dye	 tracing	 experiments	 to	 study	 travel	 time‐flow	 relationships	 and	

the	dispersive	characteristics.	Dye	tracing	studies	were	carried	out	at	27	different	

rivers	in	the	EA	regions	and	a	total	of	196	data	samples	were	collected	at	various	

gauging	 stations.	 Each	 data	 sample	 contains	 geographical,	 geometrical	 and	

hydraulic	parameters	including	the	river’s	location,	catchment	area,	reach	length,	

discharge	 rate,	 etc.	 The	 data	 samples	 are	 stored	 in	 a	 database	 developed	 by	

Guymer	(1999)	in	a	standardised	data	storage	format.	Yang	(2010)	demonstrated	

his	novel	processing	algorithm	using	this	database	and	discovered	that	the	daily	

mean	 flow	 rate	 and	 instant	 flow	 rate	measured	 at	 the	 gauging	 stations	 are	 the	

most	 valuable	 parameters	 to	 predict	 the	 longitudinal	 dispersion	 coefficient.	 In	

addition,	 his	 algorithm	 achieved	 a	 good	 correlation	 coefficient	 of	 up	 to	 0.85	
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between	 the	 estimated	 longitudinal	 dispersion	 coefficient	 and	 the	 observed	

values.		

	

The	 dataset	 contains	 196	 samples	 and	 each	 sample	 contains	 a	 total	 of	 71	

parameters	 (text	 and	 numeric).	 Among	 the	 196	 samples,	 a	 certain	 number	 of	

samples	 are	 considered	 invalid	 as	 some	 of	 the	 parameters	 are	 missing	 and	

replaced	by	zeros.	These	invalid	samples	are	omitted	in	the	processing	and	hence	

the	 validated	 dataset	 contains	 only	 127	 samples.	 For	 these	 127	 valid	 samples,	

each	sample	consists	of	49	numeric	parameters	and	a	number	of	text	parameters,	

only	the	numeric	parameters	are	of	interest	as	the	SGNO	can	only	handle	numeric	

variables.	 Among	 these	 49	 numeric	 parameters,	 21	 parameters	 including	 the	

directly	measured	parameters	and	those,	which	have	been	proved	to	be	effective	

parameters	for	the	estimation	of	longitudinal	dispersion	coefficients,	are	selected.	

Table	5.2	lists	these	21	parameters	to	be	studied.	

Table	5.2:	Selected	parameters	to	be	studied	

Variable	Group	 Variable	Name	 Symbol	 Unit	

Injection	Point	
Theoretical	mean	flow	 Mi	 m3/s	

Theoretical	Q95	flow	 Qi	 m3/s	

Start	Location	

Catchment	area	 Cs	 m2	

Distance	from	injection	point	 Ds	 m	

Theoretical	mean	flow	 Ms	 m3/s	

Theoretical	Q95	flow	 Qs	 m3/s	

End	Location	

Catchment	area	 Ce	 m2	

Distance	from	injection	point	 De	 m	

Theoretical	mean	flow	 Me	 m3/s	

Theoretical	Q95	flow	 Qe	 m3/s	

Reach	 Reach	length	 L	 m	
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Straight	distance	 Dr	 m	

Slope	 S1	 –	

Sinuosity	 S2	 –	

Gauging	Station	

Catchment	area	 Cg	 m2	

Theoretical	mean	flow	 Mg	 m3/s	

Theoretical	Q95	flow	 Qg	 m3/s	

Instantaneous	flow	 Fg	 m3/s	

Tracer	mean	travel	time	 T	 s	

Tracer	mean	velocity	 V	 m/s	

Longitudinal	dispersion	

coefficient	
K	 m2/s	

	

Table	 5.3	 summarises	 the	 statistics	 of	 these	 variables.	 Of	 these	 21	 selected	

parameters,	 the	 longitudinal	 dispersion	 coefficient,	 K,	 is	 the	 output	 of	 the	 NN	

models	used	in	SGNO,	while	the	other	parameters	are	considered	as	the	possible	

input	 variables	 for	 the	 NN	 models,	 based	 on	 which	 the	 output	 variable,	 K,	 is	

derived.	

Table	5.3:	Statistics	of	the	selected	parameters	

Inde

x	

Symbo

l	
Mean	 Minimum	 Maximum	

Standard	

Deviation	

1	 Mi	 7.96	 0	 40.61	 8.89	

2	 Qi	 1.34	 0	 8.15	 1.72	

3	 Cs	 568.23	x	106	 0	 3314.75	x	106	 677.59	x	106	

4	 Ds	 9824.02	 1000	 41500	 7141.03	

5	 Ms	 9.86	 0	 49.55	 11.48	

6	 Qs	 1.59	 0	 9.47	 1.97	

7	 Ce	 858.97	x	106	 9.25	x	106	 3315.25	x	106	 738.83	x	106	

8	 De	 16426.61	 3400	 46500	 8726.89	

9	 Me	 11.33	 0	 49.55	 12.70	

10	 Qe	 1.83	 0	 9.47	 2.25	



Prediction	of	Longitudinal	Dispersion	Coefficient	in	Natural	Streams	

153	
	

11	 L	 6037.06	 1058	 14697	 2923.17	

12	 Dr	 4342.88	 915.57	 12133.5	 1970.32	

13	 S1	 2.33	x	10‐3	 0.01	x	10‐3	 24.37	x	10‐3	 3.12	x	10‐3	

14	 S2	 1.40	 1.02	 2.91	 0.34	

15	 Cg	 792.39	x	106	 20	x	106	 3314.8	x	106	 681.34	x	106	

16	 Mg	 12.38	 0.444	 47.136	 10.54	

17	 Qg	 1.93	 0.06	 6.6	 1.51	

18	 Fg	 10.20	 0.5	 75	 12.97	

19	 T	 37.04	x	103	 3.33	x	103	 317.78	x	103	 43.58	x	103	

20	 V	 0.26	 0.03	 1.04	 0.18	

21	 K	 10.80	 0.04	 72.46	 11.94	

	

5.4 Data Pre‐processing 

In	 this	 application,	 the	 parameters	 are	 rescaled	 using	 the	 mean‐standard	

deviation	approach	due	 to	 the	relatively	small	size	of	 the	dataset	and	the	actual	

scale	(possible	range)	of	each	variable	is	unknown.	Hence,	min‐max	normalisation	

is	 impractical	 for	 this	 dataset.	 The	 127	 samples	 are	 divided	 randomly	 into	 five	

groups	 to	 apply	 the	 five‐fold	 cross‐validation	 (see	 section	 3.2.2.3.2).	 Table	 5.4	

shows	the	distributions	of	these	five	groups.	

Table	5.4:	Sample	distributions	in	five‐fold	cross‐validation	

	 Set	A	 Set	B	 Set	C	 Set	D	 Set	E	 Total	
Count	 25	 26	 25	 26	 25	 127	
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5.5 Variable Selection using Sensitivity Genetic Neural Optimisation 

(SGNO) 

In	this	application,	SGNO	is	applied	to	the	selected	numeric	dataset	to	determine	

what,	 if	 any,	 influence	 the	 20	 input	 parameters	 have	 on	 the	 estimation	 of	 the	

output	 variable,	 the	 longitudinal	 dispersion	 coefficient.	 The	 following	 sections	

describe	the	SGNO	process	as	applied	to	this	dataset.	

5.5.1 Neural Network module 

The	 NN	 module	 in	 SGNO	 is	 designed	 to	 evaluate	 the	 performance	 of	 the	

variables/parameters	selected	by	the	chromosome	in	the	GA	module	as	the	inputs	

of	 the	 NN	module.	 In	 SGNO,	 the	 NN	module	 employs	 five‐fold	 cross‐validation	

with	early	stopping;	the	number	of	hidden	layers	in	the	NN	module	is	fixed	to	1;	

the	 number	 of	 hidden	 neurons	 is	 estimated	 by	 halving	 the	 sum	 of	 input	 and	

output	variables	(Equation	3.5),	and	the	initial	weights	of	the	neurons	are	random	

numbers.	In	addition,	the	tangent‐sigmoid	function	(Equation	2.5)	 is	used	as	the	

transfer	 functions	 in	 the	hidden	neurons	and	the	pure	 linear	 function	(Equation	

2.2)	 is	used	in	the	neuron	in	the	output	 layer.	The	application	of	the	pure	linear	

transfer	function	in	the	output	layer	is	due	to	the	fact	that	the	target	output	of	the	

NN	module,	the	rescaled	longitudinal	dispersion	coefficient,	 lies	inside	the	range	

[‐0.90,	5.17]	and	thus	a	transfer	function	with	output	range	covering	this	range	is	

required.	
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5.5.2 Genetic Algorithm module 

In	this	application,	the	size	of	each	binary	chromosome	in	the	GA	module	is	20	as	

there	 are	 20	 parameters	 to	 be	 analysed.	 The	 size	 of	 the	 GA	 population	 is	

estimated	at	100	using	the	rule	of	 thumb	discussed	previously	 in	section	3.2.2.2	

and	equation	3.3.	The	size	of	 the	elite	group	containing	chromosomes	passed	to	

the	new	generation	without	modification	is	5,	which	is	5%	of	the	total	population.	

Furthermore,	the	GA	module	is	coded	to	stop	after	evaluating	50	generations.		

	

Figure	5.1	illustrates	the	performance	of	the	chromosomes	in	each	generation.	It	

is	 clear	 in	 the	 figure	 that	 the	 mean	 RMSE	 reduces	 rapidly	 in	 the	 first	 few	

generations	and	shows	a	slowly	decreasing	pattern	in	the	following	generations.	

The	mean	RMSE	also	shows	a	trend	of	convergence	since	approximately	the	15th	

generation.	In	addition,	the	range	of	estimated	errors	in	each	generation	shrinks	

as	the	GA	module	evolves.	
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Figure	5.1:	Chromosomes	performance	in	GA	generations	

	

Figure	5.2:	Number	of	selected	variables	(ON	bits)	in	each	generation	

Figure	5.2	illustrates	the	size	of	chromosomes	(the	number	of	ON	bits)	evaluated	

in	 the	 GA	 generations.	 The	 mean	 size	 of	 the	 chromosomes	 in	 each	 generation	
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shows	a	clear	 increasing	trend	 in	the	 first	17	generations	 followed	by	a	roughly	

converging	pattern	between	14	and	15	bits.			

	

	

Figure	5.3:	Chromosome	Performance	vs.	Number	of	Selected	Variables	

	

Figure	 5.3	 illustrates	 the	 sizes	 of	 all	 chromosomes	 evaluated	 during	 the	 GA	

process	 and	 their	 corresponding	performance	 represented	by	RMSE.	The	 figure	

clearly	 shows	 that	 the	mean	 RMSE	 decreases	 as	 the	 sizes	 of	 the	 chromosomes	

increase	and	the	mean	RMSE	starts	to	converge	when	the	size	of	the	chromosome	

exceeds	13.	

	

5.5.3 Sensitivity Analysis module 

The	 SA	module	 is	 designed	 to	 analyse	 the	 global	 importance	 of	 the	 parameters	

appearing	 in	 the	group	of	 ‘well‐performing’	 chromosomes.	The	group	 is	 formed	
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by	 selecting	 a	 quarter	 of	 the	 chromosomes,	which	 have	 the	 highest	 fitness	 (the	

lowest	MSE),	 from	each	 generation	 in	 the	GA	process.	 Each	 chromosome	 in	 the	

selected	group,	together	with	its	associated	NNs,	is	considered	to	be	an	effective	

model	 representing	 the	 relationship	 between	 the	 input	 parameters	 and	 the	

output	 parameter.	 The	 input	 parameters	 in	 a	 model	 are	 of	 different	 levels	 of	

importance	 and	 SA	 is	 capable	 of	 quantifying	 the	 importance.	 For	 each	 selected	

chromosome,	the	sensitivity	scores	of	the	variables	(represented	by	the	ON	bits)	

in	that	chromosome	are	calculated.	The	global	sensitivity	score	of	a	variable,	 i.e.	

the	importance/influence	of	that	variable,	is	derived	by	taking	the	mean	value	of	

its	sensitivity	scores	in	all	selected	chromosomes.	

	

In	 this	 application,	 the	GA	module	 evaluated	 a	population	of	 100	 chromosomes	

for	50	generations	and	thus	the	total	amount	of	chromosomes	evaluated	is	5000.	

A	quarter	of	all	chromosomes	are	selected	to	carry	out	the	SA	analysis.	Figure	5.4	

illustrates	the	size	(number	of	ON	bits)	of	the	selected	chromosomes.	The	figure	

clearly	 shows	 that	 most	 of	 the	 selected	 chromosomes	 are	 of	 large	 sizes	 (the	

number	 of	 ON	 bits	 is	 greater	 than	 or	 equal	 to	 14	 out	 of	 20).	 The	 existence	 of	

chromosomes	which	have	a	small	number	of	ON	bits	(less	than	10)	indicates	that	

the	 models	 using	 a	 small	 number	 of	 input	 parameters	 can	 produce	 good	

performance,	which	is	competitive	to	the	best‐performing	models.	
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Figure	5.4:	Size	of	the	chromosomes	selected	for	SA	analysis	

	

	

Figure	5.5:	Global	sensitivity	scores	of	all	parameters	

	

Figure	5.5	illustrates	the	global	sensitivity	scores	for	all	the	input	parameters.	In	

the	 figure,	 the	 mean	 velocity	 of	 the	 tracer	 (V)	 and	 the	 mean	 flow	 rate	 at	 the	

gauging	 station	 (Mg)	 stand	out,	while	 the	 reach	 slope	has	 the	 lowest	 sensitivity	
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score.	This	indicates	that	the	mean	velocity	of	the	tracer	(V)	is	the	most	influential	

parameter	in	the	model	and	the	reach	slope	(S1)	is	the	least	influential	parameter.	

By	 rearranging	 the	 parameters	 according	 to	 their	 global	 sensitivity	 score,	 the	

parameter	 importance	 rank	 table	 can	 be	 constructed.	 The	 following	 list	 is	 the	

rank	 table	 containing	 the	 parameters	 in	 descending	 order,	 in	which	 the	 former	

elements	 have	higher	 sensitivity	 scores	 than	 the	 latter	 elements,	 and	hence	 the	

former	elements	are	more	important.	

[V,		Mg,		Qe,		Cg,		Qs,		Fg,		Qi,		T,		Me,		Dr,		Mi,		Qg,		Ce,		Cs,		L,		Ds,		S2,		Ms,		De,		S1]			

	

In	terms	of	the	indices	of	the	chromosomes	in	the	GA	module,	the	rank	table	can	

be	rewritten	as	follows:	

[20,	16,	10,	15,	6,	18,	2,	19,	9,	12,	1,	17,	7,	3,	11,	4,	14,	5,	8,	13]	

	

5.6 System Remodelling 

As	discussed	in	3.2.3,	NNs	are	not	only	used	to	evaluate	the	chromosomes	in	the	

GA	module,	but	are	also	used	to	re‐evaluate	the	performance	of	parameters	in	the	

sensitivity	rank	table.	Table	5.5	lists	the	performance	of	NN	models	using	various	

numbers	 of	 input	 parameters	 selected	 from	 the	 SGNO’s	 importance	 rank	 table;	

the	selection	of	parameters	always	start	with	the	first	element	in	the	rank	table,	

e.g.	[1],	[1,	2],	[1,	2,	3],	[1,	2,	3,	4],	and	so	on.	The	‘Size’	rows	indicate	the	number	of	

variables	 selected	 from	 the	 rank	 table.	Figure	5.6	 illustrates	 the	performance	of	

NN	 models	 taking	 3,	 6	 and	 9	 input	 parameters.	 Figure	 5.7	 illustrates	 the	

performance	 of	 these	 NN	 models	 against	 the	 mean	 performance	 of	 the	

chromosomes	evaluated	in	the	GA	process.	
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Table	5.5:	SGNO	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.6439	 0.5918	 0.606 0.591 0.5618 0.5559	 0.5256	 0.5317 0.5221
R2	 0.5821	 0.647	 0.6298 0.6479 0.6818 0.6885	 0.7215	 0.715 0.7252
	 	 	 	 	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.4835	 0.4798	 0.4654 0.4744 0.467 0.4764	 0.4817	 0.4771 0.4782
R2	 0.7644	 0.768	 0.7817 0.7732 0.7802 0.7713	 0.7661	 0.7706 0.7695

	
Size	 19	 20	
RMSE	 0.4767	 0.4879	
R2	 0.771	 0.7601	

	

	

	

Figure	5.6:	Performance	of	NN	models	using	3,	6	and	9	inputs	
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Figure	5.7:	Performance	of	parameters	in	SGNO	rank	table	against	

parameters	in	GA	module	

	

In	Figure	5.7,	both	plots	clearly	show	a	decreasing	pattern	as	the	number	of	ON	

bits	 increase,	 though	 there	 are	 some	 points	 which	 do	 not	 follow	 this	 general	

trend.	 Significant	 performance	 differences	 between	 the	 parameters	 selected	 in	

the	 SGNO	 rank	 table	 and	 the	 parameters	 evaluated	 in	 the	 GA	 module	 are	

presented	clearly,	especially	when	 the	number	of	ON	bits	 is	 small,	 say	 less	 than	

10.	The	potential	advantage	of	SGNO	weakens	as	the	number	of	ON	bits	increases	

until	it	reaches	15,	beyond	which	the	performance	plots	overlap.	

	

The	NNs	used	 so	 far	 only	 have	 one	hidden	processing	 layer	 and	 the	number	 of	

hidden	neurons	 is	estimated	by	halving	the	number	of	 inputs	and	outputs	using	

Equation	3.5.	This	architecture	estimation	may	not	be	optimal,	the	most	popular	

approach	to	find	the	best	architecture	is	by	trial	and	error	(Ahmed,	2005).	In	this	
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application,	several	NNs	of	‘optimal’	architectures	using	various	numbers	of	input	

variables	(3	variables,	6	variables,	9	variables,	12	variables	and	15	variables)	are	

discovered	to	find	the	best	performance	achievable	using	NN	models.	The	forward	

selection	 procedure	 (see	 Section	 3.2.3)	 is	 implemented	 to	 find	 the	 best	

architecture,	which	gradually	increases	the	model	complexity	(number	of	hidden	

layers	 and	 number	 of	 hidden	 neurons)	 until	 the	 following	 conditions	 are	 met	

(Heaton,	2005):	

 The	number	of	hidden	neurons	should	be	no	more	than	twice	the	input	layer	

size.	

 There	should	be	no	more	than	two	hidden	layers.	

	

Table	 5.6	 lists	 the	 ‘optimal’	 architectures	 discovered	 for	 various	 numbers	 of	

parameters	 selected	 from	 the	 SGNO	 rank	 table	 and	 the	 performance	 of	 the	

corresponding	models.	Figure	5.8	illustrates	the	performance	differences	between	

the	‘optimal’	architectures	and	those	evaluated	in	SGNO.	

Table	5.6:	'Optimal'	architectures	and	their	performance	

Number	of	input	variables
‘Optimal’	architecture	

[1st	layer,	2nd	layer]	

Performance	

(RMSE)	

3	 [6,	0]	 0.5547	

6	 [11,	0]	 0.4646	

9	 [14,	0]	 0.4652	

12	 [11,	11]	 0.4371	

15	 [20,	8]	 0.4388	
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Figure	5.8:	Performance	difference	between	the	‘optimal’	architectures	and	

the	estimated	architectures	

	

As	illustrated	in	Figure	5.8,	the	performance	of	the	‘optimal’	architectures	has	

significant	advantages	over	the	estimated	architectures	in	SGNO.	

	

5.7 Symbolic Regression using Genetic Programming 

In	 this	 application,	 MBE‐GP	 is	 employed	 to	 discover	 concise	 relationships	

between	 the	 variables	 explored	 in	 SGNO	 and	 the	 longitudinal	 dispersion	

coefficient.	 MBE‐GP	 symbolic	 regression	 is	 carried	 out	 at	 several	 key	 points,	

where	various	numbers	(3,	6,	9	and	12)	of	variables	are	selected	out	of	the	total	

20	 input	 variables.	 For	 the	 case	 of	 3	 input	 variables,	 the	 population	 size	 is	

estimated	at	105	using	the	rule	of	thumbs	(Equation	3.10),	the	maximum	number	

of	expression	tree	branches	in	a	chromosome	is	5,	the	initial	maximum	tree	depth	
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is	3,	and	the	size	of	the	elite	group	is	estimated	at	5	(5%	of	the	total	population).	

Figure	5.9	illustrates	the	progress	of	the	MBE‐GP	in	terms	of	RMSE	for	the	case	of	

3	variables	selected	from	the	SGNO	rank	table.	

	

Figure	5.9:	Evolution	of	MBE‐GP	for	3	variables.	(a)	mean	errors	in	

generations,	(b)	minimum	errors	in	generations	

	

As	shown	in	Figure	5.9(a),	the	mean	errors	for	the	generations	gradually	decrease	

though	 there	 are	 many	 generations	 that	 generate	 extraordinarily	 large	 mean	

errors	 due	 to	 the	 appearances	 of	 certain	 chromosomes	 that	 produce	 very	 large	

regression	errors.	Figure	5.9(b)	illustrates	the	minimum	error	in	each	generation	

and	3	decreasing	steps	are	clearly	shown	with	the	global	minimum	RMSE,	0.5817,	

produced	at	the	100th	generation.	The	chromosome	with	the	minimum	RMSE	can	

be	expressed	using	Equation	5.5.	Comparing	with	the	NN	models	with	estimated	

architecture,	which	produce	RMSE	at	0.6060,	 this	chromosome	performs	better.	
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However,	this	chromosome	does	not	perform	as	well	as	the	‘optimal’	NN	models,	

which	produces	RMSE	at	0.5547.	

∗ ∗ ∗ 	 ∗ 	 																		(5.5)	

	

Table	 5.7	 lists	 the	 performance	 of	 the	 GP	 process	 and	 the	 discovered	 symbolic	

expressions	 using	 6,	 9	 and	 12	 variables	 from	 the	 SGNO	 rank	 table.	 Comparing	

with	the	NN	models	using	the	same	input	variables,	these	chromosomes	generally	

perform	better	than	the	NN	models	with	estimated	architectures	but	not	as	well	

as	those	with	‘optimal’	architectures.	

Table	5.7:	Symbolic	expressions	discovered	by	GP	for	various	numbers	of	

variables	

No.	of	

Variables	
RMSE	 Symbolic	Expression	

6	 0.5425	 ∗ ∗ ∗ 	 ∗ 	

9	 0.5201	
∗ ∗ ∗ 	

∗ ∗ 	

12	 0.5160	

∗ ∗ 	

∗
/

	

∗ ∗ 	

	

5.8 Benchmarking with other Feature Selection (FS) Techniques  

In	this	section,	the	performance	of	the	SGNO	in	this	application	is	compared	with	

several	other	FS	techniques,	including	PCA,	BFS,	FFS	and	GNMM	by	evaluating	the	

variable	rank	tables	explored	by	all	these	techniques.	
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5.8.1 Principal Component Analysis (PCA) 

PCA	 is	 one	 of	 the	 most	 famous	 mathematical	 techniques	 widely	 used	 in	 data	

dimensionality	reduction	(Dunteman,	1989).	The	details	of	PCA	were	discussed	in	

section	 3.3.1.	 In	 this	 application,	 PCA	 is	 used	 to	 transform	 the	 20	 original	

variables,	excluding	the	longitudinal	dispersion	coefficients,	into	a	new	data	space	

and	 the	 newly	 generated	 variables	 are	 then	 used	 to	 estimate	 the	 longitudinal	

dispersion	coefficient	using	NNs.	Figure	5.10	 illustrates	 the	variances	 carried	 in	

each	PC.	As	shown	in	Figure	5.10,	only	9	PCs	are	present	in	the	figure.	The	first	PC	

carries	over	50%	of	the	variance	in	the	original	dataset,	significantly	greater	than	

the	other	PCs.	The	accumulated	variance	plot	shows	 that	 the	 first	4	PCs	explain	

about	80%	of	the	variance	and	the	first	6	PCs	explain	around	90%.	

	

Figure	5.10:	Variance	accounted	for	or	explained	in	PCs	
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Following	 the	 PCA	 transformation,	 the	 NN	 models	 are	 used	 to	 perform	 the	

longitudinal	 dispersion	 coefficients	 estimation	 using	 various	 numbers	 of	 PCs	 as	

the	input	variables.	Five‐fold	cross‐validation	and	early‐stopping	training	is	used	

in	 the	 NN	 models.	 Table	 5.8	 lists	 the	 performance	 of	 the	 NN	 models	 using	

different	numbers	of	PCs.	Figure	5.11	demonstrates	the	performance	of	these	NN	

models	against	the	NN	models	using	the	same	numbers	of	variables	selected	from	

the	SGNO’s	importance	rank	table.	

Table	5.8:	PCA	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.6439	 0.5918	 0.606 0.591 0.5618 0.5559	 0.5256	 0.5317 0.5221
	 	 	 	 	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.4835	 0.4798	 0.4654 0.4744 0.467 0.4764	 0.4817	 0.4771 0.4782
	
Size	 19	 20	
RMSE	 0.4767	 0.4879	
	

	

Figure	5.11:	Performance	of	NN	models	using	PCA	discovery	against	SGNO	
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As	 shown	 in	 Figure	 5.11,	 SGNO	 has	 a	 distinct	 advantage	 over	 the	 PCA	 as	 the	

RMSEs	produced	using	 the	SGNO	rank	 table	are	always	 less	 than	 those	 for	PCA,	

especially	 for	 the	 cases	 where	 the	 selected	 number	 of	 variables	 is	 small.	 The	

largest	difference	is	up	to	the	value	of	0.3420	(2	input	variables).	The	advantage	

of	 SGNO	 reduces	 as	 the	 number	 of	 selected	 variables	 increases.	 Although	 PCA	

reduces	the	data	dimensionality	while	preserving	 large	amounts	of	variations	in	

the	original	data,	using	a	small	number	of	PCs	to	predict	the	dispersion	coefficient	

cannot	 achieve	 the	 same	 level	 of	 accuracy	 as	 the	 NN	 models	 taking	 the	 same	

number	of	input	variables	selected	from	the	SGNO’s	rank	table.		

	

5.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS) 

FFS	 and	 BFS	 are	 two	 commonly	 used	 sequential	 FS	 techniques.	 The	 detailed	

procedures	of	FFS	and	BFS	are	introduced	in	section	3.3.2.	In	this	application,	FFS	

and	BFS	employ	NN	models	to	evaluate	the	performance/efficiency	of	the	selected	

variables	 during	 the	process.	 The	NN	models	 employ	 the	 same	 architectures	 as	

the	NN	module	 in	 the	SGNO	process,	 i.e.	single	hidden	layer	with	the	number	of	

hidden	neurons	estimated	by	halving	the	number	of	 inputs	and	outputs	and	the	

transfer	functions	are	tangent	sigmoid	and	pure	linear	in	hidden	layer	and	output	

layer	 respectively.	 The	 following	 lists	 present	 the	 order	 in	 which	 variables	 are	

added	 to	 the	 selection	 list	 in	 FFS	 and	 the	 reversed	 order	 of	 variables	 removed	

from	 the	 selection	 in	 BFS.	 Hence,	 the	 variables	 are	 in	 descending	 order	 of	

preferences	in	both	lists.	

FFS:	[20,	18,	4,	12,	1,	8,	7,	9,	16,	3,	6,	17,	10,	19,	14,	11,	15,	5,	2,	13]	
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BFS:	[20,	9,	10,	12,	19,	18,	17,	16,	4,	15,	3,	1,	14,	2,	6,	8,	7,	11,	5,	13]	

	

Comparing	with	the	preference	list	(influence	rank	table)	discovered	using	SGNO,	

which	is	[20,	16,	10,	15,	6,	18,	2,	19,	9,	12,	1,	17,	7,	3,	11,	4,	14,	5,	8,	13],	they	all	

identify	 the	 20th	 variable,	 tracer	mean	 velocity,	 as	 the	most	 important	 variable	

and	the	13th	variable,	reach	slope,	as	the	 least	significant	variable.	The	variables	

lying	 in	 between	 are	 of	 different	 orders	 in	 these	 lists.	 Table	 5.9	 lists	 the	

performance	of	 the	preference	 lists	produced	by	BFS	and	FFS	using	NN	models	

with	various	numbers	of	input	variables	selected	from	the	preference	lists.	Figure	

5.12	illustrates	the	performance	of	BFS	and	FFS	compared	with	SGNO.	

Table	5.9:	BFS	and	FFS	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
BFS	 0.6532 0.6406	 0.6268 0.608 0.5871 0.5679 0.5396	 0.5283 0.5009
FFS	 0.638 0.6085	 0.6016 0.6086 0.5966 0.5764 0.552	 0.5367 0.5064
	 	 	

Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
BFS	 0.4998 0.4921	 0.4854 0.4708 0.4836 0.4622 0.474	 0.4808 0.477
FFS	 0.507 0.4985	 0.5092 0.4891 0.4854 0.4608 0.484	 0.4896 0.4926
	
Size	 19	 20	
BFS	 0.4847	 0.4907	
FFS	 0.4859	 0.4981	
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Figure	5.12:	Performance	of	NN	models	using	BFS	and	FFS	against	SGNO	

	

As	shown	in	Figure	5.12,	FFS	and	BFS	produce	competitive	performance	against	

SGNO	and	the	RMSE	plots	generated	using	these	3	techniques	all	follow	a	similar	

pattern,	which	gradually	decreases	as	the	number	of	selected	variables	increases.	

Although	 the	 RMSEs	 of	 these	 3	 techniques	 are	 within	 small	 ranges,	 SGNO	

produces	smaller	RMSEs	compared	with	BFS	and	FFS	at	many	points,	especially	

when	the	number	of	selected	variables	is	around	5	and	12.	The	possible	reason	is	

that	BFS	and	FFS	are	considered	to	be	‘local	search’	techniques,	which	search	for	

improvement	 locally	 around	 the	 current	 state.	 In	 this	 application,	 BFS	 and	 FFS	

scan	through	all	available	variables,	 identify	 the	one	 that	generates	 the	smallest	

error	and	updates	the	current	state	with	that	variable.	On	another	hand,	SGNO	is	a	

‘global’	 optimisation	 technique	 as	 it	 employs	 GA,	 a	 well	 known	 ‘global	 search’	
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algorithm	with	the	ability	to	leave	local	minima,	though	the	optimal	solution	is	not	

guaranteed.		

	

5.8.3 Genetic Neural Mathematical Method (GNMM) 

As	 described	 in	 section	 3.3.3,	 GNMM	 is	 a	 hybrid	 data	 mining	 technique	

incorporating	GA	and	NNs.	As	GNMM	employs	GA,	it	is	considered	to	be	a	global	

search	algorithm	as	in	the	case	of	SGNO.	In	GNMM,	variables	are	ordered	in	terms	

of	 their	 appearance	 frequencies/percentage	 during	 the	 evaluation	 of	 the	 GA	

process.	 The	 variables	 of	 higher	 appearance	 percentages	 are	 considered	 to	 be	

more	favourable	than	those	of	 lower	appearance	percentages	(Yang,	2010;	Yang	

et	al.,	2007).	Figure	5.13	 illustrates	 the	appearance	percentages	of	 the	variables	

discovered	by	the	GNMM	process.	

	

Figure	5.13:	Variable	appearance	percentages	in	GNMM	
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As	 shown	 in	 Figure	 5.13,	 the	 instantaneous	 flow	 rate	measured	 at	 the	 gauging	

station,	 Fg,	 and	 the	 straight	 reach	 distance,	 Dr,	 are	 of	 the	 highest	 appearance	

percentages,	100%,	followed	by	the	distance	from	the	injection	point	measured	at	

the	start	location,	Ds,	and	the	mean	velocity	of	the	tracer,	V.	Most	of	the	variables	

appear	 more	 than	 50%	 and	 there	 are	 a	 total	 of	 8	 variables	 with	 appearance	

percentages	 no	 less	 than	 90%	 during	 the	 GNMM	 process.	 The	 following	 list	

contains	 the	 ordered	 variables	 based	 on	 their	 appearance	 percentages	 in	

descending	order.	

[Dr,	Fg,	Ds,	V,	L,	Ce,	Qe,	T,	S1,	Cg,	Me,	De,	Mg,	Qi,	S2,	Cs,	Ms,	Qg,	Mi,	Qs]	

The	following	index	list	contains	the	indices	of	the	variables	in	the	original	dataset	

presented	in	the	same	order	as	the	previous	list.	

[12,	18,	4,	20,	11,	7,	10,	19,	13,	15,	9,	8,	16,	2,	14,	3,	5,	17,	1,	6]	

Comparing	 with	 the	 variable	 rank	 lists	 produced	 using	 SGNO,	 BFS	 and	 FFS	 in	

section	5.8.2,	the	variable	rank	list	generated	by	GNMM	is	distinct	from	the	others.	

However,	GNMM	identifies	2	variables	with	indices	18	and	20,	which	are	of	high	

preferences	 in	other	 rank	 lists.	Table	5.10	 lists	 the	performance	of	 the	 rank	 list	

produced	 by	 GNMM	 using	 NN	models	with	 various	 numbers	 of	 input	 variables	

selected	from	the	lists.	Figure	5.14	illustrates	the	performance	of	rank	list	against	

SGNO.	

Table	5.10:	GNMM	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.9288  0.7774  0.7833 0.6222 0.6027 0.5882 0.5804  0.5677 0.5923

	 	 	 	
Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.5881  0.5451  0.5462 0.5266 0.5142 0.5084 0.5056  0.5  0.492

	
Size	 19	 20	
RMSE	 0.4887  0.4917 
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Figure	5.14:	Performance	of	GNMM	against	SGNO	

	

As	shown	in	figure	5.14	that	the	variable	rank	list	discovered	by	SGNO	is	of	clear	

advantage	over	 the	one	discovered	by	GNMM	as	 the	SGNO	plot	 is	 always	 lower	

than	the	GNMM	plot.	The	maximum	difference	between	the	RMSEs	generated	by	

these	 two	 techniques,	 which	 is	 0.2849,	 occurs	when	 only	 one	 input	 variable	 is	

used	in	the	NN	models.	The	difference	dramatically	decreases	at	the	beginnings	of	

the	plots	for	up	to	4	variables;	these	indicate	that	the	first	3	variables	are	optimal	

or	 close.	 Following	 the	dramatic	drop,	 the	GNMM	plot	 gradually	decreases	with	

variations	 in	 the	middle	 of	 the	 plot.	 At	 the	 end	 of	 the	GNMM	plot,	 RMSE	 keeps	

decreasing	and	approaching	the	RMSE	plot	of	SGNO.	
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5.8.4 Benchmarking summary 

Figure	 5.15	 summarises	 the	 RMSEs	 of	 the	 rank	 lists	 produced	 using	 the	 all	 the	

techniques	 presented	 in	 this	 chapter.	 It	 shows	 that	 these	 techniques	 produce	

similar	 results	when	 the	number	of	 selected	variables	 is	 large,	 say	greater	 than	

12.	The	key	performance	differences	between	these	techniques	occurs	at	the	early	

stages	of	the	RMSE	plots,	where	PCA	and	GNMM	produce	the	highest	RMSEs	and	

BFS,	 FFS	 and	 SGNO	 generate	 significantly	 better	 results.	 Among	 these	 5	

techniques,	SGNO	produces	the	best	performance	in	general.	

	

Figure	5.15:	Performance	of	all	benchmarking	techniques	against	SGNO	
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5.9 Conclusion 

In	 this	 chapter,	SGNO	 is	applied	 to	establish	a	model	 to	estimate	a	 fundamental	

hydrodynamic	 characteristic	 coefficient,	 the	 longitudinal	 dispersion	 coefficient,	

using	a	dataset	created	by	the	UK	Environment	Agency	(EA).	The	dataset	contains	

geographical,	 geometrical	 and	 hydraulic	 parameters	 collected	 at	 27	 different	

rivers	 in	the	EA	region.	Apart	 from	establishing	prediction	models,	 the	symbolic	

relationship	between	the	model	inputs	and	output	was	extracted	using	multiple‐

branch	GP.	

	

Analysis	of	the	results	show	that	most	of	the	variables	contribute	to	the	prediction	

of	 the	 longitudinal	 dispersion	 coefficient	 and	 increasing	 the	 number	 of	 inputs	

variables	 can	 generally	 increase	 the	 accuracy	 of	 the	 prediction	 until	 a	 certain	

stage	where	adding	more	variables	does	not	improve	the	prediction	accuracy	(see	

Figures	 5.7	 and	 5.15).	 	 The	 models	 established	 during	 the	 SGNO	 process	 are	

capable	 of	 producing	 errors	 within	 the	 range	 (0.465,	 0.644)	 depending	 on	 the	

number	of	input	variables	using	the	architectures	employed	by	the	NN	module	in	

SGNO	 (see	 Figure	 5.7).	 As	 the	 NN	 architectures	 used	 in	 the	 NN	 module	 are	

estimated	 using	 rules	 of	 thumb,	 employing	 ‘optimal’	 architectures	 can	 improve	

the	prediction	accuracy	significantly	(see	Figure	5.8).		

	

After	identifying	the	influential	levels	of	all	the	variables,	GP	with	tree	structured	

multiple	 branches	 is	 applied	 to	 extract	 concise	 symbolic	 relationship	 between	

various	 numbers	 of	 input	 variables	 and	 the	 longitudinal	 dispersion	 coefficient,	
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and	the	relationships	discovered	by	GP	are	competitive	to	the	prediction	models	

established	using	NNs.	

	

Finally,	 4	 benchmarking	 techniques,	 including	 BFS,	 FFS,	 GNMM	 and	 PCA,	 are	

implemented	 to	 evaluate	 the	 performance	 of	 SGNO	 by	 comparing	 the	

effectiveness	of	 the	variable	rank	tables	discovered	using	all	 these	5	techniques.		

Among	 these	 4	 benchmarking	 techniques,	 PCA	 generates	 the	 highest	 RMSEs;	

GNMM	produce	similar	trend	as	PCA	but	with	lower	RMSEs;	BFS	and	FFS	generate	

RMSEs	 of	 small	 differences	 and	 the	 RMSEs	 are	 generally	 lower	 than	 those	

produced	by	PCA	 and	GNMM,	 especially	 in	 the	 cases	 of	 small	 numbers	 of	 input	

variables	 (see	 Figure	 5.15).	 Comparing	 with	 these	 benchmarking	 techniques,	

SGNO	is	of	significant	advantage	over	PCA	and	GNMM.	Although	SGNO	generates	

similar	RMSEs	as	BFS	and	FFS,	it	shows	a	general	advantage	when	compared	with	

these	2	techniques.	
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CHAPTER	6	

	

Wave Overtopping Prediction at Coastal Structures 
	
	

6.1 Overview 

In	the	previous	chapter,	SGNO	was	used	to	discover	the	relationship	between	the	

longitudinal	 dispersion	 coefficient	 and	 several	 hydraulic	 and	 geometrical	

variables.	In	this	chapter,	SGNO	is	applied	to	a	data	set	selected	from	the	project	

‘CLASH’	 (Crest	 Level	 Assessment	 of	 coastal	 Structures	 by	 full	 scale	monitoring,	

neural	network	prediction	and	Hazard	analysis	on	permissible	wave	overtopping)	

to	 study	 the	 relationship	 between	 wave	 overtopping	 discharges	 and	 several	

environmental	and	geometrical	measurements.		

	

Seawalls	defend	 land	and	properties	at	 the	coastal	 regions	against	 storm	waves	

and	sea	wave	run‐ups.	Once	the	highest	run‐up	level	exceeds	the	crest,	a	certain	

amount	 of	 sea	water	will	 be	 transported	 over	 the	 crest	 of	 the	 coastal	 structure	

and	 the	 associated	 discharge	 may	 cause	 a	 hazard	 to	 the	 land	 and	 properties	

behind.	 This	 is	 referred	 to	 as	 ‘wave	 overtopping’	 and	 the	 amount	 of	 sea	water	

overtopping	 is	 known	 as	 ‘overtopping	 discharge’.	 The	 structure	 of	 the	 seawalls	

plays	 a	 predominant	 role	 in	 preventing	 wave	 overtopping	 and	 controlling	 the	

overtopping	discharge	to	an	acceptable	level	is	a	critical	factor	in	coastal	structure	

design	(Goda,	2009;	Ingram	et	al.,	2009).	
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To	 assist	 with	 the	 design	 of	 coastal	 structures,	 accurate	 wave	 overtopping	

estimation	 models	 are	 required	 to	 evaluate	 the	 effectiveness	 of	 prototypes.	

However,	 there	 is	 lack	 of	 reliable	 and	 robust	 prediction	 methods	 for	 wave	

overtopping	 as	 wave	 overtopping	 is	 a	 complicated	 natural	 phenomenon	

depending	 not	 only	 on	 environmental	 conditions,	 such	 as	 wave	 height,	 wave	

period,	water	level,	etc.,	but	also	depending	on	the	geometrical	structure	and	the	

properties	of	the	building	materials	of	the	coastal	structure	(Soliman,	2003).	The	

most	frequently	used	methods	are	empirical	models	which	are	usually	built	based	

on	 laboratory	 experiments.	 These	 empirical	 models	 can	 only	 be	 applied	 with	

severe	restrictions	due	to	restricted	test	data	ranges	and	structure	configurations	

(Soliman,	2003;	Verhaeghe,	2005).		

	

6.2 Background  

Wave	 overtopping	 at	 coastal	 structures	 have	 been	 continuously	 studied	 for	

several	decades	by	researchers	all	over	the	world.	Wave	overtopping	discharges	

may	 vary	 up	 to	 several	 orders	 of	 magnitude	 under	 random	 wave	 attacks.	 In	

general,	wave	overtopping	discharge	is	defined	as	the	volume	of	water	exceeding	

crest	level	per	unit	time	and	unit	structure	width,	i.e.	m3s‐1m‐1.	Wave	overtopping	

cannot	 be	 avoided	 completely	 due	 to	 the	 random	 nature	 of	 waves	 (especially	

under	 severe	 environmental	 conditions)	 and	 the	 trade‐off	 between	 economical	

factors	(costs,	etc.)	and	environmental	factors	(Soliman,	2003).	Hence,	predicting	

overtopping	of	structures	has	become	an	important	evaluation	method	to	support	

the	design	of	coastal	structures.		
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Saville	 (1955)	 was	 one	 of	 the	 researchers	 who	 initiated	 studies	 on	 the	

overtopping	of	regular	waves.	Since	then,	several	models	have	been	developed	to	

predict	wave	overtopping	at	various	structure	types.	Overtopping	models	can	be	

categorised	 into	 two	distinct	groups,	which	are	empirical	models	and	numerical	

models.	Empirical	models	are	the	most	studied	and	widely	used	models	of	wave	

overtopping.	They	are	also	known	as	regression	models,	which	are	based	on	the	

available	 overtopping	 data	 collected	 from	 laboratory	 experiments	 and	 field	

experiments.	 Numerical	models	 analyse	wave	 behaviours	 by	 solving	 a	 series	 of	

equations	expressing	fluid	flow	in	front	of	the	structure	(Verhaeghe,	2005).		

	

Owen	(1980)	proposed	an	overtopping	model	for	a	smooth	sloping	structure.	The	

model	 suggests	 an	 exponential	 relationship	 between	 the	 dimensionless	 mean	

overtopping	discharge,	Q,	and	the	dimensionless	crest	freeboard,	R.		

∙ ∙ 																																																										(6.1)	

																																																																										(6.2)	

																																																																							(6.3)	

where	q	 is	 the	 mean	 overtopping	 discharge;	 g	 is	 gravity;	Hs	 is	 the	 mean	 wave	

height;	Tm	is	the	mean	period	of	the	incident	waves,	Rc	is	the	crest	freeboard,	and	

a	 and	 b	 are	 the	 regression	 coefficients	 determined	 based	 on	 these	 structure	

characteristics.	

Following	 the	 study	by	Owen	 (1980),	Ahrens,	Heimbaugh	and	Davidson	 (1986)	

studied	 overtopping	 at	 various	 types	 of	 structures	 and	 proposed	 another	

exponential	model,	which	can	be	expressed	as	follows:	

∙ ∙ 																																																										(6.4)	
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																																																																												(6.5)	

/ 																																																																					(6.6)	

where	 a	 and	 b	 are	 the	 regression	 coefficients;	 q	 is	 the	 mean	 overtopping	

discharge;	g	is	gravity;	Hs	is	the	mean	wave	height	and	Lp	is	the	mean	wave	length.	

	

In	 recent	 years,	 NNs	 have	 been	 successfully	 applied	 by	 many	 researchers	 in	

various	fields	of	coastal	engineering.	The	success	of	NNs	is	mainly	based	on	their	

ability	 to	 approximate	 virtually	 any	 continuous	 non‐linear	 functions	 (Cybenko,	

1989;	Verhaeghe,	2005).	 In	1995,	Mase,	Sakamoto	and	Sakai	 (1995)	studied	 the	

applicability	of	NNs	as	a	tool	to	model	the	stabilities	of	various	rock	slopes	under	

random	wave	attacks.	Their	work	showed	that	NNs	are	capable	of	predicting	the	

damages	 levels	of	 the	structures	with	correlation	coefficient	up	to	0.94	between	

the	 measured	 stability	 and	 the	 predicted	 stability	 using	 7	 parameters	 of	 wave	

hydraulics	 and	 structural	 properties.	 In	 1999,	 Medina	 (1999)	 proposed	 2	 NN	

models	 predicting	 regular	 wave	 run‐ups	 at	 a	 conventional	 rubble	 mound	

breakwater	 and	 a	 dissipating	 basin	 breakwater	 respectively.	 Evolutionary	

Algorithms	(EAs)	were	used	to	optimise	the	topologies	of	these	2	NN	models.	The	

NN	model	 for	 the	 conventional	 breakwater	 is	 of	 reasonable	 accuracy,	while	 the	

model	 for	 the	 dissipating	 basin	 breakwater	 is	 of	 poorer	 accuracy.	 Years	 later,	

Medina,	Gonzalez‐Escriva	and	De	Rouck	(2002)	developed	a	chain	of	2	NN	models	

to	 predict	 the	 occurrence	 of	 significant	 overtopping	 and	 the	 amount	 of	

overtopping	 discharge	 respectively.	 The	 NN	 models	 are	 simple	 1	 hidden	 layer	

MLPs	with	4	input	parameters.	Their	results	showed	that	these	2	NN	models	are	

efficient	and	perform	better	than	an	empirical	model.	
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Since	 the	 launch	 of	 the	 European	 CLASH	 project,	 many	 researchers	 have	

published	their	attempts	at	the	modelling	of	wave	overtopping	using	the	data	sets	

collected	 in	 the	 project.	 In	 2005,	 Van	 Gent,	 Pozueta,	 Van	 den	 Boogaard	 and	

Medina	(2005)	presented	their	NN	model	to	predict	wave	overtopping	discharge		

in	 the	 final	 CLASH	 work	 package	 report.	 The	 proposed	 NN	 model	 is	 a	 single‐

hidden‐layer	MLP	with	20	hidden	processing	neurons	 and	15	 input	parameters	

covering	 hydraulic	 and	 structural	 properties.	 The	 result	 demonstrated	 that	 the	

NN	model	can	successfully	model	the	relationship	between	the	input	parameters	

and	the	overtopping	discharge.	Verhaeghe	(2005,	2008)		developed	a	2‐phase	NN	

model	consisting	of	a	classifier,	which	aims	to	detect	the	occurrence	of	significant	

overtopping,	and	a	quantifier,	which	is	used	to	predict	the	amount	of	overtopping	

discharge	if	it	occurs.	The	proposed	2‐phase	NN	model	is	similar	to	the	NN	model	

chain	presented	by	Medina	et	al	(2002)	but	more	complicated	as	it	takes	14	input	

parameters	 instead	of	 the	4	 in	Medina’s	model.	The	classifier	and	the	quantifier	

are	 both	 simple	MLPs	 of	 a	 single	 hidden	 processing	 layer;	 the	 classifier	 has	 20	

hidden	neurons	while	the	quantifier	has	25	hidden	neurons.	The	results	show	that	

the	classifier	can	achieve	up	to	81%	classification	accuracy	and	the	quantifier	can	

predict	the	overtopping	discharge	with	an	RMSE	as	low	as	0.52.		

	

6.3 Data set 

The	data	 set	 used	 in	 this	 study	 is	 the	database	 created	 in	 the	European	project	

‘CLASH’,	which	ran	 from	January	2002	until	December	2004	(Verhaeghe,	2005).	

The	CLASH	project	aimed	to	improve	the	knowledge	on	the	phenomenon	of	wave	
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overtopping	and	develop	generic	prediction	methods	based	on	many	existing	data	

sets	on	wave	overtopping	(De	Rouck	et	al.,	2008;	Verhaeghe,	2005).	Based	on	this	

dataset,	 Verhaeghe	 (2005)	 developed	 a	 2‐phase	 classifier‐quantifier	 model,	 in	

which	the	classifier	identifies	if	significant	overtopping	is	likely	to	happen,	and	the	

quantifier	 estimates	 the	 amount	 of	 overtopping	 if	 significant	 overtopping	 is	

identified.	 Compared	 with	 Verhaeghe’s	 model,	 SGNO	 establishes	 overtopping	

quantifier	models	with	less	number	of	inputs.		

	

The	CLASH	database	gathered	over	10000	overtopping	test	entries	carried	out	at	

various	institutes	and	sites	all	over	the	world	during	the	past	few	decades.	Each	of	

these	 tests	 is	 described	by	 a	 total	 of	 30	parameters	 representing	hydraulic	 (i.e.	

measured	overtopping	discharge,	wave	period,	wave	height,	etc.),	structural	(i.e.	

crest	height,	slope	angle,	building	material,	etc.)	and	general	(i.e.	test	ID,	reliability	

factor	 and	 complexity	 factor)	 characteristics	 (De	Rouck	 et	 al.,	 2008;	Verhaeghe,	

2005).	The	reliability	of	each	test	in	the	database	is	estimated	using	the	reliability	

factor,	which	is	an	integer	in	the	range	from	1	to	4.	A	reliability	factor	assigned	to	

1	indicates	the	corresponding	test	is	very	reliable,	while	the	value	4	indicates	that	

the	 test	 is	 not	 reliable.	 In	 the	 same	way,	 the	 complexity	 of	 coastal	 structure	 in	

each	test	is	indicated	using	an	integer	complexity	factor	in	the	range	from	1	to	4,	

where	 1	 indicates	 a	 very	 simple	 structure	 and	 4	 indicates	 a	 very	 complex	

structure	 (van	 Gent	 et	 al.,	 2005;	 van	 Gent	 et	 al.,	 2007;	 Verhaeghe,	 2005;	

Verhaeghe	et	al.,	2008).		

	

As	 the	CLASH	database	 is	a	collection	of	overtopping	 tests	originated	 from	over	

100	 independent	 tests	 carried	 out	 at	 various	 institutes	 and	 fields,	 the	 collected	
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parameters	 in	 each	 test	may	not	be	 the	 same	and	 several	 parameters	were	not	

available	 in	 some	 tests	 (Verhaeghe,	 2005).	 Hence,	 Verhaeghe	 (2005)	 suggested	

that	only	a	set	of	16	characteristic	parameters	among	all	the	available	parameters	

should	 be	 used	 to	 build	 the	NN	 prediction	model.	 The	 selected	 parameters	 are	

listed	 in	 Table	 6.1.	 Figure	 6.1	 illustrates	 the	 parameters	 with	 a	 simple	 coastal	

structure.	

 
Figure	6.1:	Parameters	explained	(adopted	from	Verhaeghe,	2005)	

	

Table	6.1:	Parameters	suggested	by	Verhaeghe	(2005)	

Nature	 Parameter	 Unit	 Description	

Hydraulic	

q	 m3s‐1m‐1	 Mean	overtopping	discharge	

Hm0deep	 m	 Wave	height	determined	at	deep	water	

Hm0toe	 m	
Wave	height	determined	at	the	toe	of	the	

structure	

Tm‐1,0toe	 s	 Mean	wave	period	at	the	toe	of	the	structure	

β	 º Angle	of	the	incident	wave	

Structural	
h	 m	 Water	depth	in	front	of	the	structure	

ht	 m	 Water	depth	on	the	toe	of	the	structure	
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Bt	 m	 Width	of	the	toe	of	the	structure	

γt	 –	 Roughness	factor	of	the	structure	

cotαd	 –	
Cotangent	of	the	angle	of		the	structure	below	

the	berm	

cotαu	 –	
Cotangent	of	the	angle	of		the	structure	above	

the	berm	

Rc	 m	 Crest	freeboard	of	the	structure	

hb	 m	 Water	depth	on	the	berm	

Bh	 m	 Horizontal	width	of	the	berm	

Ac	 m	 Armour	crest	freeboard	of	the	structure	

Gc	 m	 Crest	width	of	the	structure	

	

Among	 these	 parameters,	q,	 the	 overtopping	 discharge	 is	 the	 output	 parameter	

and	 all	 the	 other	 parameters	 are	 the	 inputs.	 In	 this	work,	 only	 the	 reliable	 test	

results	 with	 relatively	 simple	 structures,	 e.g.	 the	 reliable	 factor	 and	 the	

complexity	factor	are	less	than	or	equal	to	2,	and	the	occurrences	of	overtopping,	

i.e.	q	>	0,	are	considered.	Under	these	conditions,	a	total	of	5277	tests	are	selected.	

6.4 Data Pre‐processing 

As	the	CLASH	database	 is	a	collection	of	 tests	carried	out	by	different	 institutes,	

part	of	the	data	concerns	prototype	measurements	at	real	sites	and	the	remaining	

data	 are	 laboratory	 based	 experiments	 under	 various	model	 scales	 (Verhaeghe,	

2005).	 Instead	 of	 rescaling	 parameters	 using	 min‐max	 normalisation	 or	 mean‐

standard	 deviation	 normalisation,	 Verhaeghe	 (2005)	 and	 van	 Gent	 (2005)	

suggested	 the	 idea	 of	 rescaling	 the	 parameters	 in	 individual	 tests	 against	 the	

Hm0toe	 in	 each	 test	using	 the	Froude	 scaling	 law,	where	Hm0toe	 is	 rescaled	 to	1m.	

Unlike	 other	 scaling	 methods,	 such	 as	 min‐max	 scaling	 and	 mean‐standard	
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deviation	scaling,	which	scale	variables	 in	datasets,	Froude	scaling	 law	provides	

entry‐wise	scaling	 in	datasets.	Froude	scaling	selects	one	of	 the	variables	 in	 the	

dataset	 as	 the	 unit	 variable,	 which	 will	 be	 scaled	 to	 1	 in	 all	 data	 entries,	 to	

produce	 scale	 factors	 for	 other	 variables.	 From	 the	 Froude	 scaling	 law,	 the	

following	scaling	factors	are	derived	and	listed	in	Table	6.2.	

Table	6.2:	Parameter	rescaling	using	Froude	scaling	law	

Parameters	 Unit	 Scale	Factor	

q	 m3s‐1m‐1	 1/(Hm0toe)1.5	

Tm‐1,0toe	 s	 1/(Hm0toe)0.5	

Hm0deep,	Hm0toe,	h,	ht,	Bt,	Rc,	hb,	Bh,	Ac,	Gc	 m	 1/Hm0toe	

β,	γt,	cotαd	cotαu	 –	 1	

	

All	the	parameters	are	rescaled	by	multiplying	by	the	corresponding	scale	factor	

and	 the	 rescaled	 parameters	 are	 marked	 with	 an	 apostrophe	 (‘)	 after	 the	

parameter	 name,	 e.g.	 Hm0deep’,	 to	 distinguish	 from	 the	 original	 parameters	

(Verhaeghe,	2005).	Among	the	selected	5277	tests,	the	suggested	16	parameters	

are	in	different	ranges.	Table	6.3	list	the	basic	statistics	of	these	parameters	after	

Froude	rescaling.	

Table	6.3:	Statistics	of	parameters	after	rescaling	

Parameter	 Min	 Max	 Mean	
Standard	

Deviation	

q'	 1.8032x10‐7	 0.4222	 0.0085	 0.0223	

Hm0deep’	 0.6957	 5.0952	 1.0867	 0.2862	

Hm0toe’	 1	 1	 1	 0	

Tm‐1,0toe’	 2.8868	 69.4620	 4.8477	 3.0176	
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β’	 0	 80	 3.6646	 11.3691	

h'	 1.0236	 23.3333	 4.0229	 2.5460	

ht’	 0.5238	 23.3333	 3.7391	 2.5384	

Bt’	 0	 19.0476	 0.5027	 1.1912	

γt’	 0.33	 1	 0.6969	 0.2837	

cotαd’	 0	 7	 2.2109	 1.3808	

cotαu’	 ‐5	 8	 2.0649	 1.7485	

Rc’	 0	 6.4219	 1.4481	 0.6478	

hb’	 ‐1.2109	 7.8947	 0.0724	 0.4657	

Bh’	 0	 33.8983	 0.7041	 2.2570	

Ac’	 0	 6.2393	 1.3539	 0.6409	

Gc’	 0	 6.6625	 0.7892	 0.9416	

	

Once	 all	 parameters	 are	 scaled	 to	Hm0toe=1m,	 the	 parameter	Hm0toe’	 becomes	 a	

constant,	 1,	 in	 all	 tests.	 Therefore,	 there	 is	 no	need	 to	 use	Hm0toe’	 as	 a	 separate	

input	parameter	and	it	can	be	omitted	in	later	processing.	It	is	noticeable	in	Table	

6.3	that	the	overtopping	discharge,	q’,	in	the	scaled	data	set	is	in	an	extraordinary	

range,	 where	 the	 maximum	 value,	 0.4222,	 is	 a	 million	 times	 greater	 than	 the	

minimum	 value,	 1.8x10‐7.	 Furthermore,	 examining	 the	 data	 set	 in	 detail	 shows	

that	a	significant	amount	(over	20%)	of	overtopping	discharge	measurements	is	

valued	less	than	0.0001.	Figure	6.2	is	a	histogram	of	the	overtopping	discharges.		
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Figure	6.2:	Histogram	of	overtopping	discharges	

	

Figure	 6.2	 shows	 clearly	 that	 distribution	 of	 overtopping	 discharges,	 q’,	 is	

extremely	 imbalanced.	Hence,	 to	 reduce	 the	differences	between	measurements	

and	 to	 improve	 the	 distribution	 of	 the	 measurements,	 the	 logarithms	 of	 the	

overtopping	discharges,	log(q’),	are	used	to	construct	the	NN	models	instead	of	q’	

(van	 Gent	 et	 al.,	 2005;	 Verhaeghe,	 2005;	 Verhaeghe	 et	 al.,	 2008).	 In	 addition,	

Verhaeghe	et	al	(2008)	showed	that	a	NN	trained	with	the	q’	only	performs	well	

for	 the	 largest	 q‐values	 in	 the	 range	 between	 0.01	 and	 1;	 a	 better	 result	 is	

obtained	when	an	NN	is	trained	with	log(q’).	The	application	of	the	logarithm	can	

also	avoid	the	occurrence	of	negative	estimates	of	overtopping	discharges.	Figure	

6.3	illustrates	the	histogram	of	the	logarithms	of	overtopping	discharges.	
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Figure	6.3:	Histogram	of	the	logarithm	of	overtopping	discharges	

	

The	5277	selected	tests	are	divided	randomly	into	five	groups	to	apply	the	five‐

fold	cross‐validation	(see	section	3.2.2.3.2).	Table	6.4	lists	the	distribution	of	the	

selected	tests.	

	

Table	6.4:	Test	distribution	in	five‐fold	cross‐validation	

	 Set	A	 Set	B	 Set	C	 Set	D	 Set	E	 Total	

Count	 1055	 1056	 1055	 1056	 1055	 5277	
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6.5  Variable  Selection  using  Sensitive  Genetic  Neural  Optimisation 

(SGNO) 

6.5.1 Neural Network module 

In	this	application,	the	NN	module	aims	to	establish	the	relationship	between	the	

parameters	 selected	 in	 the	 GA	module	 and	 the	 logarithm	 of	 the	 corresponding	

overtopping	discharge.	As	described	previously	in	section	3.2.2.3,	the	NN	module	

employs	 five‐fold	 cross	 validation	 with	 early‐stopping.	 The	 NNs	 have	 a	 single	

hidden	 processing	 layer	 and	 the	 number	 of	 hidden	 neurons	 in	 the	 processing	

layer	is	estimated	by	halving	the	total	number	of	input	and	output	variables	of	the	

NN.	 The	 initial	 weights	 in	 the	 hidden	 neurons	 are	 random	 numbers.	 The	

commonly	 used	 tangent‐sigmoid	 function	 (see	 Equation	 2.5)	 is	 used	 as	 the	

activation	functions	in	the	hidden	layer	and	the	pure	linear	function	is	used	in	the	

output	layer	(see	Equation	2.2).		

	

6.5.2 Genetic Algorithm module 

In	this	application,	the	size	of	each	binary	chromosome	in	the	GA	module	is	14	as	

there	 are	 15	 input	 parameters	 as	 suggested	 by	 Verhaeghe	 (2005)	 and	 the	

parameter	Hm0toe	 can	be	removed	after	the	Froude	rescaling	process.	The	size	of	

the	GA	population	is	estimated	at	70	using	the	rule	of	thumb	discussed	in	section	

3.2.2.2	 (equation	3.3)	 and	 the	 size	 of	 the	 elite	 group	 is	 estimated	 at	 3,	which	 is	

about	 5%	 of	 the	 total	 population.	 Figure	 6.4	 illustrates	 the	 performance	 of	 the	

chromosomes	 evaluated	 in	 50	 GA	 generations.	 It	 clearly	 shows	 that	 the	 mean	

RMSE	in	each	generation	drops	rapidly	in	the	first	few	generations	followed	by	a	



Wave	Overtopping	Prediction	at	Coastal	Structures	

195	
	

steadily	 converged	 pattern.	 Figure	 6.5	 illustrates	 the	 size	 of	 chromosomes	

(number	of	ON	bits)	in	the	GA	generations.	

	

	

Figure	6.4:	Chromosomes	performance	in	GA	generations	

	

	

Figure	6.5:	Number	of	ON	bits	in	each	generation	
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It	is	clear	that	Figure	6.5	shows	a	similar	but	inverse	development	trend	as	Figure	

6.4,	 which	 illustrates	 the	 performance	 of	 the	 chromosomes.	 The	 mean	 size	 of	

chromosomes	 in	each	generation	grows	rapidly	 in	 the	 first	 few	generations	and	

then	shows	a	converged	pattern	afterwards.	In	addition,	the	figure	shows	that	the	

saturated	 chromosome,	 in	 which	 all	 14	 input	 parameters	 are	 selected,	 starts	

appearing	 at	 the	 5th	 generation	 and	 remains	 throughout	 the	 entire	 GA	 process.	

The	mean	size	of	the	chromosomes	in	each	generation	becomes	over	13	from	the	

10th	 generation	 indicates	 that	 a	 significant	 amount	 of	 saturated	 chromosomes	

exists	in	each	generation.	Figure	6.6	illustrates	the	performance	of	chromosomes	

against	their	sizes.	It	is	observable	that	the	RMSEs	of	the	chromosomes	decrease	

as	the	number	of	ON	bits	(size	of	chromosomes)	increases.	

	

Figure	6.6:	Chromosome	performance	vs.	number	of	ON	bits	
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Figure	6.7	Number	of	saturated	chromosomes	in	GA	generations	

	

Figure	 6.7	 illustrates	 the	 number	 of	 saturated	 chromosomes	 during	 the	 GA	

process.	The	number	of	saturated	chromosomes	keeps	increasing	starting	at	the	

5th	 generation	 and	 fluctuates	 around	 45,	 which	 is	 about	 64%	 of	 the	 total	

population,	 since	 the	 13th	 generation.	 Together	 with	 the	 patterns	 illustrated	 in	

Figure	6.4	and	Figure	6.5,	which	tend	to	converge	starting	at	the	10th	generation,	

these	 indicate	 that	 the	 GA	 evolution	 process	 is	 only	 effective	 in	 the	 first	 10	

generations.			

	

6.5.3 Sensitivity Analysis module 

The	SA	module	aims	to	identify	the	global	influences	of	input	parameters	towards	

the	output	parameter	by	analysing	the	importance	of	input	parameters	appeared	

in	the	group	of	selected	well‐performing	chromosomes	in	each	generation.		

	

As	discussed	 in	 the	previous	 section	6.5.2,	 the	GA	evolution	process	 is	 effective	

only	in	the	first	10	generations	in	this	application.	Hence,	only	the	chromosomes	
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evaluated	in	the	first	10	generations	are	considered.	In	each	generation,	a	quarter	

of	the	chromosomes	with	the	highest	performance	in	the	population	(70	x	25%	≈	

17)	 are	 selected	 to	 carry	 out	 the	 SA	 analysis.	 Figure	 6.8	 illustrates	 the	 size	

(number	 of	 ON	 bits)	 of	 the	 selected	 chromosomes.	 The	 figure	 shows	 that	 the	

saturated	 chromosomes	 still	 take	 a	 significant	 portion	 of	 the	 selected	

chromosome	group	(50	/	170	≈	29%).		

	

Figure	6.8:	Sizes	of	the	chromosomes	selected	for	SA	analysis	

	

The	global	 sensitivity	 score	of	 a	 certain	 input	parameter	 is	 calculated	by	 taking	

the	mean	of	 the	 sensitivity	 scores	derived	 in	 the	 selected	 chromosomes	of	 high	

performance.	 Figure	 6.9	 illustrates	 the	 global	 sensitivity	 scores	 of	 all	 the	 input	

parameters.	In	the	figure,	the	structure	roughness,	γt,	wave	height	determined	at	

deep	 water,	Hm0deep,	 and	 the	 crest	 freeboard,	 Rc,	 have	 outstanding	 sensitivity	

scores	 comparing	 to	 other	 parameters.	 The	 angle	 of	 incident	wave,	β,	 has	 the	

lowest	sensitivity	score	and	hence	the	lowest	influence	on	the	model	output.	
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Figure	6.9:	Global	sensitivity	scores	of	all	input	parameters	

	

Based	 on	 the	 global	 sensitivity	 scores	 of	 the	 input	 parameters,	 the	 importance	

rank	table	can	be	constructed	by	rearranging	the	parameters	in	descending	order.	

The	 parameter	 of	 higher	 sensitivity	 score	 is	 considered	 to	 be	 of	 higher	

importance/influence	 to	 the	model	 output.	 The	 importance	 rank	 table	 is	 listed	

below,	in	which	the	former	elements	have	higher	sensitivity	scores	than	the	latter	

elements.	

[γt		Rc		Hm0deep		Ac		Gc		hb		cotad		cotau		Bt		ht		Tm‐1,0toe		h		Bh		β]	

	

In	terms	of	parameter	indices	in	the	chromosomes,	the	importance	rank	table	can	

be	 re‐expressed	 by	 replacing	 the	 input	 parameters	 with	 their	 positions	 in	 the	

chromosomes.	 Comparing	 to	 the	 parameter	 rank	 table	 listed	 above,	 the	 re‐

expressed	index	rank	table	is	more	understandable,	especially	for	benchmarking	

in	the	later	section	6.8.	The	indices	list	is		

[7,	10,	1,	13,	14,	11,	8,	9,	6,	5,	4,	3,	12,	2]	
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6.6 System Remodelling 

As	mentioned	in	previous	3.2.3,	NNs	are	not	only	used	as	the	NN	module	in	SGNO,	

but	are	also	used	to	re‐evaluate	the	performance	of	the	ranked	parameters	in	the	

importance	 rank	 table.	 Table	 6.5	 lists	 the	 performance	 of	 NN	 models	 using	

various	numbers	of	input	parameters	selected	from	the	SGNO’s	importance	rank	

table.	 Figure	 6.10	 illustrates	 the	 results	 of	 NN	 models	 taking	 3,	 6	 and	 9	

parameters	 from	the	rank	table	and	figure	11	 illustrates	 the	performance	of	 the	

NN	models	against	the	chromosomes	evaluated	in	the	GA	module.	

Table	6.5:	SGNO	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 1.006  0.8319  0.8152 0.78 0.7196 0.7178 0.6482  0.616 0.592

R2	 0.2113  0.4607  0.4821 0.5259 0.5965 0.5985 0.6726  0.7043 0.7269

	
Size	 10	 11	 12	 13	 14	
RMSE	 0.5738  0.5141  0.5011 0.4613 0.4715

R2	 0.7434  0.7941  0.8043 0.8342 0.8267

	

	
Figure	6.10:	Performance	of	NN	models	taking	3,	6	and	9	inputs	
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Figure	6.11:	Performance	of	parameters	in	SGNO	rank	table	vs.	mean	

performance	in	GA	module	

	

Figure	6.11	clearly	shows	decreasing	patterns	for	both	plots,	and	the	performance	

of	the	importance	rank	table	constructed	by	SGNO	is	of	significant	advantage	over	

the	mean	performance	of	the	chromosomes	evaluated	during	the	GA	process.	As	

the	 number	 of	 parameters	 increases,	 the	 advantage	 of	 SGNO	 optimisation	

weakens	 and	 the	 difference	 between	 these	 two	 performance	 plots	 gradually	

decreases.		

	

After	 evaluating	 the	 importance	 rank	 table,	 several	 NN	 models	 using	 various	

numbers	 of	 input	 variables	 are	 ‘optimised’	 to	 discover	 the	 best	 performance	

achievable.	Table	6.6	lists	the	‘optimal’	NN	architectures	discovered	and	the	best	

performance	achieved	for	various	numbers	of	input	parameters	selected	from	the	

importance	rank	table.		
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Table	6.6:	'Optimal'	architectures	and	their	performance	

Number	of	input	variables
‘Optimal’	architecture	

[1st	layer,	2nd	layer]	

Performance	

(RMSE)	

3	 [6,	0]	 0.7881	

6	 [11,	0]	 0.6853	

9	 [11,	6]	 0.5574	

12	 [15,	9]	 0.4558	

	

	

	

Figure	6.12:	Performance	differences	between	the	‘optimal’	architectures	and	

estimated	architectures	

	

Figure	 6.12	 illustrates	 the	 performance	 of	 those	 ‘optimal’	 NN	 models	 against	

those	of	the	estimated	architectures.	The	NN	models	of	‘optimal’	architectures	are	

always	of	better	performance	over	those	with	estimated	architectures.	However,	

the	 advantages	 of	 these	 ‘optimal’	 architectures	 are	minor	 in	 this	 application.	 A	
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possible	reason	for	these	non‐significant	advantages	in	the	‘optimal’	architectures	

is	 the	 upper	 bound	 for	 the	 total	 number	 of	 hidden	 neurons,	which	 is	 twice	 the	

number	of	input	variables.	All	these	‘optimal’	architectures	are	either	close	to	or	

equal	to	their	upper	bounds.	Thus,	lifting	the	upper	bounds	may	lead	to	NN	modes	

of	even	better	performance.	

	

6.7 Symbolic Regression using Genetic Programming 

After	 constructing	 the	 parameter	 importance	 (influence)	 rank	 table,	 a	 GP	 with	

tree‐structured	MBE	 is	employed	to	discover	 the	symbolic	relationship	between	

various	 numbers	 of	 input	 parameters	 selected	 from	 the	 importance	 rank	 table	

and	 the	 logarithm	of	 the	corresponding	overtopping	discharges.	As	discussed	 in	

the	 previous	 sections	 3.2.4	 and	 4.7,	 the	 GP	 uses	 seven	 commonly	 used	

mathematical	 operators,	 which	 are	 plus,	 minus,	 times,	 division,	 power,	 natural	

logarithm	and	square	root,	as	the	source	of	expressions	to	construct	the	symbolic	

expression	of	the	relationship.	

	

The	GP	symbolic	regression	exploration	is	carried	out	for	various	numbers	(3,	6	

and	 9)	 of	 input	 parameters.	 For	 the	 case	 of	 3	 input	 parameters,	 the	 population	

size	 is	 estimated	 at	 105	 using	 the	 rule	 of	 thumbs	 expressed	 in	 equation	 3.10,	

section	3.2.4.2,	the	maximum	number	of	tree	branches	in	a	chromosome	is	5,	the	

initial	maximum	tree	depth	is	3,	and	the	size	of	the	elite	group	is	estimated	at	5	

(5%	of	the	total	population).	Figure	6.13	illustrates	the	evolution	of	the	GP	for	100	

generations	for	the	case	of	3	input	parameters	selected	from	the	rank	table.		
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Figure	6.13:	Evolution	of	GP	for	the	case	of	3	variables.	(a)	mean	errors	in	

generations,	(b)	minimum	errors	in	generations	

	

As	shown	in	Figure	6.13(a),	the	mean	generation	RMSEs	fluctuates	around	1	with	

few	 sharp	 peaks	 and	 two	 extremely	 high	 values.	 Figure	 6.13(b)	 illustrates	 the	

RMSEs	of	the	best	performing	chromosome	in	each	generation,	3	clear	decreasing	

steps	 occur	 at	 the	 14th,	 37th	 and	 73rd	 generations.	 However,	 the	 improvements	

made	at	these	dropping	points	are	minor.	The	global	minimum	RMSE	occurred	at	

the	73rd	 generation	onwards	 is	0.8170	and	 the	 chromosome	of	minimum	RMSE	

can	 be	 expressed	 using	 equation	 6.7.	 Comparing	 with	 the	 NN	models	 with	 the	

estimated	and	 ‘optimal’	architectures	that	produce	RMSEs	at	0.8152	and	0.7881	

respectively,	this	chromosome	produces	competitive	performance.	

∗ ∗ ∗ ∗ ∗ ∗ log 							(6.7)	
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Table	 6.7	 lists	 the	 performance	 of	 the	 GP	 process	 and	 the	 discovered	 symbolic	

expressions	using	6	 and	9	variables	 from	 the	SGNO	rank	 table.	Comparing	with	

the	 NN	 models	 using	 the	 same	 input	 variables,	 these	 chromosomes	 are	 not	

performing	 as	 well	 as	 the	 NN	 models.	 However,	 these	 chromosomes	 produce	

better	performance	than	the	chromosome	using	3	variables.			

	

Table	6.7:	Symbolic	expressions	discovered	by	GP	for	various	numbers	of	

variables	

No.	of	

Variables	
RMSE	 Symbolic	Expression	

6	 0.7725	
∗ ∗ 	

∗ ∗ 	

9	 0.7618	

∗ 	

∗ 	

∗ ∗ ∗ 	

	

6.8 Benchmarking with other Feature Selection (FS) Techniques  

In	 this	 section,	 the	performance	of	 SGNO	 is	benchmarked	with	 several	 other	FS	

techniques,	including	PCA,	FFS,	BFS	and	GNMM.	All	these	techniques	are	designed	

to	reduce	the	dimensionality	of	the	original	data	set.		
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6.8.1 Principal Component Analysis (PCA) 

PCA	is	a	famous	dimension	reduction	technique	that	transforms	the	original	data	

set	in	to	a	new	coordinate	system	linearly.	Section	3.3.1	explains	the	PCA	process	

in	details.	 In	 this	application,	PCA	 is	used	 to	 transform	the	14	 input	parameters	

and	 the	 performance	 of	 the	 new	 parameters,	 principal	 components	 (PCs),	 is	

evaluated	using	NNs.	Figure	6.14	illustrates	the	variances	carried	in	each	PC	after	

transformation.	The	 figure	displays	only	4	PCs	and	 the	 first	PC	carries	 the	most	

variance,	close	to	80%,	while	the	other	PCs	carry	only	small	amounts	of	variances.	

The	 accumulated	 variance	 plot	 (the	 thin	 blue	 line)	 shows	 that	 the	 first	 4	 PCs	

displayed	explain	over	95%	of	the	variance.	

	

Figure	6.14:	Variance	explained	in	PCs	

	

After	 the	 PCA	 transformation,	 the	 performance	 of	 the	 PCA	 is	 evaluated	 by	

employing	NNs	taking	various	numbers	of	PCs	as	inputs	to	estimate	overtopping	

discharges.	 Again,	 five‐fold	 cross‐validation	 and	 early‐stopping	 NN	 training	 is	
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employed	to	support	the	NN	evaluation.	Furthermore,	the	NN	models	comprise	of	

a	single	hidden	processing	layer	and	the	number	of	hidden	neurons	is	estimated	

by	halving	the	number	of	inputs	and	output.	Table	6.8	lists	the	performance	of	the	

NN	models	 taking	various	number	s	of	PCs	as	 inputs	and	Figure	6.15	 illustrates	

the	performance	of	these	NN	models	against	the	performance	of	NN	models	using	

input	variables	picked	from	the	parameter	rank	table	constructed	using	SGNO.		

	

Table	6.8:	PCA	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 1.0997  1.1047  1.0887 1.0594 0.9919 0.9626 0.8699  0.6926 0.6253

	
Size	 10	 11	 12	 13	 14	
RMSE	 0.6123  0.5848  0.5726 0.5391 0.475

	

	

Figure	6.15:	Performance	of	NN	models	using	PCA	against	SGNO	

	

As	shown	in	Figure	6.15,	the	parameters	selected	by	SGNO	are	of	clear	advantages	

over	 the	 PCA	 as	 the	 RMSEs	 generated	 using	 the	 SGNO	 selected	 parameters	 are	
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always	lower	than	those	generated	using	PCA	and	the	largest	difference	is	up	to	

the	value	of	0.29	when	4	 input	variables	are	used.	Both	performance	plots	have	

reducing	patterns;	 as	 the	number	of	 selected	 variables	 increases,	 the	difference	

between	 these	 two	 plots	 reduces	 indicating	 that	 the	 SGNO	 gradually	 loses	 its	

advantage.		

	

6.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS) 

FFS	and	BFS	are	well	known	conventional	 sequential	 FS	 techniques.	They	work	

towards	the	solution	along	two	opposite	directions.	The	FFS	starts	with	an	empty	

selection	list	and	repetitively	adds	variables	into	the	selection	list,	while	the	BFS	

starts	with	 a	 selection	 list	 containing	 all	 the	 variables	 and	 repetitively	 removes	

the	variables	from	the	list.	The	detailed	procedures	of	FFS	and	BFS	are	explained	

in	section	3.3.2.	

	

The	following	lists	present	the	variables	preference	orders	discovered	by	FFS	and	

BFS.	 The	 FFS	 list	 presents	 variables	 in	 the	 sequential	 order	 that	 variables	 are	

added	 to	 the	 solution	 list,	while	 the	 BFS	 list	 presents	 variables	 in	 the	 reversed	

order	that	they	are	removed	from	the	selection	in	BFS.	Hence,	the	variables	are	in	

descending	 order	 of	 preferences	 in	 both	 lists.	 In	 the	 lists,	 the	 first	 three	

parameters	are	identical	and	the	other	parameters	are	of	various	orders.			

FFS:	[10,	7,	4,	2,	9,	12,	14,	6,	5,	1,	11,	13,	3,	8]	

BFS:	[10,	7,	4,	9,	6,	12,	2,	14,	13,	8,	11,	5,	1,	3]	
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Comparing	 with	 the	 parameter	 importance	 rank	 table	 constructed	 by	 SGNO,	

which	is	[7,	10,	1,	13,	14,	11,	8,	9,	6,	5,	4,	3,	12,	2],	the	parameters	are	ordered	in	

distinct	ways.	However,	 they	 all	 identify	 the	 parameters	No.7	 and	No.10	 as	 the	

most	preferable	parameters	and	the	parameter	No.3	is	less	favourable.	Table	6.9	

lists	 the	performance	of	 the	preference	 lists	produced	by	BFS	and	FFS	using	NN	

models	 with	 various	 numbers	 of	 input	 variables	 selected	 from	 the	 preference	

lists.	

Table	6.9:	BFS	and	FFS	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
BFS	 1.0041 0.8348  0.774 0.7414 0.6877 0.6432 0.5908  0.5747  0.5371

FFS	 1.004 0.8343  0.7794 0.7428 0.6855 0.6465 0.5971  0.5812  0.5429

	 	
Size	 10	 11	 12	 13	 14	
BFS	 0.5335 0.5011  0.5045 0.4795 0.4783

FFS	 0.5363 0.5103  0.5072 0.4849 0.4788

	
Figure	6.16:	Performance	of	NN	models	using	BFS	and	FFS	against	SGNO	
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Figure	6.16	 illustrates	 the	performance	of	 the	preference	 lists	produced	by	BFS	

and	 FFS	 against	 rank	 table	 produced	 by	 SGNO.	 Although	 the	 BFS	 and	 FFS	

produced	 different	 parameter	 preference	 lists,	 the	 performance	 of	 the	 lists	 are	

almost	 the	 same	 as	 their	 performance	 plots	 are	 nearly	 overlapped.	 Comparing	

with	the	performance	plots	of	BFS	and	FFS,	the	parameter	rank	table	discovered	

by	SGNO	is	not	performing	as	well	as	BFS	and	FFS	apart	from	the	head	and	tail	of	

the	performance	plot.	

	

6.8.3 Genetic Neural Mathematical Method (GNMM) 

GNMM	 is	 a	 hybrid	 data	 mining	 technique	 incorporating	 GA	 and	 NNs.	 The	

preferences	of	 the	available	variables	are	ordered	 in	terms	of	 their	appearances	

during	 the	 GA	 process.	 The	 variables	 of	 higher	 appearance	 percentages	 are	

considered	 to	 be	 more	 favourable	 compared	 to	 those	 of	 lower	 appearance	

percentages	 (Yang,	 2010;	 Yang	 et	 al.,	 2007).	 The	 detailed	 procedures	 of	 GNMM	

were	 discussed	 in	 section	 3.3.3.	 Figure	 6.17	 illustrates	 the	 appearance	

percentages	of	the	variables	discovered	by	the	GNMM	process.	
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Figure	6.17:	Variable	appearance	percentages	in	GNMM	

	

As	 shown	 in	 Figure	 6.17,	most	 of	 the	 input	 parameters	 are	 of	 high	 appearance	

percentages	(over	80%).	Among	all	the	parameters,	Tm‐1,0toe,	γt	and	cotau,	indexed	

by	 4,	 7	 and	 9	 respectively,	 are	 of	 the	 highest	 appearance	 percentages	 (close	 to	

100%),	 followed	 by	Rc	 (10),	Bh	 (12),	Gc	 (14),	 β	 (2)	 and	 h	 (3)	 (over	 90%).	 The	

following	 list	 contains	 the	 ordered	 variables	 based	 on	 their	 appearance	

percentages	in	descending	order.	

[Tm‐1,0toe,	γt,	cotau,	Bh,	Gc,	Rc,	β,	h,	Bt,	Ac,	hb,	cotad,	Hm0deep,	ht]	

	

The	following	index	list	holds	the	indices	of	the	variables	ordered	in	the	above	list.	

[4,	7,	9,	12,	14,	10,	2,	3,	6,	13,	11,	8,	1,	5]	

	

Table	6.10	lists	the	performance	of	the	preference	list	produced	by	GNMM	using	

NN	models	with	various	numbers	of	input	variables	selected	from	the	list.	Figure	

0
10
20
30
40
50
60
70
80
90
100

A
p
p
ea
ra
n
ce
	P
er
ce
n
ta
ge
	(
%
)

Input	Parameters

GNMM	Appearance	Percentage



Wave	Overtopping	Prediction	at	Coastal	Structures	

212	
	

6.18	 illustrates	 the	performance	of	 the	GNMM	discovered	parameter	 rank	 table	

against	SGNO’s	rank	table.	

Table	6.10:	GNMM	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 1.1261  1.0437  0.9846 0.9763 0.9614 0.6764 0.6023  0.5826 0.5546

	
Size	 10	 11	 12	 13	 14	
RMSE	 0.5448  0.5132  0.4965 0.4746 0.4798

	

	

Figure	6.18:	Performance	of	GNMM	against	SGNO	

	

As	shown	 in	Figure	6.18,	unlike	 the	performance	plot	of	SGNO,	which	decreases	

gradually	following	a	quasi‐linear	pattern,	there	exists	a	clear	gap	in	the	middle	of	

the	plot	(between	5	and	6).	The	sudden	drop	is	caused	by	the	addition	of	the	10th	

variable,	 which	 is	 the	 crest	 freeboard	 (Rc)	 and	 it	 is	 identified	 as	 the	 most	

preferable	variable	by	BFS	and	FFS.	The	performance	plot	of	GNMM	shows	 that	

SGNO	 is	 of	 significant	 advantages	 over	 GNMM	 when	 the	 number	 of	 input	

parameters	is	less	than	or	equal	to	5.	The	largest	difference	is	up	to	the	value	of	
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0.2418	when	5	input	variables	are	used.	When	the	number	of	parameters	exceeds	

5,	the	rank	table	constructed	by	GNMM	generally	performs	better	than	SGNO.		

	

6.8.4 Benchmarking summary 

Figure	6.19:	Performance	of	all	benchmarking	techniques	against	SGNO	

	

Figure	 6.19	 summarises	 the	 performance	 of	 the	 preference	 rank	 tables	

constructed	 using	 all	 the	 techniques	 presented.	 It	 shows	 that	 among	 these	 5	

techniques,	 FFS	 and	 BFS	 are	 of	 the	 best	 performance	 and	 PCA	 generates	 the	

highest	 RMSEs	 in	 general.	 SGNO	 provides	 competitive	 performance	 to	 FFS	 and	

BFS,	while	GNMM	is	only	performing	well	when	the	number	of	selected	variables	

is	relatively	large	(greater	than	5).		
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6.9 Conclusion 

In	 this	 chapter,	 SGNO	 is	 demonstrated	 to	 establish	 a	 model	 to	 predict	 the	

overtopping	 discharges	 at	 coastal	 structures	 using	 a	 database	 created	 in	 the	

European	 project	 CLASH.	 The	 database	 includes	 tests	 collected	 from	 different	

institutes	 and	 new	 tests	 performed	within	 the	 CLASH	 project.	 Each	 test	 record	

contains	 a	 number	 of	 parameters	 representing	 wave	 characteristics	 and	

structural	 information	 at	 the	 test	 station	 plus	 some	 general	 information.	 Apart	

from	 establishing	 prediction	 models,	 the	 symbolic	 relationship	 between	 the	

model	inputs	and	output	are	discovered	using	multiple‐branch	GP.	

	

Analysis	 results	 show	 that	 all	 variables	 contribute	 to	 the	 prediction	 of	

overtopping	 discharge	 as	 increasing	 the	 number	 of	 input	 variables	 can	 always	

increase	 the	 accuracy	 of	 the	 NN	 prediction	 model	 (see	 Figures	 6.6	 and	 6.18).	

SGNO	 successfully	 constructs	 the	 influence/importance	 rank	 table	 for	 all	 the	

variables.	 Comparing	 with	 4	 benchmarking	 FS	 techniques,	 including	 BFS,	 FFS,	

GNMM	and	PCA,	SGNO	is	of	clear	advantage	over	GNMM	and	PCA,	and	of	similar	

performance	to	the	best	performing	techniques,	BFS	and	FFS,	especially	when	the	

number	of	selected	variables	is	small.		

	

After	identifying	the	influential	levels	of	all	the	variables,	GP	with	tree	structured	

multiple	 branches	 is	 applied	 to	 extract	 concise	 symbolic	 relationship	 between	

various	numbers	of	input	variables	and	the	overtopping	discharges.	
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CHAPTER 7 
 

Industry  Level  Production  Growth  Prediction  and 
Modelling using the EU KLEMS Database	
	
	

7.1	Overview	

In	the	previous	chapter,	SGNO	was	applied	to	analyse	the	dataset	collected	in	the	

EU	 CLASH	 project.	 In	 this	 chapter,	 SGNO	 is	 used	 to	 the	 EU	 KLEMS	 database	 to	

model	the	relationship	between	growths	of	the	industrial	inputs,	such	as	capital,	

labour,	energy,	etc.,	and	the	growth	of	the	gross	production	output.		

	

The	continuous	improvement	of	economic	growth	and	industrial	production	has	

been	a	major	research	area	for	decades.	Empirical	and	theoretical	research	in	the	

related	 fields,	 such	 as	 the	 relationship	 between	 technological	 improvement,	

employee’s	 skill,	 investment	 and	 productivity	 have	 been	 carried	 out	 by	

researchers	 and	 economists.	 Typically,	 economic	 growth	 is	 primarily	 driven	 by	

the	 industrial	 productivity,	which	 refers	 to	 the	 production	 of	 goods	 or	 services	

with	 the	 same	 amount	 of	 labour	 inputs,	 capital	 inputs,	 energy	 and	 material	

resources.	To	overcome	the	lack	of	a	readily	available	database	for	internationally	

comparable	 studies	 on	 economic	 growth,	 a	European	project	 named	EU	KLEMS	

(capital,	K,	 labour,	L,	 energy,	E,	materials,	M,	 and	service,	S)	was	established	by	

the	European	Commission	 to	 create	 a	 general	 purpose	database	on	 growth	 and	

productivity	accounts	by	industry	for	EU	member	states.	
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7.2	Background		

Economists	have	been	applying	NNs	to	solve	economic	problems	for	decades	by	

adopting		the	NNs	for	economic	classification	and	regression	problems	(Herbrich	

et	 al.,	 1999).	 In	 the	 1990’s,	 many	 successful	 attempts	 using	 NNs	 on	 economic	

classification	 problems	 were	 published	 in	 the	 area	 of	 bankruptcy	 prediction.	

Odom	and	Sharda	(1990)	built	a	simple	back	propagation	NN	of	a	single	hidden	

processing	 layer,	 which	 takes	 five	 financial	 ratios	 as	 the	 inputs.	 They	 reported	

that	 the	NN	model	can	achieve	70%‐80%	accuracy	on	the	test	dataset.	Tam	and	

Kiang	 (1992)	 	employed	a	 similar	NN,	which	 takes	19	 financial	 ratios	as	 inputs,	

and	 showed	 that	 the	 NN	 model	 performed	 on	 average	 better	 than	 other	

traditional	financial	methods.	In	the	following	years,	many	economists	carried	out	

similar	tests	using	various	types	of	NNs	on	different	datasets.	Boritz	and	Kennedy	

(1995)	 concluded	 in	 their	 study	 that	 the	 NNs	 performed	 reasonably	 well	 in	

bankruptcy	prediction	but	their	performance	is	affected	by	many	factors,	such	as	

choice	of	predictor	(input)	variables,	sample	size,	mixture	proportion,	etc	(Zhang	

et	al.,	1999).	

	

NN	regression	is	of	great	interest	to	economists	to	perform	economic	forecasting.	

Macroeconomic	 forecasting	 is	 difficult	 due	 to	 the	 lack	 of	 an	 accurate	 and	

convincing	 model	 and	 the	 non‐stationarities,	 high	 noise	 levels	 and	 nonlinear	

effects	 in	 the	 economic	 data	 series	 (Moody,	 1995).	 As	 the	 NNs	 are	 capable	 of	

approximating	 any	 continuous	 functions,	 they	 are	 expected	 to	 provide	 effective	

nonlinear	models	and	thus	better	predictions	(Zhang	et	al.,	1999).	Moody	(1995)	

presented	his	attempt	to	forecast	the	U.S.	Industrial	Production	Index	using	NNs	

and	 demonstrated	 that	 NN	 models	 can	 achieve	 superior	 accuracy	 over	
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conventional	 linear	 time	 series	 and	 regression	 methods.	 In	 1996,	 Kaastra	 and	

Boyd	 (1996)	 introduced	 an	 8‐step	 practical	 introductory	 guide	 for	 economic	

researchers	 to	 design	 NNs	 for	 forecasting	 economic	 time	 series	 data.	 Junoh	

(2004)		presented	a	comparative	case	study	between	NNs	and	linear	econometric	

methods	 to	 predict	 the	 GDP	 growth	 in	 Malaysia	 using	 the	 economy	 indicators,	

such	as	number	of	internet	subscribers,	number	of	mobile	phone	subscribers,	etc.,	

collected	 from	 1995‐2000	 and	 demonstrated	 that	 the	 NN	 model	 is	 of	 clear	

advantage	 over	 the	 econometric	 methods.	 Duzgun	 (2010)	 carried	 out	

comparative	 studies	 on	 Consumer	 Price	 Index	 inflation	 forecasting	 using	

generalized	 regression	 NNs	 (GRNNs),	 feed	 forward	 NNs	 (FFNNs)	 and	 ARIMA	

(AutoRegressive	 Integrated	Moving	 Average)	models.	 The	monthly	 data	 for	 the	

time	 period	 2000‐2008	provided	 by	 the	Turkish	 Statistical	 Institute	were	 used.	

The	 advantage	 of	 using	 GRNN	 over	 traditional	 FFNN	 and	 ARIMA	 was	

demonstrated	in	his	study.	

	

7.3	Dataset	

As	mentioned	 in	 the	previous	section,	 the	EU	KLEMS	project	was	established	 to	

improve	 the	 international	 economic	 studies	 of	 the	 relationship	 between	 labour	

skill	 formation,	 investment,	 technology	 development	 and	 manufacturing	

production	 by	 creating	 a	 standard	 economic	 database	 at	 the	 industry	 level	

covering	 a	 large	 set	 of	 countries	 (O'Mahony	 and	 Timmer,	 2009).	 The	 main	

objectives	of	the	EU	KLEMS	project	were	(Koszerek	et	al.,	2007):	

 To	create	a	sustainable	growth,	employment	and	productivity	database	at	

the	industry	level	for	the	EU	Member	States	and	some	non‐EU	countries.	
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 To	 make	 a	 methodological	 breakthroughs	 in	 the	 field	 of	 industry	

productivity	measurement.	

 To	work	towards	an	 internationally	comparable	comprehensive,	 industry	

level	statistics.	

	

The	established	EU	KLEMS	database	 covers	measures	of	 industry	output,	 input,	

growth,	and	derived	variables,	such	as	price	indexed	measures,	developed	for	30	

countries	 (25	 individual	 EU	 member	 states,	 the	 US,	 Japan,	 Korea,	 Canada	 and	

Australia)	 from	 1970	 onwards.	 The	 input	 measures	 for	 every	 country	 include	

various	categories	of	capital	(K),	labour	(L),	energy	(E),	material	(M)	and	service	

inputs	 (S).	 In	 the	 database,	 industries	 are	 divided	 into	 several	 industry	 sectors,	

which	are	groups	of	industries	defined	by	the	EU	Commission.	The	database	not	

only	provides	industry	measures	at	the	detailed	industry	level	but	also	provides	

higher	level	aggregates	for	the	industry	sectors.	

	

In	this	application,	SGNO	and	NNs	are	applied	to	explore	the	relationship	between	

the	gross	industry	output	(GO)	growth	and	the	economic	input	growth,	including	

labour,	capital	and	intermediate	inputs	using	the	industry	measures	from	15	well	

studied	 countries,	 in	 which	 the	 industry	 measures	 are	 fully	 available	 for	 the	

period	 1970	 –	 2007.	 These	 counties	 include	 Australia,	 Austria,	 Czech	 Republic,	

Denmark,	 Finland,	 France,	 Germany,	 Italy,	 Japan,	 Netherlands,	 Slovenia,	 Spain,	

Sweden,	UK	and	US.		

	

Instead	 of	 studying	 the	 industry	 level	 measures,	 the	 aggregate	 industry	 sector	

based	 measures	 are	 taken	 into	 account	 due	 to	 the	 fact	 that	 the	 industry	 level	
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measures	are	incomplete	for	some	countries.	Tables	7.1	and	7.2	list	the	industry	

sectors	and	the	industry	measures	from	these	industry	sectors	to	be	studied.	

Table	7.1:	Major	industry	sectors	

Index	 Industry	Sectors	

1	 Agriculture,	hunting,	forestry	and	fishing	

2	 Mining	and	quarrying	

3	 Manufacturing	

4	 Electricity,	gas	and	water	supply	

5	 Construction	

6	 Wholesale	and	retail	trade	

7	 Hotels	and	restaurants	

8	 Transport	and	storage	and	communication	

9	 Finance,	insurance,	real	estate	and	business	services	

10	 Community	social	and	personal	services	

	
	

Table	7.2:	Industry	measures	

Industry	measure	 Abbreviation	 Unit	

Intermediate	inputs	 II	 Millions	local	currency	

Number	of	persons	engaged	 EMP	 Thousands	

Total	hours	worked	by	persons	

engaged	
H_EMP	 Millions	of	hours	

Labour	compensation	 LAB	 Millions	local	currency	

Capital	compensation	 CAP	 Millions	local	currency	

	

As	the	 industry	measures	were	taken	on	all	 the	 industry	sectors,	Tables	7.1	and	

7.2	produce	a	total	of	50	variables,	known	as	economic	inputs	or	industrial	inputs.	

Hence,	 the	objective	of	this	application	is	to	model	the	relationship	between	the	

annual	growth	of	GO	and	the	growth	of	these	50	variables	using	NNs.	For	each	of	

the	countries	selected,	the	50	economic	input	variables	and	the	GO	output	in	each	
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year	 are	 extracted	 to	 be	 analysed.	 As	 mentioned	 previously,	 the	 industry	

measures	 were	 collected	 for	 the	 period	 1970	 –	 2007	 (38	 years).	 For	 the	 15	

selected	 countries,	 there	 should	 be	 570	 (15x38)	 data	 records	 and	 each	 record	

contains	51	variables	representing	the	economic	inputs	and	output	for	a	country	

in	a	specific	year.	However,	the	industry	measures	for	several	countries	may	not	

be	 complete,	 i.e.	 the	 measures	 of	 early	 decades	 are	 not	 available.	 Hence,	 the	

extracted	data	subset	contains	only	508	records.		

	

7.4	Data	Pre‐processing	

As	 this	 application	 aims	 to	 model	 the	 relationship	 between	 the	 growths	 on	

economic	 inputs	 and	 the	 growth	 on	 gross	 production	 output	 using	 NNs	 and	

analyse	the	effects	of	 the	 input	growth	on	the	growth	of	 the	output,	 the	original	

industry	measures	(economic	inputs	and	production	output)	extracted	need	to	be	

converted	into	the	annual	growth	rates	using	the	follow	equation:	

growth	rate 	meansure 	/	measure ,		n	=	1970,	1971,	...																(7.1)	

	

Converting	 the	 industry	 measures	 to	 industry	 growths	 reduces	 the	 size	 of	 the	

extracted	dataset	down	to	493.	Table	7.3	list	the	basic	statistics	of	the	selected	51	

variables.	 The	 variable	 GO	 is	 the	 gross	 production	 growth,	 the	 output	 in	 NN	

models,	and	the	other	variables	(IIn,	EMPn,	H_EMPn,	LABn	and	CAPn)	are	the	inputs	

in	NN	models,	representing	the	various	types	of	economic	input	growths	in	those	

selected	 industry	 sectors	 (the	 subscripts	 indicates	 the	 industry	 sectors	 listed	 in	

Table	7.1).		The	GA	index	in	the	table	represents	the	position	of	the	variable	in	GA	

chromosomes	during	the	SGNO	process.		
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Table	7.3:	Statistics	of	the	selected	variables	

GA	

Index	
Symbol	 Mean	 Minimum	 Maximum	

Standard	

Deviation	

	 GO	 1.0803	 0.9491	 1.3506	 0.0528	
1	 II1	 1.0474	 0.6462	 1.5590	 0.0798	
2	 II2	 1.0807	 0.6415	 1.7912	 0.1460	
3	 II3	 1.0736	 0.8877	 1.5078	 0.0753	
4	 II4	 1.0965	 0.4465	 1.7983	 0.1343	
5	 II5	 1.0773	 0.8034	 1.3864	 0.0796	
6	 II6	 1.0853	 0.9167	 1.5357	 0.0718	
7	 II7	 1.0919	 0.8197	 2.4536	 0.1273	
8	 II8	 1.0966	 0.9249	 1.5658	 0.0776	
9	 II9	 1.1052	 0.8008	 1.6069	 0.0740	
10	 II10	 1.0934	 0.8633	 1.5300	 0.0693	
11	 EMP1	 0.9750	 0.7730	 1.0963	 0.0289	
12	 EMP2	 0.9758	 0.5738	 1.2220	 0.0588	
13	 EMP3	 0.9910	 0.9000	 1.0589	 0.0251	
14	 EMP4	 0.9971	 0.8257	 1.1481	 0.0353	
15	 EMP5	 1.0033	 0.8462	 1.1248	 0.0427	
16	 EMP6	 1.0091	 0.8866	 1.0768	 0.0201	
17	 EMP7	 1.0196	 0.9006	 1.0996	 0.0268	
18	 EMP8	 1.0068	 0.9359	 1.0717	 0.0192	
19	 EMP9	 1.0364	 0.9262	 1.1654	 0.0298	
20	 EMP10	 1.0196	 0.9544	 1.0744	 0.0149	
21	 H_EMP1	 0.9747	 0.8385	 1.1331	 0.0327	
22	 H_EMP2	 0.9745	 0.4577	 1.3030	 0.0687	
23	 H_EMP3	 0.9888	 0.8792	 1.0648	 0.0283	
24	 H_EMP4	 0.9945	 0.8216	 1.1481	 0.0367	
25	 H_EMP5	 1.0020	 0.8296	 1.1405	 0.0471	
26	 H_EMP6	 1.0048	 0.8943	 1.0827	 0.0227	
27	 H_EMP7	 1.0139	 0.8748	 1.1089	 0.0295	
28	 H_EMP8	 1.0050	 0.9238	 1.0735	 0.0221	
29	 H_EMP9	 1.0334	 0.9398	 1.3059	 0.0330	
30	 H_EMP10	 1.0168	 0.9486	 1.0927	 0.0172	
31	 LAB1	 1.0439	 0.8484	 1.4491	 0.0796	
32	 LAB2	 1.0500	 0.3955	 2.2275	 0.1232	
33	 LAB3	 1.0621	 0.9328	 1.3977	 0.0586	
34	 LAB4	 1.0688	 0.8855	 1.4793	 0.0763	
35	 LAB5	 1.0731	 0.8385	 1.3180	 0.0708	
36	 LAB6	 1.0758	 0.9101	 1.3184	 0.0608	
37	 LAB7	 1.0811	 0.9049	 1.4879	 0.0679	
38	 LAB8	 1.0732	 0.9486	 1.3343	 0.0585	
39	 LAB9	 1.1047	 0.9418	 1.3544	 0.0636	
40	 LAB10	 1.0869	 0.9540	 1.3940	 0.0614	
41	 CAP1	 0.8405	 ‐126.3476	 27.2510	 6.0233	
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42	 CAP2	 1.1006	 ‐6.6127	 5.8661	 0.5701	
43	 CAP3	 1.0917	 0.4237	 5.8732	 0.2721	
44	 CAP4	 1.1810	 0.0429	 46.7234	 2.0598	
45	 CAP5	 2.2875	 ‐165.7900	 735.6785	 33.9707	
46	 CAP6	 1.1023	 ‐5.1708	 3.6209	 0.4092	
47	 CAP7	 1.0332	 ‐15.4249	 16.8087	 1.6928	
48	 CAP8	 1.1040	 ‐2.4528	 14.7725	 0.6693	
49	 CAP9	 1.0975	 0.6827	 1.9848	 0.0817	
50	 CAP10	 1.0994	 0.7755	 2.0325	 0.1075	

	

As	 the	 SGNO	 employs	 five‐fold	 cross‐validation,	 the	 derived	 dataset	 of	 493	

records	is	divided	randomly	into	five	groups.	Table	7.4	shows	the	distribution	of	

these	five	groups.	

Table	7.4:	Sample	distributions	in	five‐fold	cross‐validation	

	 Set	A	 Set	B	 Set	C	 Set	D	 Set	E	 Total	
Count	 99	 98	 99	 98	 99	 493	

	

7.5	Variable	Selection	using	Sensitivity	Genetic	Neural	

Optimisation	(SGNO)	

7.5.1	Neural	Network	module	

In	 this	application,	 the	NN	module	 is	used	to	establish	 the	relationship	between	

the	 proposed	 input	 variable	 group,	 represented	 as	 chromosomes	 in	 the	 GA	

module,	 and	 the	 annual	 gross	 production	 growth.	 Similar	 to	 the	 application	

described	 in	 the	 previous	 chapters,	 the	 NN	 module	 employs	 five‐fold	 cross‐

validation	with	early‐stopping.	The	NNs	are	of	single	hidden	processing	layer	and	

the	number	of	hidden	neurons	in	the	processing	layer	is	estimated	by	halving	the	

sum	of	input	and	output	variables.	The	initial	weights	in	the	hidden	neurons	are	

random	numbers.	The	activation	functions	in	the	hidden	layer	are	the	commonly	
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used	tangent‐sigmoid	functions	(see	Equation	2.5)	and	the	activation	function	in	

the	output	layer/neuron	is	the	pure	linear	function	(see	Equation	2.2).	

	

7.5.2	Genetic	Algorithm	module	

In	this	application,	the	size	of	each	binary	chromosome	in	the	GA	module	is	50	as	

there	are	50	 input	variables	extracted	from	the	EU	KLEMS	database.	The	size	of	

the	 GA	 population	 is	 estimated	 at	 250	 using	 the	 rule	 of	 thumb	 discussed	

previously	(see	Section	3.2.2.2	and	Equation	3.3)	and	the	size	of	the	elite	group	is	

estimated	at	12,	which	is	about	5%	of	the	total	population.	Figure	7.1	illustrates	

the	performance	of	 the	 chromosomes	evaluated	 in	50	GA	generations.	 It	 clearly	

shows	 that	 the	 mean	 RMSE	 in	 each	 generation	 drops	 rapidly	 in	 the	 first	 few	

generations	followed	by	a	steady	trend	of	convergence.	Figure	7.2	illustrates	the	

size	of	the	chromosomes	(number	of	ON	bits)	in	the	GA	generations.	

	

Figure	7.1:	Chromosomes	performance	in	GA	generations	
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Figure	7.2:	Number	of	ON	bits	in	each	generation	

	

It	 is	 clear	 in	 Figure	 7.2	 that	 the	 average	 size	 of	 the	 chromosome	 in	 the	 GA	

generations	gradually	increases.	Unlike	the	pattern	showed	in	Figure	7.1,	which	is	

a	 rapid	 reduction	 followed	 by	 a	 steady	 flat	 line,	 the	 chromosome	 size	 keeps	

increasing	but	 the	rate	of	 increase	slows	down	as	 the	GA	progresses.	Figure	7.3	

illustrates	the	performance	of	chromosomes	evaluated	in	GA	against	their	sizes.	It	

is	can	be	seen	that	the	RMSEs	of	the	chromosomes	decrease	as	the	number	of	ON	

bits	 (size	of	chromosomes)	 increases	until	 the	size	of	chromosomes	exceeds	20,	

beyond	which	the	RMSE	plot	shows	a	clear	converged	pattern.	
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Figure	7.3:	Chromosome	performance	vs.	number	of	ON	bits	

	

	

7.5.3	Sensitivity	Analysis	module	

After	evaluating	the	proposed	chromosomes	in	the	GA	module,	the	SA	module	is	

invoked	 to	 identify	 the	 global	 influences	 of	 the	 input	 parameters	 towards	 the	

output	parameter	by	analysing	the	importance	of	the	input	parameters	appeared	

in	the	group	of	selected	well‐performing	chromosomes	in	each	generation.		

	

In	 this	 application,	 the	 GA	 module	 evaluated	 250	 chromosomes	 for	 50	

generations,	a	quarter	of	 the	chromosomes	 in	 the	population	 (250	x	25%	≈	62)	

are	selected	in	each	generation	to	carry	out	the	SA	analysis.	Figure	7.4	illustrates	

the	 distribution	 of	 the	 sizes	 (number	 of	 ON	 bits)	 of	 the	 selected	 chromosomes.	

The	 figure	 shows	 that	 most	 of	 the	 chromosomes	 selected	 are	 medium‐sized	

containing	about	25	ON	bits	(50%	of	the	total	number	of	input	variables).		
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Figure	7.4:	Sizes	of	the	chromosomes	selected	for	SA	analysis	

	

The	global	sensitivity	measure	of	a	certain	 input	variable	 is	calculated	by	taking	

the	mean	of	the	sensitivity	measures	derived	in	all	selected	chromosomes.	Figure	

7.5	 illustrates	 the	 global	 sensitivity	 measures	 of	 all	 the	 input	 parameters.	 As	

shown	 in	 the	 figure,	 the	 intermediate	 input	of	 the	manufacturing	sector,	 II3,	 the	

number	of	persons	working	at	the	community	social	services	sector,	EMP10,	and	

the	 total	working	hours	of	 the	community	social	 services	sector,	H_EMP10,	have	

significantly	higher	sensitivity	measures	comparing	to	other	parameters.	Several	

capital	 compensations,	 CAPn,	 have	 the	 lowest	 sensitivity	 measures	 and	 hence	

have	the	lowest	influences	on	the	model	output.	
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Figure	7.5:	Global	sensitivity	measures	of	all	input	parameters	

	

Based	on	the	global	sensitivity	measures	of	the	parameters,	the	importance	rank	

table	 can	be	 constructed	by	 rearranging	 the	parameters	 in	 descending	 order	 of	

their	 sensitivity	 measures.	 The	 variable	 of	 higher	 sensitivity	 measure	 is	

considered	 to	 be	 of	 higher	 importance/influence	 to	 the	 output.	 The	 importance	

rank	table	is	listed	below,	in	which	the	former	elements	are	of	higher	sensitivity	

measures	than	the	latter	elements	and	are	thus	more	important.	

[II3,	EMP10,	H_EMP10,	II5,	LAB10,	LAB9,	II10,	LAB3,	EMP3,	II6,	EMP6,	EMP7,	EMP9,	

EMP8,	LAB6,	 II9,	LAB8,	H_EMP6,	 II1,	EMP5,	H_EMP3,	H_EMP9,	H_EMP4,	H_EMP8,	

II8,	H_EMP1,	 LAB7,	 EMP4,	 CAP9,	H_EMP7,	H_EMP2,	 LAB4,	 LAB5,	 EMP1,	 CAP10,	

LAB1,	 EMP2,	H_EMP5,	 II4,	 II2,	 CAP3,	 LAB2,	 II7,	 CAP4,	 CAP6,	 CAP2,	 CAP8,	 CAP7,	

CAP1,	CAP5]	

	

In	terms	of	parameter	indices	in	the	GA	chromosomes,	the	importance	rank	table	

can	be	expressed	as		
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[3,	20,	30,	5,	40,	39,	10,	33,	13,	6,	16,	17,	19,	18,	36,	9,	38,	26,	1,	15,	23,	29,	24,	

28,	8,	21,	37,	14,	49,	27,	22,	34,	35,	11,	50,	31,	12,	25,	4,	2,	43,	32,	7,	44,	46,	

42,	48,	47,	41,	45]	

	

7.6	System	Remodelling	

As	mentioned	in	section	3.2.3,	NNs	are	not	only	used	as	the	NN	module	in	SGNO,	

but	 also	 used	 to	 re‐evaluate	 the	 performance	 of	 the	 ranked	 variables	 in	 the	

importance	 rank	 table.	 Table	 7.5	 lists	 the	 performance	 of	 NN	 models	 taking	

various	 numbers	 of	 variables	 from	 the	 importance	 rank	 table	 as	 the	 input	

variables	(the	selection	of	parameters	always	starts	from	the	first	element	in	the	

rank	table)	and	figure	7.6	illustrates	the	results	of	NN	models	of	3,	6	and	9	input	

variables.	Figure	7.7	 illustrates	 the	performance	of	 these	NN	models	against	 the	

chromosomes	evaluated	in	the	GA	module.	

Table	7.5:	SGNO	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.0251	 0.0238	 0.0252 0.0198 0.0145 0.0126	 0.013	 0.0129 0.0126
R2	 0.7744	 0.7968	 0.7723 0.8595 0.9244 0.9426	 0.9397	 0.94 0.9432

	
Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.0114	 0.011	 0.0113 0.0113 0.0119 0.0114	 0.0108	 0.0115 0.0109
R2	 0.9535	 0.9564	 0.9542 0.9542 0.9492 0.9533	 0.9579	 0.9523 0.9573

	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.0106	 0.0105	 0.01 0.0104 0.0105 0.01 0.0097	 0.0107 0.0109
R2	 0.9595	 0.9603	 0.964 0.9614 0.9608 0.9639 0.9661	 0.959 0.9575

	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.0103	 0.0097	 0.0105 0.0107 0.0099 0.0098	 0.0104	 0.0106 0.0103
R2	 0.9623	 0.966	 0.9606 0.9588 0.9649 0.9654	 0.9609	 0.9598 0.9622

	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.0099	 0.0107	 0.0106 0.01 0.01 0.0093	 0.01	 0.0111 0.0113
R2	 0.9648	 0.9589	 0.9597 0.9641 0.9638 0.9689	 0.9642	 0.9561 0.9542
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Size	 46	 47	 48	 49	 50	
RMSE	 0.011	 0.0114	 0.0117 0.0128 0.0169
R2	 0.9569	 0.9532	 0.951 0.9411 0.8972

	

	
	

Figure	7.6:	Performance	of	NN	models	using	3,	6	and	9	input	parameters	

	

	

Figure	7.7:	Performance	of	parameters	in	SGNO	rank	table	against	

parameters	in	GA	module	
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Figure	 7.7	 clearly	 shows	 the	 decreasing	 patterns	 of	 both	 plots,	 and	 the	

performance	of	the	parameters	selected	by	SGNO	can	be	seen	to	be	of	significant	

advantage	over	the	mean	performance	of	the	chromosomes	evaluated	during	the	

GA	process.	The	SGNO	plot	starts	with	a	rapid	reduction	followed	by	a	converging	

trend	fluctuating	around	0.011.	As	the	number	of	variables	(number	of	ON	bits)	

increases,	the	advantage	of	SGNO	optimisation	weakens.	At	the	end	of	the	SGNO	

plot,	where	the	number	of	ON	bits	is	greater	than	40,	the	plot	rises	again.	These	

suggest	that	the	first	6	to	10	variables	in	the	importance	rank	table	significantly	

contribute	 to	 the	generation	of	 the	output	variable	 in	 the	NN	models,	and	 these	

variables	 are	 sufficient	 to	 estimate	 the	 output	 variable.	 	 The	 variables	 in	 the	

middle	 portion	 of	 the	 importance	 rank	 table	 are	 of	 minor,	 or	 even	 negligible,	

contribution	in	the	NN	models.	Furthermore,	the	variables	at	the	tail	of	the	rank	

table	are	of	negative	contributions,	i.e.	these	variables	decrease	the	performance	

of	the	NN	models.		

	

To	 discover	 the	 best	 performance,	 i.e.	 the	 lowest	 RMSE,	 achievable	 using	 the	

variable	ranking	 table,	 the	popular	 trial	and	error	approach	 is	employed	 to	 find	

the	NN	models	of	the	‘optimal’	architectures	at	some	key	points	in	the	importance	

rank	 table	 (3	 parameters,	 6	 parameters,	 9	 parameters	 and	 12	 parameters)	

(Ahmed,	2005).	Table	7.6	 lists	 the	 ‘optimal’	architectures	discovered	for	various	

numbers	 of	 parameters	 picked	 from	 the	 importance	 rank	 table.	 Figure	 7.8	

illustrates	 the	 performance	 of	 those	 ‘optimal’	 NN	models	 versus	 the	 estimated	

architectures.	 It	 can	 be	 seen	 that	 the	 NN	models	 of	 ‘optimal’	 architectures	 are	

always	 of	 better	 performance.	 However,	 these	 ‘optimal’	 architectures	 only	
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produce	 minor	 advantages,	 usually	 around	 0.001,	 compared	 with	 those	 of	

estimated	architectures.	

Table	7.6:	'Optimal'	architectures	and	their	performance	

Number	of	input	variables
‘Optimal’	architecture	

[1st	layer,	2nd	layer]	

Performance	

(RMSE)	

3	 [2,	0]	 0.0241	

6	 [5,	0]	 0.0116	

9	 [6,	0]	 0.0116	

12	 [18,	4]	 0.0106	

	

	

Figure	7.8:	Performance	differences	between	the	‘optimal’	architectures	and	

estimated	architectures	

	

7.7	Symbolic	Regression	using	Genetic	Programming	

In	this	section,	tree‐structured	MBE	GPs	are	used	to	find	the	symbolic	relationship	

between	 input	 variables	 and	 the	 corresponding	 output.	 As	 discussed	 in	 the	

previous	sections	(see	Sections	3.2.4	and	4.7),	the	MBE	GP	uses	seven	commonly	
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used	mathematical	operators	to	construct	the	symbolic	relationship	between	the	

selected	input	variables	and	the	output	variable.	GP	symbolic	regression	is	carried	

out	at	several	key	points	 in	this	application,	where	various	numbers	(3,	6	and	9	

out	 of	 50)	 of	 variables	 are	 selected	 from	 the	 variable	 rank	 table	 constructed	 in	

SGNO	 (see	 section	 7.5.3).	 For	 the	 case	 of	 3	 variables,	 the	 population	 size	 is	

estimated	 at	 105	using	 the	 rule	 of	 thumbs	 (Equation	3.10)	discussed	 in	 section	

3.2.4.2;	the	maximum	number	of	expression	tree	branches	in	a	chromosome	is	5,	

the	initial	maximum	tree	depth	is	3,	the	size	of	elite	group	is	estimated	at	5	(5%	of	

the	total	population)	and	the	maximum	number	of	GP	generations	is	estimated	at	

200.	Figure	7.9	illustrates	the	evolution	of	the	GP	in	terms	of	RMSE	for	the	case	of	

3	variables	selected	from	the	SGNO	rank	table.	

	

Figure	7.9:	Evolution	of	GP	for	3	variables.	(a)	mean	errors	in	generations,	(b)	

minimum	errors	in	generations	
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As	 shown	 in	Figure	7.9(a),	 the	mean	GP	generation	errors	 fluctuates	vigorously	

and	 there	 are	many	 generations	 producing	 extremely	 large	mean	 errors	 due	 to	

the	existences	of	certain	chromosomes	generating	huge	regression	errors.	Figure	

7.9(b)	illustrates	the	minimum	error	in	each	GP	generation	and	a	clear	decline	is	

present	 at	 the	 21st	 generation,	 which	 indicates	 that	 the	 best	 performing	

chromosome	 is	 produced	 in	 that	 generation	 and	 survives	 throughout	 the	

following	 evolutions.	 This	 best	 performing	 chromosome	 generates	 a	 regression	

error	(RMSE)	at	0.0219	and	the	chromosome’s	expression	is:	

y A ∗ x / ∗
x

x
B ∗ x C ∗ x / ∗

x
x x x

D	

	

Table	 7.6	 lists	 the	 performance	 of	 the	 GP	 process	 and	 the	 discovered	 symbolic	

expressions	using	6	and	9	variables	from	the	SGNO	rank	table.	It	can	be	seen	that	

as	 the	 number	 of	 variables	 increases,	 the	 symbolic	 expressions	 discovered	 by	

MBE‐GP	 produce	 better	 results	 and	 these	 results	 are	 competitive	 to	 the	

performance	of	the	 ‘optimal’	NN	models,	which	were	0.0241,	0.0116	and	0.0116	

for	the	cases	of	3,	6	and	9	input	variables	respectively.		
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Table	7.7:	Symbolic	expressions	discovered	by	GP	for	various	numbers	of	

variables	

No.	of	

Variables	
RMSE	 Symbolic	Expression	

6	 0.0127	

y A ∗ x B ∗ x x ∗ x x 	

C ∗ x x x D ∗ LOG x 	

E ∗ x x F	

9	 0.0111	

y A ∗ LOG x x x x B ∗ LOG x 	

C ∗
x x

√x
∗ x x x x

x x x
x

D	

	
	

7.8	Benchmarking	with	other	Feature	Selection	(FS)	Techniques		

In	 this	 section,	 the	 performance	 of	 SGNO	 is	 benchmarked	 with	 four	

dimensionality	reduction	techniques,	including	PCA,	FFS,	BFS	and	GNMM.		

7.8.1	Principal	Component	Analysis	(PCA)	

PCA	reduces	data	dimensionality	by	transforming	the	original	dataset	linearly	in	

to	 a	new	coordinate	 system	 (Dunteman,	1989).	The	detailed	procedures	of	PCA	

were	discussed	in	section	3.3.1.	

	

In	 this	 application,	 PCA	 is	 used	 to	 transform	 the	 50	 input	 parameters	 and	 the	

performance	 of	 the	 new	 parameters	 (PCs)	 is	 evaluated	 using	 NNs.	 Figure	 7.10	

illustrates	the	variances	carried	in	each	PC.	The	figure	displays	only	4	PCs	and	the	

first	PC	carries	the	most	variance,	about	96%,	while	the	other	PCs	carry	only	tiny	
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amounts	of	variances.	The	accumulated	variance	plot	 shows	 that	 the	 first	4	PCs	

displayed	explain	variance	close	to	100%.	

	

Figure	7.10:	Variance	explained	in	principal	components	

	

After	 the	PCA	 transformation,	NNs	 are	used	 to	 evaluate	 the	performance	of	 the	

PCs	by	taking	various	numbers	of	PCs.	Again,	five‐fold	cross‐validation	and	early‐

stopping	training	is	employed	to	support	the	NN	evaluation.	The	NN	models	are	of	

single	hidden	processing	layer	and	the	number	of	hidden	neurons	is	estimated	by	

halving	 the	number	of	 inputs	and	output.	Table	7.8	 lists	 the	performance	of	NN	

models	 using	 various	 numbers	 of	 PCs	 as	 input	 variables.	 Figure	7.11	 illustrates	

the	 performance	 of	 these	 NN	 models	 against	 the	 same	 number	 of	 parameters	

picked	from	the	variable	rank	table	constructed	in	SGNO.	

Table	7.8:	PCA	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.0384	 0.0362	 0.0248 0.0241 0.0181 0.0185	 0.0191	 0.0181 0.0164
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Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.0136	 0.0142	 0.0132 0.0139 0.0143 0.0143	 0.0137	 0.0145 0.0145
	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.0131	 0.0135	 0.0136 0.0135 0.0131 0.0137	 0.0138	 0.0132 0.013
	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.014	 0.0129	 0.0139 0.0129 0.0128 0.0133 0.0123	 0.012 0.0113
	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.0121	 0.0113	 0.0119 0.0111 0.0125 0.013 0.0125	 0.0141 0.0167
	
Size	 46	 47	 48	 49	 50	
RMSE	 0.0152	 0.019	 0.0189 0.0187 0.0178
	

	

	

Figure	7.11:	Performance	of	NN	models	using	PCA	against	SGNO	

	

As	shown	in	Figure	7.11,	both	performance	plots	are	of	similar	patterns,	a	rapidly	

reducing	start	followed	by	a	relatively	steady	plot	fluctuating	around	a	converged	

value,	 and	ends	with	 a	 clear	 rise.	 In	 addition,	 the	parameters	 selected	by	 SGNO	

produce	 better	 performance	 compared	 with	 the	 PCA	 as	 the	 RMSEs	 generated	
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using	the	SGNO	selected	parameters	are	always	lower	than	those	generated	using	

PCA,	and	the	largest	difference	is	up	to	the	value	of	0.0133	when	only	one	input	

variable	is	used	in	the	NN	models.		

	

7.8.2	Forward	Feature	Selection	(FFS)	and	Backward	Feature	

Selection	(BFS)	

FFS	and	BFS	are	conventional	sequential	FS	techniques.	The	detailed	procedures	

are	 discussed	 in	 section	 3.3.2.	 In	 this	 application,	 FFS	 and	BFS	 only	 set	 out	 the	

structure	 of	 the	 FS	 routine	 and	 the	 evaluation	 of	 the	 selected	 variables	 is	

performed	using	 the	NN	models.	 The	NN	models	used	 in	 this	 application	are	of	

single	hidden	processing	layer	and	the	number	of	hidden	neurons	is	estimated	by	

halving	 the	 number	 of	 inputs	 and	 output.	 Again,	 five‐fold	 cross‐validation	 and	

early‐stopping	are	employed.		

	

The	following	lists	present	the	order	of	variables	added	to	the	selection	list	in	FFS	

and	the	reversed	order	of	variables	removed	from	the	selection	in	BFS.	Hence,	the	

variables	are	in	the	descending	order	of	preferences	in	both	lists.			

FFS:	[3,	40,	5,	6,	17,	31,	49,	10,	7,	22,	39,	42,	29,	25,	12,	37,	1,	33,	15,	13,	44,	

16,	8,	32,	11,	26,	30,	38,	14,	34,	50,	4,	9,	21,	35,	23,	18,	24,	27,	48,	20,	47,	

36,	19,	2,	28,	46,	41,	43,	45]	

BFS:	[3,	39,	10,	6,	50,	15,	49,	4,	24,	5,	18,	35,	26,	31,	16,	48,	9,	36,	8,	43,	28,	30,	

27,	25,	13,	46,	21,	34,	7,	32,	47,	19,	44,	22,	29,	17,	14,	23,	12,	41,	11,	42,	1,	

40,	2,	38,	33,	45,	37,	20]	
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Comparing	with	the	variable	importance	rank	table	constructed	in	SGNO,	which	is	

[3,	20,	30,	5,	40,	39,	10,	33,	13,	6,	16,	17,	19,	18,	36,	9,	38,	26,	1,	15,	23,	29,	24,	

28,	8,	21,	37,	14,	49,	27,	22,	34,	35,	11,	50,	31,	12,	25,	4,	2,	43,	32,	7,	44,	46,	

42,	48,	47,	41,	45],	 the	parameters	are	ordered	in	distinct	ways.	However,	 they	

all	 identify	 the	 parameters	 No.3	 as	 the	 most	 preferable	 parameter	 and	 the	

parameter	No.45	is	less	favourable	than	most	of	the	variables.	Table	7.9	lists	the	

performance	of	 the	preference	 lists	produced	by	BFS	and	FFS	using	NN	models	

with	various	numbers	of	input	variables	selected	from	the	preference	lists.	

Table	7.9:	BFS	and	FFS	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
BFS	 0.025 0.0174	 0.0178 0.0144 0.0139 0.0134 0.0138	 0.0138 0.0141
FFS	 0.025 0.0166	 0.0143 0.0133 0.0128 0.0126 0.0136	 0.0128 0.0127
	
Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
BFS	 0.0117 0.0124	 0.0119 0.0116 0.0112 0.0115 0.0117	 0.0116 0.0115
FFS	 0.013 0.012	 0.0118 0.0117 0.0118 0.012 0.0115	 0.0111 0.011
	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
BFS	 0.0115 0.0113	 0.0118 0.011 0.0117 0.0114 0.012	 0.0114 0.0122
FFS	 0.0106 0.0106	 0.0116 0.0114 0.0111 0.011 0.0114	 0.0117 0.0106
	
Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
BFS	 0.0122 0.0115	 0.0109 0.011 0.0112 0.0119 0.0131	 0.0113 0.0132
FFS	 0.0115 0.0112	 0.0109 0.0111 0.0108 0.0109 0.0111	 0.0101 0.0109
	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
BFS	 0.0124 0.0128	 0.0115 0.0134 0.0133 0.0128 0.0138	 0.0137 0.0134
FFS	 0.011 0.0108	 0.0107 0.0119 0.0117 0.0115 0.0121	 0.0117 0.0114
	
Size	 46	 47	 48	 49	 50	
BFS	 0.0137	 0.0136	 0.0167 0.016 0.0162
FFS	 0.0114	 0.0122	 0.013 0.0131 0.0169
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Figure	7.12:	Performance	of	NN	models	using	BFS	and	FFS	against	SGNO	

	

Figure	 7.12	 illustrates	 the	 performance	 of	 BFS	 and	 FFS	 against	 SGNO	 using	

various	 numbers	 of	 variables	 from	 the	 preference	 lists.	 Although	 BFS	 and	 FFS	

produced	 different	 parameter	 preference	 lists,	 the	 performance	 plots	 are	 of	

similar	 patterns,	 a	 rapidly	 decreasing	 curve	 at	 the	 beginning	 followed	 by	 a	

gradually	decreasing	pattern	with	high	fluctuations	and	a	rapidly	increasing	tail.	

The	 FFS	 produces	 lower	 RMSEs	 in	 general,	 especially	 at	 the	 tail	 of	 the	

performance	plot.	Comparing	with	BFS	and	FFS,	the	SGNO	is	not	performing	well	

when	the	number	of	selected	variables	is	small	(less	than	5).	When	the	number	of	

selected	 variables	 becomes	 greater	 than	 5,	 the	 SGNO	 variable	 rank	 table	 starts	

generating	results	competitive	to	BFS	and	FFS.	When	the	number	of	variables	is	

greater	 than	20,	 the	SGNO	produces	better	performance	 than	BFS	and	FFS	with	

noticeable	advantages	as	illustrated	in	Figure	7.12.	
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7.8.3	Genetic	Neural	Mathematical	Method	(GNMM)	

GNMM	 is	 a	 hybrid	 data	 mining	 technique	 incorporating	 GA	 and	 ANNs	 that	

performs	 FS	 based	 on	 the	 appearance	 frequencies	 of	 the	 variables	 in	 the	 GA	

process.	 The	 variables	 of	 higher	 appearance	 percentages	 are	 considered	 more	

favourable	than	those	of	 lower	appearance	percentages	(Yang,	2010;	Yang	et	al.,	

2007).	The	detailed	discussion	of	GNMM	is	available	in	section	3.3.3.	Figure	7.13	

illustrates	 the	 appearance	 percentages	 of	 the	 variables	 discovered	 in	 GNMM	

process.	

	

	

Figure	7.13:	Variable	appearance	percentages	in	GNMM	

	

As	 shown	 in	 Figure	 7.13,	 a	 large	 number	 of	 the	 input	 variables	 are	 of	 high	

appearance	percentages	(over	60%).	Among	all	 the	parameters,	 II3,	EMP2	are	of	

the	 highest	 appearances	 (over	 90%),	 followed	 by	 II5	 and	 II8	 (over	 80%).	 The	
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following	 list	 contains	 the	 ordered	 variables	 based	 on	 their	 appearance	

percentages	in	descending	order.	

[II3,	 EMP2,	 II5,	 II8,	 H_EMP1,	 CAP2,	 CAP3,	 II6,	 H_EMP5,	 LAB8,	 II9,	 EMP4,	 LAB5,	

LAB10,	CAP1,	CAP6,	H_EMP9,	CAP9,	H_EMP6,	LAB6,	CAP10,	LAB4,	II2,	LAB2,	LAB7,	

EMP10,	 II1,	 II4,	 II7,	 EMP3,	 II10,	 EMP8,	 EMP5,	 EMP6,	 EMP7,	 H_EMP3,	 H_EMP7,	

H_EMP8,	H_EMP10,	LAB3,	EMP9,	CAP5,	EMP1,	H_EMP4,	CAP4,	CAP8,	LAB1,	LAB9,	

H_EMP2,	CAP7]	

	

The	 following	 index	 list	 contains	 the	 indices	 (positions)	 of	 the	 variables	 in	 GA	

chromosomes	ordered	based	on	the	list	above.	

[3,	12,	5,	8,	21,	42,	43,	6,	25,	38,	9,	14,	35,	40,	41,	46,	29,	49,	26,	36,	50,	34,	2,	

32,	37,	20,	1,	4,	7,	13,	10,	18,	15,	16,	17,	23,	27,	28,	30,	33,	19,	45,	11,	24,	44,	

48,	31,	39,	22,	47]	

	

Table	 7.10	 lists	 the	 performance	 of	 the	 rank	 list	 produced	 by	 GNMM	using	 NN	

models	with	various	numbers	of	input	variables	selected	from	the	lists	and	Figure	

7.14	 illustrates	 the	performance	of	 the	GNMM	discovered	parameter	 rank	 table	

against	SGNO.	

Table	7.10:	GNMM	re‐evaluation	results	

Size	 1	 2	 3	 4	 5	 6	 7	 8	 9	
RMSE	 0.0251	 0.0257	 0.0211 0.0211 0.0199 0.0203	 0.02	 0.0186 0.0181
	
Size	 10	 11	 12	 13	 14	 15	 16	 17	 18	
RMSE	 0.0151	 0.0141	 0.0138 0.0135 0.0122 0.0134	 0.0136	 0.0135 0.0138

	
Size	 19	 20	 21	 22	 23	 24	 25	 26	 27	
RMSE	 0.0131	 0.0129	 0.0128 0.0127 0.0123 0.0124	 0.0123	 0.0123 0.0117
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Size	 28	 29	 30	 31	 32	 33	 34	 35	 36	
RMSE	 0.0114	 0.0117	 0.0124 0.0113 0.0121 0.0113	 0.0113	 0.0116 0.0118

	
Size	 37	 38	 39	 40	 41	 42	 43	 44	 45	
RMSE	 0.0115	 0.0118	 0.0117 0.0113 0.0112 0.0151	 0.0144	 0.0144 0.0141

	
Size	 46	 47	 48	 49	 50	
RMSE	 0.0171	 0.0161	 0.0157 0.0162 0.0172
	

	

Figure	7.14:	Performance	of	GNMM	against	SGNO	

	

As	shown	in	Figure	7.14,	the	SGNO’s	performance	is	generally	better	than	GNMM	

as	 the	 SGNO’s	 RMSEs	 are	 lower	 than	 those	 for	 GNMM.	 When	 the	 number	 of	

selected	 variables	 is	 less	 than	5,	GNMM	performs	 in	 a	 similar	manner	 to	 SGNO.	

When	 the	 number	 of	 selected	 variables	 is	 between	 5	 and	 10,	 SGNO	 shows	

significant	advantages	over	GNMM	and	the	largest	difference	is	up	to	the	value	of	

0.0077	(6	input	variables).	When	the	number	of	selected	variables	exceeds	10,	the	

advantage	of	SGNO	gradually	declines	until	it	reaches	the	tails	of	the	performance	

plots.	
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7.8.4	Benchmarking	summary	

Figure	7.15	summarises	the	performance	of	the	variable	rank	tables	constructed	

using	all	the	techniques	presented.	It	shows	that	among	these	5	techniques,	PCA	

performs	the	worst	 in	general,	as	the	performance	plot	 is	always	above	those	of	

the	 others.	 BFS,	 FFS,	 GNMM	 and	 SGNO	 are	 of	 distinct	 performance	 when	 the	

number	of	input	variable	is	less	than	5,	where	BFS	and	FFS	are	superior	to	GNMM	

and	SGNO.	When	the	number	of	 input	variables	exceeds	5,	BFS,	FFS,	GNMM	and	

SGNO	start	producing	similar	RMSEs.	The	general	patterns	in	these	performance	

plots,	which	 is	a	 rapid	drop	 followed	by	a	 fluctuation	around	a	converged	value	

with	a	clear	rise	at	the	tail,	indicate	that	the	first	5	to	10	variables	in	the	variable	

rank	 tables	 generated	 by	 these	 techniques	 are	 sufficient	 to	 estimate	 the	 gross	

production	 growth	 with	 an	 acceptable	 level	 of	 accuracy	 using	 NN	 models.	

Furthermore,	BFS,	FFS,	GNMM	and	SGNO	all	successfully	identified	the	five	most	

important	variables	from	the	original	data.		
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Figure	7.15:	Performance	of	all	benchmarking	techniques	against	SGNO	

	

7.9	Conclusion	

In	 this	 chapter,	 SGNO	 is	 used	 to	 establish	 NN	models	 to	 predict	 the	 growth	 in	

industrial	 productions	 using	 five	 types	 of	 economic	 inputs	 in	 ten	 industrial	

sectors.	The	data	source	is	an	economic	database	created	in	the	EU	KLEMS	project	

to	 store	 the	detailed	measures	of	 industry	output,	 input	and	growth	at	 industry	

level.	 The	 database	 covers	 30	 countries	 from	 1970	 onwards.	 After	 establishing	

prediction	 models,	 the	 symbolic	 relationship	 between	 the	 model	 inputs	 and	

output	are	discovered	using	the	MBE‐GP.	In	addition,	the	performance	of	SGNO	is	

benchmarked	against	three	conventional	FS	techniques	(PCA,	BFS	and	FFS)	and	a	

recently	developed	optimisation	algorithm	(GNMM).	
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An	 analysis	 of	 the	 results	 shows	 that	 only	 five	 to	 ten	 variables	 effectively	

contribute	 to	 the	 output	 in	 NN	 models,	 most	 of	 the	 residual	 variables	 do	 not	

contribute	 significantly	 to	 the	 NN	 models	 and	 some	 of	 the	 variables	 have	 a	

negative	 effect	 (adding	 noises	 and	 thus	 increasing	 output	 errors)	 in	 the	 NN	

models	 (see	 Figure	 7.7).	 The	 influence/importance	 rank	 table	 constructed	 by	

SGNO	 is	 benchmarked	with	 four	 FS	 techniques,	 including	 BFS,	 FFS,	 GNMM	 and	

PCA.	Among	 all	 these	 techniques,	 PCA	always	 generates	 the	highest	RMSEs	 and	

thus	gives	the	worst	performance.		When	the	number	of	selected	variables	is	less	

than	 five,	 BFS	 and	 FFS	 are	 superior	 to	 GNMM	 and	 SGNO.	 However,	 when	 the	

number	of	selected	variables	exceeds	five,	the	RMSEs	produced	by	BFS,	FFS	and	

SGNO	are	of	minor	differences	and	significantly	less	than	the	RMSEs	generated	by	

GNMM	 and	 PCA.	 Generally	 speaking,	 SGNO	 is	 competitive	 with	 these	

benchmarking	techniques.	

	

After	 identifying	 the	 influential	 levels	 of	 all	 the	 variables,	 MBE‐GP	 successfully	

extracted	 concise	 symbolic	 relationships	 between	 various	 numbers	 of	 input	

variables	 and	 the	 corresponding	outputs.	The	 regression	errors	produced	using	

these	symbolic	relationships	are	competitive	with	those	generated	by	NN	models.	
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CHAPTER 8  
 

Conclusions and Further Work 
	
	

8.1 Overview 

This	 chapter	 summarises	 the	 main	 outcomes	 of	 this	 research	 and	 presents	 an	

outline	of	the	main	results	followed	by	suggestions	for	possible	future	research.		

	

8.2 Main Research Findings 

8.2.1 SGNO Briefing 

In	 this	 thesis,	 a	novel	hybrid	 IST	 technique	 is	 introduced,	which	aims	 to	 reduce	

data	 dimensionality	 (Feature	 Selection,	 FS)	 by	 identifying	 the	 importance	 of	

variables	in	the	system	and	thus	suggests	the	group	of	variables	that	meets	users’	

requirements.	The	feasibility	of	SGNO	is	evaluated	with	four	practical	applications	

in	 three	 novel	 research	 areas,	 including	 plant	 science,	 civil	 engineering	 and	

economics.	The	performance	of	SGNO	is	benchmarked	with	three	conventional	FS	

techniques	and	a	recently	developed	IST	based	technique,	these	include	PCA,	FFS,	

BFS	and	GNMM.	The	main	contributions	of	SGNO	include:	

 Establishing	neural	models	between	input	variables	and	output	variable;	

 Identifying	 the	 importance	 of	 variables	 in	 the	 neural	 models	 and	 thus	

producing	a	variable	importance	ranking	table;	
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 Determining	 the	 possible	 outcomes	 of	 various	 groups	 of	 variables	 (less	

number	 of	 variables)	 and	 amount	 of	 information	 preserved	 from	 the	

original	data	set;	

 Discovering	 symbolic	 expression	 of	 the	 relationship	 between	 input	 and	

output	variables	that	may	represent	the	neural	models.	

	

SGNO	 consists	 of	 three	 key	modules,	which	 are	 the	GA	module,	 the	NN	module	

and	the	SA	module	(see	section	3.2).	The	key	functionalities	of	these	modules	and	

their	interactions	are	summarised	as	follows:	

 The	 GA	 module	 determines	 the	 general	 structure	 of	 this	 optimisation	

algorithm.	 It	 optimises	 the	 input	 variables	 by	 evolving	 various	

combinations	of	inputs	using	the	GA	operators.	The	fitness	or	performance	

of	 each	 proposed	 combination	 of	 inputs,	 represented	 using	 binary	

chromosomes,	was	determined	using	the	NN	module.		

 The	 NN	 module	 determines	 the	 performance	 of	 the	 proposed	 input	

combination	by	constructing	a	neural	regression	model	using	MLP.		

 The	 SA	 module	 provides	 a	 refined	 analysis	 on	 a	 group	 of	 input	

combinations	 of	 good	 performance.	 It	 investigates	 how	 the	 NN	 models	

respond	 to	 the	 variations	 in	 its	 inputs	 and	 thus	 identifies	 the	 influence	

(importance)	of	each	variable	on	 the	model.	The	global	 influence	of	 each	

individual	input	variable	is	derived	by	averaging	their	influences	in	all	the	

selected	combinations	to	determine	their	importance.	

 Based	 on	 the	 variables’	 global	 influences	 generated	 in	 the	 SA	 module,	

variables	 of	 high	 influence	 can	 be	 selected	 as	 the	 representative	 of	 the	
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original	data	(the	exact	number	of	selected	variables	can	be	determined	by	

the	users).		

	

Theoretical	complexity	analysis	showed	that	among	SGNO	and	the	benchmarking	

techniques,	PCA	is	of	 linear	processing	complexity	based	on	the	total	number	of	

variables;	BFS	and	FFS	require	quadratic	processing	time;	GNMM	and	SGNO	are	of	

more	complicated	cases,	where	the	processing	time	is	dependent	not	only	on	the	

number	of	variables	but	also	on	the	predefined	size	of	GA	population	(see	section	

3.4).	

	

8.2.2 Case Study Results 

In	 this	 thesis,	 a	 total	 of	 four	 datasets	 (chapters	 4	 to	 7)	 have	 been	 used	 to	

demonstrate	 implementation	 and	 the	 performance	 of	 SGNO	 in	 three	 different	

novel	application	scenarios.		

	

In	chapter	4,	SGNO	is	used	to	construct	NN	models	which	are	capable	of	making	

short‐term	predictions	 of	 greenhouse	 tomato	 yield	 based	 on	 the	 environmental	

conditions	 and	 yields	 in	 previous	weeks.	 The	 results	 show	 that	 radiation	 is	 the	

most	 important	 variable	 group	 overall,	 while	 the	 VPD	 is	 the	 least	 important.	

Depending	 on	 the	 number	 of	 variables	 selected	 from	 the	 SGNO	 results,	 re‐

evaluation	shows	that	the	established	models	produce	average	errors	in	the	range	

of	 0.09	 and	 0.14.	 The	 SGNO’s	 evaluation	 results	 can	 be	 found	 in	 section	 4.6.	

Compared	 with	 the	 benchmarking	 techniques,	 SGNO	 always	 produces	 lower	

regression	errors	than	PCA	and	GNMM.	In	the	case	of	BFS	and	FFS,	SGNO	provides	
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comparable	performance	when	the	number	of	selected	variables	 is	 less	than	10,	

and	becomes	superior	thereafter	(see	section	4.8.4	and	figure	4.20	for	details).	

	

In	chapter	5,	SGNO	 is	used	 to	estimate	 the	 longitudinal	dispersion	coefficient	 in	

natural	 rivers	 using	 the	 hydraulic	 and	 geometrical	 parameters	 collected	 at	

various	 locations	 of	 a	 river.	 The	 result	 shows	 that	 among	 the	 20	 evaluated	

variables,	only	half	of	 them	(approximately	10	 to	12)	 contribute	 significantly	 to	

the	 regression	 models.	 Re‐evaluation	 shows	 that	 the	 performance,	 in	 terms	 of	

RMSEs,	 of	 SGNO	 is	 in	 the	 range	 of	 0.45	 and	 0.65	 depending	 on	 the	 number	 of	

variables.	 The	 evaluation	 results	 can	 be	 found	 in	 section	 5.6.	 Benchmarking	

results	show	that	SGNO	produces	performance	competitive	to	BFS	and	FFS	with	

minor	advantages	in	many	situations,	especially	when	the	number	of	variables	is	

between	 5	 and	 12,	 while	 GNMM	 and	 PCA	 are	 not	 performing	 well	 in	 this	

application	(see	section	5.8.4	and	figure	5.15	for	details).		

	

In	chapter	6,	SGNO’s	performance	is	evaluated	when	it	is	applied	identify	the	key	

features	that	determine	the	amount	of	discharge	occurring	at	coastal	structures.	

SGNO	 identifies	 the	 crest	 freeboard	 and	 the	 roughness	 of	 the	 structure	 as	 the	

most	influential	factors	in	overtopping.	The	performance	of	SGNO	is	in	the	range	

of	0.47	and	1.01	 (see	 section	6.6	 for	details).	Compared	with	 the	benchmarking	

techniques,	 SGNO	 performs	 better	 than	 GNMM	 and	 PCA	 on	 average	 but	 not	 as	

well	as	BFS	and	FFS	(see	section	6.8.4	and	figure	6.19	for	details).	

	

In	 chapter	7,	 SGNO	 is	applied	 to	process	 some	economic	data.	 	 SGNO	 is	used	 to	

model	the	total	industry	output	growth	in	terms	of	the	growths	in	industry	inputs,	
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including	 intermediate	 inputs	 (materials,	 energy,	 etc.),	 engagement	 of	 persons,	

working	hours,	labour	and	capital	compensations.	The	results	produced	by	SGNO	

show	 that	 only	 approximately	 5	 to	 10	 variables	 effectively	 contribute	 to	 the	

output	and	some	of	the	variables	have	negative	effects	(see	section	7.6	for	details).	

Comparing	with	 the	 benchmarking	 techniques,	 SGNO	 is	 generally	 performs	 the	

best	 when	 the	 number	 of	 variables	 is	 greater	 than	 5.	 When	 the	 number	 of	

variables	is	less	than	5,	BFS	and	FFS	generate	the	lowest	RMSEs	(see	section	7.8.4	

and	figure	7.15	for	details).	

	

Actual	 processing	 time	 of	 SGNO	 showed	 that	 the	 computation	 time	 is	 not	 only	

dependent	on	the	number	of	variables	and	the	size	of	the	dataset	but	also	on	the	

complexity	of	the	problem,	which	determines	how	quickly	NNs	can	learn	from	the	

dataset	(see	section	3.5).			

	

8.3 Weaknesses of SGNO and Further Works 

The	current	implementation	of	SGNO	only	produces	the	evaluation	results	of	the	

importance	ranking	tables	and	the	final	judgement	of	the	appropriate	number	of	

features	to	retain	is	left	to	the	users.	Further	improvement	of	SGNO	may	have	an	

automatic	 function	 to	 generate	 recommendations	 of	 appropriate	 groups	 of	

features.	Possible	criteria	to	judge	may	include:	

 Increasing	the	number	of	variables	cannot	improve	the	performance	of	NN	

models	significantly;	

 Increasing	 the	 number	 of	 variables	 makes	 NN	 models	 produce	 worse	

results.	
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The	 current	 implementation	 of	 SGNO	 employs	 GA	 with	 a	 relatively	 large	

population	 size	 (5	 times	 the	 number	 of	 all	 features).	 	 Large	 population	 size	

generally	makes	GA	more	time	consuming.	A	possible	 improvement	 is	to	reduce	

the	population	size	of	GA	to	make	the	algorithm	more	time	efficient.	In	addition,	

the	SA	module	 in	SGNO	is	used	more	 like	an	additional	package	that	carries	out	

refined	explorations	in	the	search	space	already	discovered	by	the	GA.	A	possible	

improvement	in	the	algorithm	is	to	increase	the	efficiency	of	the	GA	by	adopting	

SA	into	its	operations,	such	as	initialisation,	crossover	and	mutation	(Chen	et	al.,	

2008).	

	

The	 MBE‐GP,	 which	 is	 used	 in	 this	 thesis	 to	 find	 the	 symbolic	 relationships	

between	 input	and	output	variables,	 introduced	the	 idea	of	bringing	coefficients	

into	 the	 branches	 of	 the	 tree	 structured	 solutions.	 A	 possible	 improvement	 is	

assigning	coefficients	to	all	elements	(branches	and	nodes)	in	the	tree	to	make	the	

tree	more	flexible.		The	coefficients	may	be	initialised	using	random	numbers	and	

evolve	 to	 good	 fitting	 numbers	 using	 learning	 algorithms,	 such	 as	 back	

propagation.			

	

It	is	obvious	that	SGNO	is	not	working	very	well	when	a	small	number	of	variables	

(less	than	5),	BFS	and	FFS	generally	produce	better	results	under	these	cases	(see	

figures	4.20,	6.19	and	7.15).	This	is	due	to	the	fact	that	the	initialisation	operation	

of	GA	cannot	start	with	a	small	number	of	variables	to	avoid	zero	selection	and	GA	

evolves	 rapidly	 in	 the	 first	 few	 generations.	 Thus	 the	 exploration	 in	 low	
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dimensional	 space	 is	 not	 sufficient.	 Further	 development	 may	 enhance	 the	

exploration	in	low	dimensional	space	by	slowing	down	the	evolution.		

	

As	 SGNO	 is	 a	 general	 purpose	 IST	 tool	 and	 this	 thesis	 only	 presents	 the	

applications	 of	 SGNO	 in	 data	 regression,	 further	 works	 may	 include	 the	

implementation	 of	 SGNO	 in	 other	 types	 of	 applications,	 such	 as	 rule	 extraction	

and	classification.	Another	possible	direction	for	future	research	is	to	explore	the	

feasibility	of	SA	 in	terms	of	assisting	other	types	of	 IST	techniques,	such	as	GPs,	

FLS,	NNs,	etc	(Vladislavleva	et	al.,	2010;	Yeung	et	al.,	2010).	
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Appendix A. Matlab Program for SGNO 
	

A.1 Neural Network Module 

	
function out = mlpeval(chrom)
%   CHROM,  chromosome to be evaluated 
%   OUT,    evaluation result 
  
global A_p  A_t  B_p  B_t  C_p  C_t  D_p  D_t  E_p  E_t   
%   five-fold evaluation groups 
global chroms 
global chromfitness 
global chromnets 
global popsize gencount 
  
sel = find(chrom==1); 
  
%   extract selected variables from the dataset 
ap = A_p(sel, :); 
at = A_t; 
bp = B_p(sel, :); 
bt = B_t; 
cp = C_p(sel, :); 
ct = C_t; 
dp = D_p(sel, :); 
dt = D_t; 
ep = E_p(sel, :); 
et = E_t; 
  
errors = []; 
nets = {}; 
  
for i = 1:5    
    repno = 20; 
    repmse = 0; 
    for rep = 1:repno      
        switch i 
            case 1 
                setP = {[ap, bp, cp], dp, ep}; 
                setT = {[at, bt, ct], dt, et}; 
                mlpnet = newff(ap, at, ceil((1+sum(chrom))/2)); 
            case 2 
                setP = {[ep, ap, bp], cp, dp}; 
                setT = {[et, at, bt], ct, dt}; 
                mlpnet = newff(ep, et, ceil((1+sum(chrom))/2)); 
            case 3 
                setP = {[dp, ep, ap], bp, cp}; 
                setT = {[dt, et, at], bt, ct}; 
                mlpnet = newff(dp, dt, ceil((1+sum(chrom))/2)); 
            case 4 
                setP = {[cp, dp, ep], ap, bp}; 
                setT = {[ct, dt, et], at, bt}; 
                mlpnet = newff(cp, ct, ceil((1+sum(chrom))/2));    
            case 5 
                setP = {[bp, cp, dp], ep, ap}; 
                setT = {[bt, ct, dt], et, at};
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                mlpnet = newff(bp, bt, ceil((1+sum(chrom))/2)); 
        end 
  
        mlpnet.trainFcn = 'trainscg'; 
        mlpnet.trainParam.showWindow = 0; 
        mlpnet = mytrainnew(mlpnet, setP, setT); 
  
        switch i 
            case 1 
                simr = sim(mlpnet, ep); 
                mse = mean((simr-et).^2); 
            case 2 
                simr = sim(mlpnet, dp); 
                mse = mean((simr-dt).^2); 
            case 3 
                simr = sim(mlpnet, cp); 
                mse = mean((simr-ct).^2);      
            case 4 
                simr = sim(mlpnet, bp); 
                mse = mean((simr-bt).^2); 
            case 5 
                simr = sim(mlpnet, ap); 
                mse = mean((simr-at).^2); 
        end 
  
        repmse = repmse+mse; 
    end 
    mse = repmse/repno;   
    errors = [errors, mse]; 
    nets = [nets, mlpnet]; 
end 
  
chroms = [chroms; chrom]; 
chromfitness = [chromfitness; errors]; 
chromnets = [chromnets; nets]; 
  
% save evaluation results at the end of each generation 
netlength = size(chroms, 1); 
fprintf('Generation: %d, \t Chromosome: %d \n', gencount, netlength) 
  
if mod(netlength, popsize)==0 
    save(['gen', num2str(gencount), '_chroms.mat'], 'chroms'); 
    chroms = []; 
    save(['gen', num2str(gencount), '_chromfitness.mat'], 
'chromfitness'); 
    chromfitness = []; 
    save(['gen', num2str(gencount), '_chromnets.mat'], 'chromnets'); 
    chromnets = {}; 
    gencount = gencount + 1; 
end 
  
out = mean(errors); 
fprintf('Fitness: %d, Chrom Size: %d\n\n', out, sum(chrom)); 
	

A.2 Sensitivity Analysis  

	
function out = sensitivity(chrom, nets)
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%   CHROM,  binary chromosome to be tested
%   NETS,   trained MLPs associated with the CHROM 
%   OUT,    sensitivity scores of all selected variables represented 
%           by the ON bits in CHROM 
  
inds = find(chrom==1); 
out = zeros(1, length(chrom)); 
  
for i = 1:length(inds) 
    sens = []; 
    for j = 1:5 
        sens(j) = montecarlo(nets(j), chrom, i); 
    end 
    out(inds(i)) = mean(sens); 
end 
	

A.3 Monte Carlo Simulation 

	
function out = montecarlo (netin, chrom, ind)
%   NETIN,  instance of trained MLP 
%   CHROM,  binary chromosome to be tested 
%   IND,    index of the variable to be tested 
%   OUT,    sensitivity score of a particular ON bit in CHROM  
%           measured using a trained MLP, NETIN 
  
global chmax chmin 
%   upper and lower boundaries of all variables 
 
errors = []; 
errm = []; 
convergestep = 25; 
similarity = 0.99;  
  
chromsize = sum(chrom); 
ids = find(chrom); 
runsize = 500; 
  
zftemp = rand(chromsize+1, runsize); 
randin = zftemp; 
for rs = 1:runsize 
   randin(1:chromsize, rs) = zftemp(1:chromsize, rs).*(chmax(ids)-
chmin(ids))+chmin(ids); 
   randin(end, rs) = zftemp(end, rs)*(chmax(ids(ind))-
chmin(ids(ind)))+chmin(ids(ind)); 
end 
  
y1 = sim(netin, randin(1:chromsize, :)); 
randscale = abs(randin(ind,:)-randin(end,:)); 
randin(ind,:) = randin(end,:); 
y2 = sim(netin, randin(1:chromsize, :)); 
  
errors = abs((y1-y2)./randscale); 
ttt = find(randscale==0); 
errors(ttt) = 0; 
  
for i = 1:runsize 
    errm(i) = mean(errors(1:i));
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end 
  
while true 
    zftemp = rand(chromsize+1, runsize); 
    randin = zftemp; 
    for rs = 1:runsize 
       randin(1:chromsize, rs) = zftemp(1:chromsize, 
rs).*(chmax(ids)-chmin(ids))+chmin(ids); 
       randin(end, rs) = zftemp(end, rs)*(chmax(ids(ind))-
chmin(ids(ind)))+chmin(ids(ind)); 
    end 
     
    y1 = sim(netin, randin(1:chromsize, :)); 
    randscale = abs(randin(ind,:)-randin(end,:)); 
    randin(ind,:) = randin(end,:); 
    y2 = sim(netin, randin(1:chromsize, :)); 
  
    err = abs((y1-y2)./randscale); 
    ttt = find(randscale==0); 
    err(ttt) = 0; 
    errors = [errors, err]; 
     
    for i = length(errm)+1:length(errm)+runsize 
       errm(i) = mean(errors(1:i)); 
       te = errm(i-convergestep+1:i)./errm(i-convergestep:i-1); 
  
       nantest = isnan(te); 
       if (sum(nantest)>0) 
           out = mean(errors(1:i)); 
           return 
       end            
        
       if sum(te)>=similarity*convergestep && sum(te)<=convergestep 
          out = errm(i); 
          return 
       end 
    end 
end 
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Appendix B. Matlab Program for MBE‐GP 
	

B.1 Branch (Tree) Generation 

	
function treeout = maketree(depth)
  
global operatornames operatorarity operatorsize 
global terminalnames terminalsize 
global maxpower 
% type,         0->terminal 1->operator 
% operator,     id(index) in operatornames 
% operand,      subtrees 
% addition,     additional info for power function 
  
if rand<=1/5 
    treeout.type = 0; 
else 
    treeout.type = 1; 
end 
  
if depth==1 
    treeout.type = 0; 
    treeout.operand = randi(terminalsize); 
    return 
end 
  
if treeout.type==0 
    treeout.type = 0; 
    treeout.operand = randi(terminalsize); 
else 
    treeout.operator = randi(operatorsize); 
     
    if strcmp(operatornames{treeout.operator}, 'POW') 
        switch randi(3) 
            case 1 
                treeout.addition = randi([2, maxpower]); 
            case 2 
                treeout.addition = -randi([2, maxpower]); 
            case 3 
                treeout.addition = 1/randi([2, maxpower]);  
        end 
    end 
         
    switch operatorarity(treeout.operator) 
        case 1 
            treeout.operand = maketree(depth-1); 
        case 2 
            treeout.operand = {maketree(depth-1), maketree(depth-1)};
    end 
end 
	

B.2 Tree Evaluation 

	
function out = evaltree(treestruct, interms)
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global operatornames operatorfuns operatorarity 
  
if treestruct.type==0 
    out = interms(treestruct.operand); 
else 
    switch operatorarity(treestruct.operator) 
        case 1 
            if strcmp(operatornames{treestruct.operator}, 'POW') 
                out = feval(operatorfuns{treestruct.operator}, 
evaltree(treestruct.operand, interms), treestruct.addition); 
            else    
                out = feval(operatorfuns{treestruct.operator}, 
evaltree(treestruct.operand, interms)); 
            end      
        case 2 
            out1 = evaltree(treestruct.operand{1}, interms); 
            out2 = evaltree(treestruct.operand{2}, interms); 
            out = feval(operatorfuns{treestruct.operator}, out1, 
out2); 
    end 
end 
	

B.3 Chromosome Evaluation 

	
function [out, teval] = trainchrom(in, p, t)
% calculate the regression coefficients of the chromsome 
% in:   chromosome structure 
% p:    nxm matrix, m terminals and n records 
% t:    nx1 matrix 
% out:  output chromosome with regression coefficients 
  
global terminalsize 
  
if size(p,2)~=terminalsize 
    error('input p must match terminal size') 
end 
  
out = in; 
teval = ones(size(p, 1), 1+in.numofchrom); 
  
for i = 1:size(p,1) 
    for j = 1:in.numofchrom 
        teval(i,j) = evaltree(in.chroms{j}, p(i,:)); 
    end 
end 
  
try  
    out.coeffs = regress(t, teval); 
catch exception 
    out.coeffs = inf * ones(1+in.numofchrom, 1); 
    disp('Training exception raised!!!') 
end 
	
function [out, teval] = simchrom(in, p)
% simulate chrom with certain terminals (p) 
% p: nxm matrix, m terminals and n records
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% out: nx1 matrix 
  
global terminalsize 
  
if isempty(in.coeffs) 
    error('coefficient array must not be empty') 
end 
  
if size(p,2)~=terminalsize 
    error('input p must match terminal size') 
end 
  
teval = ones(size(p, 1), 1+in.numofchrom); 
  
for i = 1:size(p,1) 
    for j = 1:in.numofchrom 
        teval(i,j) = evaltree(in.chroms{j}, p(i,:)); 
    end 
end 
  
out = teval*in.coeffs; 
	

B.4 Crossover and Mutation 

	
function [out1, out2] = gpcrossover(in1, in2)
  
out1 = in1; 
out2 = in2; 
  
len1 = in1.numofchrom; 
len2 = in2.numofchrom; 
  
perm1 = randperm(len1); 
perm2 = randperm(len2); 
  
nofchange = randi(min(len1, len2)); 
  
for i = 1:nofchange 
    temp = in1.chroms{perm1(i)}; 
    out1.chroms{perm1(i)} = in2.chroms{perm2(i)}; 
    out2.chroms{perm2(i)} = temp; 
end 
	
function out = mutatetree(in, mutationrate, depth)
  
out = in; 
rnd = rand; 
if rnd<=mutationrate 
    out = maketree(depth); 
else 
    switch in.type 
        case 0 % terminal 
            return 
        otherwise % operator 
            if length(in.operand)==1 
                out.operand = mutatetree(in.operand, mutationrate, 
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depth-1); 
            else 
                out.operand = {mutatetree(in.operand{1}, 
mutationrate, depth-1), ... 
                               mutatetree(in.operand{2}, 
mutationrate, depth-1)}; 
            end 
    end 
end 
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