-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick
http://go.warwick.ac.uk/wrap/49639

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

https://core.ac.uk/display/9323936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap

ENS
ﬁﬂl MOLE

- . W

YIYIYIYIYIYT
WAAAAN

Intelligent Feature Selection for Neural Regression

Techniques and Applications

By

Fu Zhang

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Warwick, School of Engineering

May, 2012

For my parents

Table of Contents

LISt Of FIGUIES ...t sssssss s s sssss s sss s s sssssssssssssssssessssans 4
5 £ 0 1 1) U 7
ACKNOWIEAZGEMENLSucorirerinisssssnsssssssss s as s aas s 8
DeClaration ... ——————— 9
LiSt Of PUDLICAtiONS ... ssssssssssssssssss s s s sssssssassssssssassnses 10
2 X0 1] 3 i Lo 11
ADDIeVIations ... —————— 13
3 IR 00100 T L0 U) 15
0) a2 (o 15
1.2 Tasks and ProCeAUIEScimimmmmmmiismsssasasasassssss 16
1.3 Intelligent System Techniques (ISTS) ... 20
1.4 Research ODjJecCtiVes ... s ssssssssssssasssssssssssssass 21
1.5 Thesis OUutline......m——————————————— 22
33 () o) 24
2. Intelligent Systems TeChNIqUES.......c.oomimsmsmsmsmsmsmsmsmsmsmsmsmssssssssssssssssssssseeeens 26
2 R a4 T 26
2.2 Artificial Neural Networks (ANNS) ..o ssssssssssssssssas 27
2.2.1 Bi0lOZICAL ROOLS ..coiuuiureeueeeeseenseeseesseessessssssesssesssssessssse s s ssssssssssss s ssss s sesass s sasesanes 28
2.2.2 Artificial NeUTrons (ANS) .ot sssssssssssssssssssssesssssessssses 29
2.2.3 Fundamental Artificial Neural NetWOrKS.....coceenernneimeessesssesseesseesseessesssessseesans 32
2.2.4 Applications and Advantages 0f ANNS ... sesssseesseessesans 37
2.2.5 Disadvantages Of ANNS ... ssss st esssssssss s sesass s s 39

2.3 Evolutionary Computation (EC)cccmsmmmmsses 40
2.3.1 Genetic AlGOTItRMS (GAS) e erereeeerreerseeseesseessesessessssesssess s sssess s sssssssssssssssss s ssnes 43
2.3.2 Genetic Programming (GP)coeeermeeeeneseseesssesseesssesssssesssessssesssesssesssssssssssesssessans 48
2.3.3 Genetic Algorithm vs. Genetic Programmingcconeneeonensessesseeseesessessseennes 52
2.3.4 Genetic Neural Mathematical Method (GNMM) ... 53
2.3.5 Sensitive Genetic Neural Optimisation (SGNO) ... 54

R 3001 4 Ul 10 L0 56
REfEIrEINCES .. —————————— 57

3. Sensitive Genetic Neural Optimisationummmmmmsmmsmss————s 62
B 00 0= o 2 (. 62
3.2 SGNO EXPlaINE@d.....cocmnmnmsesnsnssssssmsmsssssisssasasssssssssssssassssasasas 64
3.2.1 Data Pre-proCeSSING..... e sssssesessesessessessssssssss s sssssssssessessesns 64
3.2.2 Variable OptimiSation ...iemiessessnssssesssssss s ssans 65
3.2.3 System Remodelling usSing MLP........ceenereeeensereesssesseesssessssssessssessssssssssssssseeens 77
3.2.4 Symbolic Rule Discovery using Genetic Programming.......c.concneenneeneeseeneeereenn. 79

3.3 Benchmarking TeChniqUes. ... sssssssssssssssssses 85
3.3.1 Principal Component ANalysis (PCA) ..ccoeermeemreermerseesseesseessesseessessssessesssesssessseeens 86
3.3.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)......... 87
3.3.3 Genetic Neural Mathematical Method (GNMM) ... 89

3.4 Theoretical Computational CompleXityummmm—————n, 90
3.5 SGNO Computation TiIMEeS ... 93
3.6 CONCIUSION v s 94
REfEIrENCES .. ————————————— 96

4. Greenhouse Tomato Weekly Yield Predictionccuummmmsmsmsmsssssssssssssssssesas 100

s R0 4= a4 T, 100
T 2 1 o £¢- 0111 0 Lo 101
G B) - U T 104
4.4 Data Pre-ProCeSSiNg ... iminssnsssnsss 107
4.5 Variable Selection using Sensitive Genetic Neural Optimisation (SGNO)..... 108
4.5.1 Neural NetWOTK MOAUIE ...ttt seesssssseeseessssss s sssesssesssssssseens 109
4.5.2 Genetic AlgOrithm MOAUIE ... sesseens 109
4.5.3 Sensitivity ANalysisS MOAULE.......coereerecreereee ettt ess e s 113
4.6 System Remodelling.......ousnnnnsmnmssssssssssssssssssss s 119
4.7 Symbolic Regression using Genetic Programming ... 126
4.8 Benchmarking with other Feature Selection (FS) Techniques.......c.c.cusunennce. 128
4.8.1 Principal Component ANalysis (PCA) ... sessseeseceseesessssssessesssesneens 128
4.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)...... 132
4.8.3 Genetic Neural Mathematical Method approach ..., 134
4.8.4 BenchmarKking SUIMIMATYocceeeeeeenmeeseesseessessessesssessssesssssssessssssssssssssesssessssssssssssesss 138
4.9 CONCIUSION ..eititiiinsissmsmsimmn s A AR R 139
ReEfEreNCES ..o ———————————— 141

5. Prediction of Longitudinal Dispersion Coefficient in Natural Streams...145

LS 0 1) o 12 T, 145
LI 2 £ ol €4 30111 ¢ Lo 146
5.3 DALASEL v R 150
5.4 Data Pre-proCessing ... s 153
5.5 Variable Selection using Sensitivity Genetic Neural Optimisation (SGNO).. 154
5.5.1 Neural NetWOork MOAUIE ...t seeesessssessssss s sssesssssssssssssssssssans 154
5.5.2 Genetic Algorithm MOAUIE ... ssens s s 155
5.5.3 Sensitivity Analysis MOAUIE. ...t s s sssssseaes 157
5.6 System Remodelling........coiiimmsmnmnmimmmmsssasassssssess 160
5.7 Symbolic Regression using Genetic Programming ... 164
5.8 Benchmarking with other Feature Selection (FS) Techniques.........ccceeuveeunnne 166
5.8.1 Principal Component Analysis (PCA) ...nereenmeereeseeseesseessessessessesssesssssssssssssssanes 167
5.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)..... 169
5.8.3 Genetic Neural Mathematical Method (GNMM)......cuemnemmmesnesnessssens 172
5.8.4 Benchmarking SUMMATYcceeeeeeeeeseeseessessessseesssessessssssssessssssssssesssessssssssessssssssssans 175
LT 001)4 Tl L1 (1) 176
REfEIEINCES ..ovvirrniisi s ———————— 178
6. Wave Overtopping Prediction at Coastal Structuresc.covrsssscsnsnssnans 182
6.1 OVETIVICW .ot ss s s s s s s s 182
(ST 2 Tl €3 30011 o Lo 183
6.3 Data Set .. ——————————"——_ 186
6.4 Data Pre-procCessing .. 189
6.5 Variable Selection using Sensitive Genetic Neural Optimisation (SGNO)..... 194
6.5.1 Neural NetWOrk MOAULE ...t ss s sssss s ssees 194
6.5.2 Genetic AlgOrithm MOAUIE ...ttt sees s saesaens 194
6.5.3 Sensitivity Analysis MOAUIE.......cerreereereeereeees e sees s sssessees 197
6.6 System RemOdelling...... s sssssssssssasasasssssssss 200
6.7 Symbolic Regression using Genetic Programming ... 203
6.8 Benchmarking with other Feature Selection (FS) Techniques........ccocousununenes 205
6.8.1 Principal Component ANalysis (PCA) ...omeeneeueeneeseeseesessseesessesssessssssessesssssees 206
6.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)..... 208
6.8.3 Genetic Neural Mathematical Method (GNMM)......ccumrnnenmenenmssnessessssees 210
6.8.4 BenchmarKing SUMIMATYccoeeeernermeesseesseessessssessesesssesssesssessssssssesssssssesssssssssssesssess 213

LS300 200 4 Ted L1) 214
2] =) =) 0 Lo <. 215

7. Industry Level Production Growth Prediction and Modelling using the EU

KLEMS Databaseccounmnmnmsmsmsmsssasssssssssssssssssss 218
7 S = o 2T 218
72 & T 10l €3 30011 o Lo 219
7.3 DALASEL ..o 220
7.4 Data Pre-procCessing .. 223
7.5 Variable Selection using Sensitivity Genetic Neural Optimisation (SGNO).. 225

7.5.1 Neural NetWOork MOAUIE ...t seessessseessesssssse e sssesssssssssssssssssssans 225
7.5.2 Genetic Algorithm MOAUIE ... eeseesans 226
7.5.3 Sensitivity Analysis MOAUIE. ...t ssrssss s sssssseaes 228
7.6 System RemOdelling......iiccnmnnnmnmsismmsmssasasssssssss 231
7.7 Symbolic Regression using Genetic Programming ... 234
7.8 Benchmarking with other Feature Selection (FS) Techniques........cccousunusene 237
7.8.1 Principal Component Analysis (PCA) ..nereenneereessisesssesssessessessesssesssssssssssssssanes 237
7.8.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)...... 240
7.8.3 Genetic Neural Mathematical Method (GNMM) ... 243
7.8.4 Benchmarking SUMMATYcceeeeeeeeeseeseessessessseesssessssssssesssessssssssssesssessssssssessssssssssans 246
78 B0 4 Tl L L0 247
2) o) 4 L 249

8. Conclusions and Further WorkK.......cusssssss 251
£ 20 0 17) 04 T 251
8.2 Main Research FiNdings.......ccomnnmmsnssssssssssssssssssssssssssssssssassssssssnss 251

8.2.1 SGNO BIiefiNg...cceeeeereeereeireeeseessesseesseisessesssesssesssssssssess s sssess s sssssssssssessssssasssasesssees 251
8.2.2 CaSe STUAY RESUILS ..o ruureereeereemeeseereersesssess s ssesssessssesssesssesssssssesssesssessssssssssssessssssssssssesssees 253
8.3 Weaknesses of SGNO and Further Works........uumsssssss 255
2) o) 4 L 258

Appendix A. Matlab Program for SGNO ... 259
A.1 Neural NetWOrk ModUleiicnsninsssasssssssssss 259
A.2 SenSitivity ANALYSIS ...coovcvnnmnmsmssssisssssssssssssssssssssss s 260
A.3 Monte Carlo SIimulation ... ————————— 261

Appendix B. Matlab Program for MBE-GP ..o 263
B.1 Branch (Tree) Generationsmsmsmsmssmsmsmsssssssssssssssssssssssssssssssssssssnsas 263
B.2 Tree Evaluation ... ssssases 263
B.3 Chromosome Evaluationssssssssssssssssssssssssssssssssssasssssssss 264
B.4 Crossover and MUtation ... 265

List of Figures

Figure 2.1: Basic representation of a biological NEUrON ... 28
Figure 2.2: Schematic structure of an AN.......osss s 30
Figure 2.3: Activation functions. (a) linear function; (b) step function; (c) sigmoid
function; (d) hyperbolic tangent funCiON. ... seesseseens 32
Figure 2.4: A simple multi-layer FINNcoesssssssssssssssssssssssssssssssees 33
Figure 2.5: A SIMPLE RNN ...ttt sssse s sss s snees 35
Figure 2.6: A simple SOM (adopted from Yang, 2010)ccoorereermerneesersmesseesseeseesseennes 35
Figure 2.7: Simple GA PrOCEAUIESverrirmeesessseessessesssesssesns 44
Figure 2.8: Chromosome types. (a) binary chromosome, (b) continuous
(0190 (00010 1] 0) 4 L= 45
Figure 2.9: Crossover operators. (a) one-point crossover; (b) two-point crossover;
(c) four-point (N-point) crossover; (d) uniform CroSSOVer........eeenees 47
Figure 2.10: MUtation €XamMPIe.....eineneesnsnssesssssssssses 47
Figure 2.11: GP chromoS0ome eXamples.......oeeeneneemesneemesseessessesssessssssssssssessssssesseees 49
Figure 2.12: GP CroSSOVEr OPEratioN......rsnenesesessesssssssssssssssssessesssssssssssssssssessesssses 50
Figure 2.13: GP mutation OPeration ... sssssssssssssssssssssesssssssssens 51
Figure 3.1: General structure of the SGNO SYSteM.......cooreneererreereeneeeseeseeseessesseesseesseseees 63
Figure 3.2: Five-fold cross-validationiesssssssesssssssssssesssssssssees 70
Figure 3.3: Early StOPPING SCENATIO ...vuueurerirreesseesseessersesssesssenns 71
Figure 3.4: Stochastic uniform selection Operation.........eeesersesseeseeseesseennes 73
Figure 3.5: N-point (Scattered) CrOSSOVETerermemssessssssssssssssssssssssssssssssssssssssesns 74
Figure 3.6: MBE chromosome eXamplecoeneeeseesessesssesssssssssssesssssseseees 80
Figure 3.7: MBE-GP StIUCTUTE.....ouinereeeseensesssssesssnees 85
Figure 4.1: Restructuring the variables ... 107
Figure 4.2: Performance of chromosomes in GA generations.........eoeeneenees 110
Figure 4.3: Number of selected variables (ON bits) in each generation................. 111
Figure 4.4: Chromosome Evaluation Error vs. Number of Selected Variables.....112
Figure 4.5: Size of the chromosomes selected for SA analysis.......ccoonermereereenreenees 114
Figure 4.6: Monte Carlo SIMUlationeeeeesesssessessssssesssssssssssssssssnss 114
Figure 4.7: Global sensitivity scores for all variables ... 116
Figure 4.8: Appearance of Variable Groups in the Rank Table........ccurnernrernerneens 118
Figure 4.9: Remodelling results of various numbers of inputs.........coceveenreesieneennee 120
Figure 4.10: Performance of variables in SGNO rank table against chromosomes
evaluated in the GA MOAUIE ... sessseeans 120
Figure 4.11: Architecture trials for NNs of 5 input variables.......cccoonnerreenneeneen. 124
Figure 4.12: Performance of NNs of ‘optimal’ and of estimated architectures..... 125
Figure 4.13: Evolution of GP for 5 variables. (a) mean chromosome error in each
generation; (b) minimum chromosome error in each generation........c......... 127
Figure 4.14: Variance accounted for or explained in PCs......ccuomnenenneennesssensesneens 129
Figure 4.15: Performance of ANN models using PCA discovery against SGNO...131
Figure 4.16: Performance of NN models using BFS and FFS against SGNO 134
Figure 4.17: GNMM Appearance Percentage........osssesns 135
Figure 4.18: Appearance Frequencies of Variable Groupsenneennesneens 136
Figure 4.19: Performance of GNMM VS. SGNOccouunmememmenmnenesnesssesnssssssssssssssesseens 137
Figure 4.20: Performance of all benchmarking techniques against SGNO.............. 138
Figure 5.1: Chromosomes performance in GA generationsc.oeeeseseesseenees 156
Figure 5.2: Number of selected variables (ON bits) in each generation................. 156

Figure 5.3: Chromosome Performance vs. Number of Selected Variables............. 157

Figure 5.4: Size of the chromosomes selected for SA analysis.......coereneerneesneeneens 159
Figure 5.5: Global sensitivity scores of all parameterscoeneenreneesneeseesseesseenens 159
Figure 5.6: Performance of NN models using 3, 6 and 9 inputs.......coocnerennieneennee 161
Figure 5.7: Performance of parameters in SGNO rank table against parameters in
GA MOAUIE ...ttt 162
Figure 5.8: Performance difference between the ‘optimal’ architectures and the
estimated arChiteCtUIES ... ——————— 164
Figure 5.9: Evolution of MBE-GP for 3 variables. (a) mean errors in generations,
(b) minimum errors in GENEratioNS. ... eeeerseeresseessessesssesssessessssssessssssesssssesans 165
Figure 5.10: Variance accounted for or explained in PCs......cccueeenreneenneenseereenseenens 167
Figure 5.11: Performance of NN models using PCA discovery against SGNO........ 168
Figure 5.12: Performance of NN models using BFS and FFS against SGNO 171
Figure 5.13: Variable appearance percentages in GNMM.........ccomenemenmeenmesssessesseens 172
Figure 5.14: Performance of GNMM against SGNO.......cccoeeerersesssesssesssesssssessnes 174
Figure 5.15: Performance of all benchmarking techniques against SGNO.............. 175
Figure 6.1: Parameters explained (adopted from Verhaeghe, 2005)cccovvurrurnee. 188
Figure 6.2: Histogram of overtopping diSCharges.......coneneenneenseeneenseeseesseessesseens 192
Figure 6.3: Histogram of the logarithm of overtopping discharges........cccccouuerreenees 193
Figure 6.4: Chromosomes performance in GA generations ... 195
Figure 6.5: Number of ON bits in each generation.........eeeessesnsesnseseenees 195
Figure 6.6: Chromosome performance vs. number of ON bits.......cccuerenecnrenneennens 196
Figure 6.7 Number of saturated chromosomes in GA generations............ccee. 197
Figure 6.8: Sizes of the chromosomes selected for SA analysis.......ccoueneneereenreenens 198
Figure 6.9: Global sensitivity scores of all input parameters.........eeensreseennee 199
Figure 6.10: Performance of NN models taking 3, 6 and 9 inputs.......ccoueeereereeueens 200
Figure 6.11: Performance of parameters in SGNO rank table vs. mean
performance in GA MOAUIE........coeeerr s 201
Figure 6.12: Performance differences between the ‘optimal’ architectures and
estimated architeCtUres ... 202
Figure 6.13: Evolution of GP for the case of 3 variables. (a) mean errors in
generations, (b) minimum errors in generations ... eeeeseessesseens 204
Figure 6.14: Variance explained in PCS.....oesssssssesssssssssssssssssnns 206
Figure 6.15: Performance of NN models using PCA against SGNOcccoeoreereeunen. 207
Figure 6.16: Performance of NN models using BFS and FFS against SGNO 209
Figure 6.17: Variable appearance percentages in GNMM..........cooucnmmmemsernsrensseseennes 211
Figure 6.18: Performance of GNMM against SGNOcccoemerreeneeneenresneessesseesseesseenees 212
Figure 6.19: Performance of all benchmarking techniques against SGNO.............. 213
Figure 7.1: Chromosomes performance in GA generationsoeseessesseens 226
Figure 7.2: Number of ON bits in each generation........e. 227
Figure 7.3: Chromosome performance vs. number of ON bits........ccunmirnneirnenns 228
Figure 7.4: Sizes of the chromosomes selected for SA analysis.......cccoueneneereenreenees 229
Figure 7.5: Global sensitivity measures of all input parametersc.onennerneens 230
Figure 7.6: Performance of NN models using 3, 6 and 9 input parameters........... 232
Figure 7.7: Performance of parameters in SGNO rank table against parameters in
D 44 T 16 LU [R 232
Figure 7.8: Performance differences between the ‘optimal’ architectures and
estimated architeCtures ... 234

Figure 7.9: Evolution of GP for 3 variables. (a) mean errors in generations, (b)

MIiNIMUM €rrors iN GENETAtIONSoeecereresrerres s sssessesses 235
Figure 7.10: Variance explained in principal cCOMpPONENtS.......ccoeereerrerreemrereesreenseenens 238
Figure 7.11: Performance of NN models using PCA against SGNOccocenrrvrinnne. 239
Figure 7.12: Performance of NN models using BFS and FFS against SGNO 242
Figure 7.13: Variable appearance percentages in GNMM.........cccomunemenmeensesseensessnens 243
Figure 7.14: Performance of GNMM against SGNO.......ccccoeenenermesssesseesssssssssessnes 245
Figure 7.15: Performance of all benchmarking techniques against SGNO.............. 247

List of Tables

Table 3.1: FFS @l@OTTthIM.... et s e sses et s s sss s ssssasessees 88
Table 3.2: BFS @l@OTItIM ...ttt ssssssssssssssssssssssssssnees 89
Table 3.3: Computations 0f SGNO........coeneeses s 93
Table 4.1: Basic statistics of the variables ... 106
Table 4.2: Sample distribution in the five-fold cross-validation...........nn. 108
Table 4.3: GA Chromosome eXplaiNed........coeoreeeerneemeeseessessesssesesseessssssesssessessesssesans 117
Table 4.4: SGNO remodelling TeSULLS ... esssssssessesssesnes 119
Table 4.5: Discovery of ‘optimal’ architectures and their performances................ 125
Table 4.6: Mathematical 0perators in GP ... sseesseeans 126
Table 4.7: PCA eValuation FESUILSceeeeeeeeesessessseessessssesssesssesssesssssssssssesssesssssssessees 130
Table 4.8: BFS and FFS evaluation results (RMSES) ... 133
Table 4.9: GNMM evaluation FeSULLSoeneenreeseeeesseeserseessesssessessesseesssesessssssessssssesaes 136
Table 5.1: List of constants in the proposed equUations.........ocnemenesnesesnessnenne 148
Table 5.2: Selected parameters to be studied ... 151
Table 5.3: Statistics of the selected parameters.......—————— 152
Table 5.4: Sample distributions in five-fold cross-validationceeneoneenn. 153
Table 5.5: SGNO re-evaluation reSULLS....... s seesssssesssssssessssssesans 161
Table 5.6: 'Optimal’ architectures and their performance ... 163
Table 5.7: Symbolic expressions discovered by GP for various numbers of

A2 Vg L 0] (TP 166
Table 5.8: PCA re-evaluation reSUILS ... sssssssssssssssssssssans 168
Table 5.9: BFS and FFS re-evaluation results..... o cnesseeseesesseessesseesseenns 170
Table 5.10: GNMM re-evaluation reSUILS......c.eeeeneeennessessesssesssssssesssesssesssessesssens 173
Table 6.1: Parameters suggested by Verhaeghe (2005).....c.ccouuenernmermeeneenseernsernnens 188
Table 6.2: Parameter rescaling using Froude scaling lawccooveneneeseesneenecnennn. 190
Table 6.3: Statistics of parameters after rescaling ... 190
Table 6.4: Test distribution in five-fold cross-validation.........c.nenneneenneenn. 193
Table 6.5: SGNO re-evaluation reSUlLs...... e erseesessesseeseesessssssesseessesnes 200
Table 6.6: 'Optimal’ architectures and their performance ... 202
Table 6.7: Symbolic expressions discovered by GP for various numbers of

L1221 E= 0 LTSS 205
Table 6.8: PCA re-evaluation reSUILS ... sssssssssssssssssssssans 207
Table 6.9: BFS and FFS re-evaluation reSults......nenenneneeeesesseessesseessennns 209
Table 6.10: GNMM re-evaluation reSUILS......c.eeeseesnnesessesssessssessesssesssesssessesssens 212
Table 7.1: Major iINAUSITY SECLOTS ... uurieeereesrerseesreeseessesssessesssesesssesssesssssssssssssssssessssssessssssssans 222
Table 7.2: INAUSIIY MEASUIESourereereerrissrsssssssesesessessessesns 222
Table 7.3: Statistics of the selected variables........oereens 224
Table 7.4: Sample distributions in five-fold cross-validation ... 225
Table 7.5: SGNO re-evaluation FeSULLS.......oeereeneessessssessesssesssessssessesssesssesssssssssssees 231
Table 7.6: 'Optimal’ architectures and their performanceooneneesneeseereenn. 234
Table 7.7: Symbolic expressions discovered by GP for various numbers of

A2 Vg L 0] (T TSRV 237
Table 7.8: PCA re-evaluation reSUILS ... eeneeneeeesseesessesssessesssssssseessssssessssssesssssssans 238
Table 7.9: BFS and FFS re-evaluation reSUltS ... eeeeeeeeesssessesssessseesssessessnens 241
Table 7.10: GNMM re-evaluation reSUlLS.....eneneeneeseesesssesseseessssssssssssessssssesans 244

Acknowledgements

[would like to thank my supervisors, Dr. Daciana D. Iliescu and Prof. Evor L.
Hines, for their great suggestions and generous support during my research

studies and construction of this thesis.

[also wish to thank my parents for their endless support and priceless

encouragement.

Declaration

This thesis is presented in accordance with the regulations for the degree of
doctor of philosophy. The work described in this thesis is entirely original and my

own, except where otherwise indicated.

List of Publications

Zhang, F,, lliescu, D. D., Hines, E. L., Leeson, M. S., & Adams, S. R. (2010). Decision
Support System for Greenhouse Tomato Yield Prediction using Artificial
Intelligence Techniques. In B. Manos, N. Matsatsinis, K. Paparrizos & J.
Papathanasiou (Eds.), Decision Support Systems in Agriculture, Food and the
Environment: Trends, Applications and Advances (pp. 155-172): IGI Global.

Zhang, F., lliescu, D. D., Hines, E. L., & Leeson, M. S. (2010). Tomato Plant Health
Monitoring: An Electronic Nose Approach. In E. L. Hines & M. S. Leeson
(Eds.), Intelligent Systems for Machine Olfaction: Tools and Methodologies
(pp- 231-248): Medical Information Science Reference.

Zhang, F., Ghaffari, R., Iliescu, D., Hines, E., Leeson, M., & Napier, R. (2011). Field
Asymmetric Ion Mobility Spectrometry Based Plant Disease Detection:
Intelligent Systems Approach. In R. Qahwaji, R. Green & E. L. Hines (Eds.),
Applied Signal and Image Processing: Multidisciplinary Advancements (pp.
102-114): IGI Global.

Ghaffari, R., Zhang, F., lliescu, D., Hines, E., Leeson, M., & Napier, R. (2010).
Detection of Diseases and Volatile Discrimination of Plants: An Electronic
Nose and Self-Organizing Maps Approach. In E. L. Hines & M. S. Leeson
(Eds.), Intelligent Systems for Machine Olfaction: Tools and Methodologies
(pp. 214-230): Medical Information Science Reference.

Ghaffari, R, Zhang, F,, Iliescu, D., Hines, E., Leeson, M., Napier, R,, et al. (2010).
Early detection of diseases in tomato crops: An electronic nose and
intelligent systems approach. Paper presented at the The 2010
International Joint Conference on Neural Networks (IJCNN).

Ghaffari, R.,, Zhang, F., Iliescu, D., Hines, E., Leeson, M., & Napier, R. (2011). The
Analysis of Plant's Organic Volatiles Compounds with Electronic Nose and
Pattern Recognition Techniques. In R. Qahwaji, R. Green & E. L. Hines
(Eds.), Applied Signal and Image Processing: Multidisciplinary
Advancements (pp. 115-126): IGI Global.

10

Abstract

Feature Selection (FS) and regression are two important technique categories in
Data Mining (DM). In general, DM refers to the analysis of observational datasets
to extract useful information and to summarise the data so that it can be more
understandable and be used more efficiently in terms of storage and processing.
FS is the technique of selecting a subset of features that are relevant to the
development of learning models. Regression is the process of modelling and
identifying the possible relationships between groups of features (variables).
Comparing with the conventional techniques, Intelligent System Techniques
(ISTs) are usually favourable due to their flexible capabilities for handling real-life
problems and the tolerance to data imprecision, uncertainty, partial truth, etc.
This thesis introduces a novel hybrid intelligent technique, namely Sensitive
Genetic Neural Optimisation (SGNO), which is capable of reducing the
dimensionality of a dataset by identifying the most important group of features.
The capability of SGNO is evaluated with four practical applications in three

research areas, including plant science, civil engineering and economics.

SGNO is constructed using three key techniques, known as the core modules,
including Genetic Algorithm (GA), Neural Network (NN) and Sensitivity Analysis
(SA). The GA module controls the progress of the algorithm and employs the NN
module as its fitness function. The SA module quantifies the importance of each
available variable using the results generated in the GA module. The global
sensitivity scores of the variables are used determine the importance of the

variables. Variables of higher sensitivity scores are considered to be more

11

important than the variables with lower sensitivity scores. After determining the
variables’ importance, the performance of SGNO is evaluated using the NN module
that takes various numbers of variables with the highest global sensitivity scores
as the inputs. In addition, the symbolic relationship between a group of variables
with the highest global sensitivity scores and the model output is discovered

using the Multiple-Branch Encoded Genetic Programming (MBE-GP).

A total of four datasets have been used to evaluate the performance of SGNO.
These datasets involve the prediction of short-term greenhouse tomato yield,
prediction of longitudinal dispersion coefficients in natural rivers, prediction of
wave overtopping at coastal structures and the modelling of relationship between
the growth of industrial inputs and the growth of the gross industrial output.
SGNO was applied to all these datasets to explore its effectiveness of reducing the
dimensionality of the datasets. The performance of SGNO is benchmarked with
four dimensionality reduction techniques, including Backward Feature Selection
(BFS), Forward Feature Selection (FFS), Principal Component Analysis (PCA) and

Genetic Neural Mathematical Method (GNMM).

The applications of SGNO on these datasets showed that SGNO is capable of
identifying the most important feature groups of in the datasets effectively and
the general performance of SGNO is better than those benchmarking techniques.
Furthermore, the symbolic relationships discovered using MBE-GP can generate
performance competitive to the performance of NN models in terms of regression

accuracies.

12

Abbreviations

Al
AN
ANN
BNS
BFS
Cl
DM
EA
EC
EP
FD
FE
FFBP
FFS
FLS
FNN
FS
FST
GA
GNMM
GP
IST
KD
MBE
MBE-GP
MCS
MLP
MSE
NN

Artificial Intelligence

Artificial Neuron

Artificial Neural Network
Biological Neural System
Backward Feature Selection
Computation Intelligence

Data Mining

Evolutionary Algorithm
Evolutionary Computation
Evolutionary Programming
Feature Derivation

Feature Extraction

Feed Forward Back Propagation
Forward Feature Selection
Fuzzy Logic System

Forward Neural Network
Feature Selection

Fuzzy System Technique
Genetic Algorithm

Genetic Neural Mathematical Method
Genetic Programming
Intelligent System Technique
Knowledge Discovery
Multi-Branch Encoding
Multi-Branch Encoding Genetic Programming
Monte Carlo Simulation
Multi-Layer Perceptron

Mean Squared Error

Neural Network

13

PC
PCA
RBF
RBFN
RMSE
RNN
SA

SC
SFS
SGNO
SOM
TDNN
VPD
WHRI

Principal Component

Principal Component Analysis
Radial Basis Function

Radial Basis Function Network
Root Mean Squared Error
Recurrent Neural Network
Sensitivity Analysis

Soft Computation

Sequential Feature Selection
Sensitive Genetic Neural Optimisation
Self Organising Map
Time-Delay Neural Network
Vapour Pressure Deficit

Warwick Horticulture Research International

14

Introduction

CHAPTER 1

Introduction

1.1 Overview

The modern world is expending at an unprecedented speed from the physical into
the virtual. Rapid advances in communication and storage technology make the
collection and distribution of data (information) more and more mandatory and
convenient. Along with the improvements in data collection, the capacity of data
grows larger and the dimensionality of data grows higher. However, our
understanding of the corresponding data and the discovery of valuable
knowledge hidden in such large amounts of data has been growing at a much
lower rate. Without effective data access/extraction and knowledge explanation,
this rapid expansion in the amount of data will not become a useful asset (Liu and

Motoda, 2008; Pappa and Freitas, 2010).

Data mining (DM) is a relatively new term proposed in recent decades, though the
tasks of data mining, such as regression and classification, have existed for a much
longer time. Generally speaking, DM refers to the analysis of data to reveal any
hidden relationships and construct abstract knowledge, so that the data can be re-
expressed in ways that are more understandable and useful to the user (Hand et
al, 2001). DM covers a broad range of techniques and is being used to analyse a
broad variety of data. Commonly used DM techniques include dimension

reduction, regression modelling, model building and evolutionary algorithms

15

Introduction

(Larose, 2006). Feature selection (FS) and regression are two important
techniques in DM. FS is designed to extract the group of features/variables of the
highest relevance from the entire dataset and thus reduce the dimensionality of
the original dataset and regression aims to discover any relationship which may

exist in the data.

1.2 Tasks and Procedures

There are different ways to categorise DM techniques. For example, Tan,
Steinbach and Kumar (2005) divide DM into two categories based on their
applications, which are descriptive tasks and predictive tasks; while Hand,
Mannila and Smyth (2001) suggested that there should be more groups, such as
data exploration, pattern discovery, rule extraction, etc. Wang and Fu (2005)
categorise DM techniques into three groups based on their activities, which are
dimensionality reduction, classification and clustering, and rule extraction.
However, their categories do not cover data regression. This thesis adopts the
categories suggested by Wang and Fu (2005) together with regression as a new

category.

Dimensionality reduction generally involves FS and Feature Extraction (FE). FE
generates new dataset by deriving new features (less than the amount of original
ones) to reduce the amount of data and thus increase the computational efficiency.
Extensive efforts have been put into FS research in recent years. One of the
fundamental motivations of FS is the curse of dimensionality in data. The number

of features is the key factor that determines the complexity of the collected data.

16

Introduction

The more features, the greater the complexity. In general, a linear increase in the
number of features may lead to an exponential increase in the complexity (Pappa
and Freitas, 2010). Commonly used dimensionality reduction techniques are
Principal Component Analysis (PCA), Genetic Algorithms (GAs) and Sequential

Feature Selection (SFS).

Classification and clustering are the techniques of close relationships. The
purpose of clustering is to split data into various groups, where the data in the
same group are of similarity or close relationship. Data classification takes the
process one step further, it builds a model which can then be used to classify
unseen data instances (Larose, 2006). Rule extraction is usually connected with
classification and clustering and aims to present data in such a way that
interpretations are easily understandable and decisions can be made based on the
knowledge obtained from the data (Wang and Fu, 2005). Regression is the
technique that discovers the relationship between the data fields. In regression, a
group of data is used as the regression inputs and the residual data is used as the
target. The job of regression is to identify the relationship between the inputs and

the target. Figure 1.1 illustrates the general DM procedures.

17

Introduction

Raw Target Preprocessed Transformed Patterns Knowledge
Data Data Data Data

Data Preprocessing Pattern Recognition Interpreting Results
Data cleaning Classification Presentation
Data sampling Clustering Rule extraction
Data condensation Regression

Mormalisation
Feature selection
Feature extraction

Figure 1.1: General procedures in DM (adapted from Kamath, 2000)

As illustrated in figure 1.1, a complete process that transforms the original raw
data into comprehensive presentation or knowledge involves three major steps,
which are data preprocessing, pattern recognition and result interpretation.
These major steps can be further split into minor processes, which are explained
briefly below (Venugopal et al., 2009):

e Data preprocessing is usually the first in data processing, it is generally
time consuming, but critical as it determines the quality of the data subset
extracted/converted from the original data for further processing. The key
techniques in data preprocessing are:

0 Data cleaning. This step aims to remove noise, irrelevant data, and
data fields that are not machine understandable, such as text
comments typed in along with the numeric measurements, from the

collection.

18

Introduction

0 Data condensation. This step involves combining datasets under the
topic from different sources.

0 Normalisation is the rescaling of data. It brings data fields to a
common scale and makes them more comparable.

0 FS and FE may be used interchangeably, but there are minor
differences. They are both important dimensionality reduction
techniques. FS generally refers to the selection of a group of data
fields from the original data without modifying the contents. FE, on
the other hand, may refer to not only what FS can perform, but also
the extraction (with modification) of the key information from the
original data. To sum up, the result of FS is always a subset of the
original data, while the result of FE is a new dataset.

0 Data transformation is the step to reorganise the preprocessed data
into the forms that are acceptable by the further
procedures/techniques.

Pattern recognition is the most important procedure in DM. It generally
concerns building abstract models that can determine patterns from the
observed data and the models will be used to induce knowledge. Models
are simply computer algorithms; commonly used models include
classification, clustering and regression.

Result interpretation. In this step, comprehensive knowledge is extracted
from the proposed models in the pattern recognition step and is presented

to the end user in visualised ways or symbolic expressions.

19

Introduction

1.3 Intelligent System Techniques (ISTs)

In the modern development of DM techniques, ISTs have drawn the attention of
many researchers. More and more IST systems have been developed to assist DM.
They have become an important group of techniques in DM (Karray and Silva,
2005; Mitra et al.,, 2002). Commonly used IST systems in DM include Artificial
Neural Networks (ANNs), Evolutionary Algorithm (EAs) and Fuzzy System
Techniques (FSTs). These techniques have been successfully applied in DM,
especially in the fields of dimensionality reduction, classification, regression and
rule extraction (Ruan et al., 2005; Sumathi and Sivanandam, 2006; Venugopal et

al, 2009).

The term IST is generally used interchangeably with the terms Soft Computing (SC)
and Computational Intelligence (CI). ISTs are usually favourable to solve
problems due to their flexible information processing capabilities for handling
real-life problems. They differ from the conventional techniques in that they are
tolerant to data imprecision, uncertainty, approximate reasoning, and partial
truth (Mitra et al.,, 2002; Venugopal et al., 2009). Fuzzy sets in FST can provide a
natural framework in dealing with uncertainties; ANNs are widely used for
classification, rule generation and regression. GAs are generally involved in
various optimisation and search applications, such as finding the global minimum
(Mitra et al, 2002). These techniques, ANNs, GAs and FST, are generally
considered as the fundamental components of IST. Many researchers have

attempted to develop hybrid ISTs by using these fundamental components

20

Introduction

cooperatively rather than exclusively and competitively to obtain better efficiency

and robustness (Harris et al.,, 2002; Mitra et al., 2002; Yang, 2010).

1.4 Research Objectives

The overall objective of this thesis is to develop a general purpose IST system
which can perform FS effectively to reduce the dimensionality of the original
dataset while maintaining flexible amounts of information carried by the original
dataset. Along with the discovery of effective features, regression models are
constructed to determine the relationship between the selected features and the
target data. In addition, symbolic expressions (symbolic rules) between the

features and the target data are discovered.

Apart from the theoretical development of the IST system, this thesis also aims to
explore the possible applications and limitations of the SGNO and the associated
techniques in plant science, civil engineering and economics. In addition, the
thesis also conducts benchmark studies between the SGNO and several other FS

techniques to test the performance of the SGNO.

The unique contributions of this thesis are summarised below:

e Developing a general purpose hybrid IST method, the Sensitive Genetic
Neural Optimisation (SGNO), which ranks the features in a dataset in terms
of their importance for creating mathematical models of the dataset.

e Building mathematical models using ANNs to discover the relationships

between input features and output features in datasets.

21

Introduction

e Discovering and expressing the relationships between input features and
output features using mathematical operators, such as plus, minus, times,
etc.

e Demonstrating the application of SGNO in various areas, including

horticulture, engineering and economics.

1.5 Thesis Outline

The current chapter presents a brief overview of DM concepts, including FS and
regression, and the general applications of ISTs in the field of modern DM. In
addition, the general research objective and the overall structure of the thesis are

also discussed in this chapter.

Chapter 2 briefly reviews some fundamental IST techniques that are relevant to
the development of the proposed hybrid technique, including ANNs, GAs and
Genetic Programming (GP). In addition, another hybrid system, namely the
Genetic Neural Mathematical Method (GNMM) is also reviewed in this chapter
and will be used as one of the benchmarking techniques in the application

chapters.

Chapter 3 explains the implementation of the proposed SGNO technique in detail
and the construction of a GP based symbolic regression system, which aims to
extract symbolic rules from the result generated by SGNO. In addition, the
implementations of the benchmarking techniques are discussed in this chapter as

well.

22

Introduction

Chapter 4 demonstrates the application of SGNO in horticulture concerning the
short term prediction of the weekly greenhouse tomato yield. The performance of

SGNO is benchmarked with several FS techniques.

Chapter 5 illustrates an application of SGNO in engineering to predict the

longitudinal dispersion coefficients in natural streams.

Chapter 6 presents another application of SGNO in engineering to model the
relationship between the overtopping discharges and several structural and

hydraulic properties of coastal structures.

Chapter 7 demonstrates the feasibility of SGNO to produce economic models. In

this chapter, SGNO is used to model the relationship between the growth of the

industrial inputs and the growth of the gross production output.

Chapter 8 concludes the discoveries presented in the previous chapters and

suggests some possible directions of further research.

23

Introduction

References

Hand D.J., Mannila H., Smyth P. (2001) Principles of Data Mining The MIT Press.

Harris C.J., Hong X,, Gan Q. (2002) Adaptive modelling, estimation, and fusion from
data : a neurofuzzy approach Springer.

Kamath C. (2000) Sapphire: Large Scale Data Mining and Pattern Recognition,
Lawrence Livermore National Laboratory.

Karray F.O., Silva C.W.D. (2005) Soft Computing and Intelligent Systems Design:
Theory, Tools and Applications Addison-Wesley.

Larose D.T. (2006) Data Mining Methods and Models WILEY.

Liu H., Motoda H. (2008) Computational Methods of Feature Selection Chapman &
Hall.

Mitra S., Pal S.K,, Mitra P. (2002) Data Mining in Soft Computing Framework: A
Survey. IEEE Transactions on Neural Networks 13:3-14.

Pappa G.L., Freitas A.A. (2010) Automating the Design of Data Mining Algorithms:
An Evolutionary Computation Approach Springer.

Ruan D., Chen G., Kerre E.E., Wets G. (2005) Intelligent data mining: techniques
and applications Springer.

Sumathi S., Sivanandam S.N. (2006) Introduction to Data Mining and its
Applications Springer.

Tan P.N., Steinbach M., Kumar V. (2005) Introduction to Data Mining. first ed.
Addison-Wesley Longman Publishing.

Venugopal KR, Stinivasa K.G., Patnaik L.M. (2009) Soft Computing for Data
Mining Applications Springer-Verlag, New York.

Wang L., Fu X. (2005) Data Mining with Computational Intelligence Springer.

24

Introduction

Yang J.H. (2010) Intelligent data mining using artificial neural networks and
genetic algorithms: techniques and applications, Engineering, University of

Warwick, Coventry. pp. 260.

25

Intelligent System Techniques

CHAPTER 2

Intelligent Systems Techniques

2.1 Overview

In the previous chapter, the general concept and procedures of DM were
introduced and the research objectives of the thesis were outlined. This chapter
provides the theoretical background of some widely used ISTs that are relevant to

the development of SGNO.

The term ‘intelligence’ is difficult to define as different people may have different
personal definitions for the term. In the popular sense, superior mental ability to
interact with the environment and solve problems is considered as the sign of
intelligence. Thus, ‘intelligence’ is usually defined as the ability to learn from the
external environment, evaluate, judge and apply the knowledge/experience to
manipulate the environment. The general abilities that are referred to as the
behaviours of intelligence include the following abilities (Nilsson, 1998):

e toadapt to a new environment

e toacquire knowledge

e to evaluate and judge

e to think in an abstract manner

e to think productively

26

Intelligent System Techniques

The term ‘Artificial Intelligence’ (Al) is again difficult to define. However, it is
understood to be broadly concerned with the intelligent behaviours of humans.
The intelligent behaviours include learning, reasoning, communicating and acting
in external environments. In the aspect of engineering and computer science, Al
generally focuses on the concepts and ideas underlying the design of intelligent
machines/systems. This chapter concentrates on several Intelligent System
Techniques (ISTs), which are an offshoot of Al. The main paradigms of IST include
Artificial Neural Networks (ANNs), Evolutionary Computation (EC), Fuzzy

Systems (FS) and Swarm Intelligence (SI) (Engelbrecht, 2007).

The following sections of this chapter provide the basic theoretical background of
some IST techniques that are the key components of SGNO, including ANNs and
EC. These techniques have been applied successfully in a wide range of
applications, including prediction, pattern recognition, feature extraction,

optimisation, etc.

2.2 Artificial Neural Networks (ANNs)

The brain is one of the most important and complex organisms for human beings.
It is well known that biological neural systems (BNSs) can perform
extraordinarily complex tasks and are capable of learning over time (Berthold and
Hand, 2007; Haykin, 1999). The implementation of ANNs was inspired from brain

modelling studies.

27

Intelligent System Techniques

2.2.1 Biological Roots

Neurons are the biological cells that enable the brain to perform all the complex
functions. There is of the order of 10-500 billion neurons and 60 trillion synapses
in the human cortex performing pattern recognition, perception, body movement
control, etc. during daily life. Each of these biological neurons is connected to

about 10 thousand others in highly complex manners (Beale and Jackson, 1990;

Parks et al.,, 1998).
/ \ Soma Axon
Dendrites

| Nucleus
/ Terminals

Figure 2.1: Basic representation of a biological neuron

Under the microscope, neurons appear to be of different shapes and sizes.
However, all the neurons have similar basic structure and the different regions of
the neuron have specific functions. Figure 2.1 illustrates the basic structure of a
biological neuron. The dendrites receive biological electrical signals from other
neurons. The soma integrates, processes these incoming signals, and then conveys
the resulting information to the terminals along the axon. At the terminals,
chemical substances, which are known as neurotransmitters, are released to

activate the communication with adjacent neurons (Richards et al., 2007).

28

Intelligent System Techniques

In order to perform specific functions, such as process information and producing
appropriate responses, individual neurons must be connected to each other to
form large networks. The connectivity between neurons is referred as a synapse.
Learning is thought to be achieved by modifying the strengths of effective
couplings at synapses between neurons. The modification of couplings to
reinforce good connections is an important feature of ANNs (Beale and Jackson,

1990; Haken, 1996).

2.2.2 Artificial Neurons (ANs)

As ANNSs reflect simplified abstract mathematical models of the nervous systems,
the smallest part/unit of an ANN is a simple arithmetic processing unit, namely an
Artificial Neuron (AN), which is the mathematical model of a biological neuron.
Each AN is responsible for acquiring information from one or more input signals
and generating a single output signal. There are three basic elements in the
neuronal model, which are listed below:

e A set of connection links (inputs). These links represent the connections to
other neurons and receive input signals from those neurons. Each of these
connection links is characterised by a weight or strength.

e A linear combiner or adder which sums the input signals weighted by
their corresponding weights.

e An activation function which limits the amplitude of the output signal by
mapping the signal generated by the linear combiner to a signal within a

certain range. The activation function could be linear or non-linear.

29

Intelligent System Techniques

Y

? -
)»

Linear Combiner Activation Function

Input <
Signals

f(S) —©

Qutput

Figure 2.2: Schematic structure of an AN

Figure 2.2 illustrates the schematic structure of an AN (Engelbrecht, 2007;
Haykin, 1999). Apart from the three basic elements described above, there is an
externally applied bias, which adjusts the net output of the linear combiner. In
mathematical terms, the function of an AN can be expressed as follows:

y = fQixiw; +b) (2.1)
where x; represents the ith input signal from the connected neurons, w; is the
corresponding weight assigned to that neuron, b is the bias, f is the activation

function and y is the output of the AN.

2.2.2.1 Activation Functions

The activation function is a key element in the ANs as it characterises the
behaviours (linear, non-linear, discrete, etc.) of ANs. There exist several types of
activation functions. Four of the commonly used activation functions are
illustrated below (Zhang, 2009).

1. Linear function. This produces a linearly modulated output and the

mathematical expression of this function is:

30

Intelligent System Techniques

a=f(n)=1n (2.2)
where a is the output, A is the slope of the function, which is generally set
to 1, and n is the input. Figure 2.3(a) illustrates this function.

. Step function, also known as the hard limit function. This is a binary output
function producing one of the two scalar output values depending on the
value of the threshold 6. The mathematical expression of the function is:

a, ifn=0

a, ifn<é@ (2:3)

a=rfo=|

where 0 is the threshold value and a; and a; are the two scalar values.
Usually, the binary output would be either of the pairs (0, 1) or (-1, 1).
Figure 2.3(b) illustrates this function.

. Sigmoid function. This function is one of the most commonly used
activation functions, whose graph is s-shaped. It is defined as a strictly

increasing function. The expression is:

a=f)=—= (2.4)
where A is the slope parameter, which controls the steepness of the
function. Figure 2.3(c) illustrates this function.

. Hyperbolic tangent function, also known as tangent sigmoid function. The

graph of this function is s-shaped and the output of the function is in the

range (-1, 1). The expression of the function is:

e/’ln_e—/ln 2
a=fln)= Fm=1

(2.5)

e2X4+1

where A is the slope parameter. Figure 2.3(d) illustrates this function.

31

Intelligent System Techniques

Figure 2.3: Activation functions. (a) linear function; (b) step function; (c)

sigmoid function; (d) hyperbolic tangent function.

2.2.3 Fundamental Artificial Neural Networks

Similar to biological neural networks, ANs have to be connected in certain ways to
perform specific tasks. The connected groups of ANs are known as ANNs. Each AN
in the ANN receives inputs from either the external environment or another
connected AN and generates the global output of the ANN or provides an input
signal to another neuron. Depending on the structure of the inter-connections and
the way to adjust or train the strengths of the inter-connection between the ANs,
ANNs can be classified into various categories as described in the following

section.

32

Intelligent System Techniques

2.2.3.1 Structural Categorisation

In terms of their structures, ANNs can be divided into three categories, which are
Feedforward Neural Networks (FNNs), Recurrent Neural Networks (RNNs) and

Self-Organising Maps (SOMs) (Haykin, 1999; Haykin, 2009).

In an FNN, the neurons are grouped into various layers and the connections are
based on the neurons in different layers. Signals flow from the input layer to the
output layer through various numbers of layers, known as the hidden layers. The
connections in FNNs are unidirectional. An FNN may be considered as a
hierarchical system, in which the input layers are placed at the bottom layer, the
output layers are the topmost layers, and the hidden layers are placed between
the input and output layers. The ANs are connected from one layer to the next
layer above it and there is no connection between the ANs in the same layer.

Figure 2.4 illustrates the structure of a simple multi-layer FNN.

Figure 2.4: A simple multi-layer FNN

33

Intelligent System Techniques

Popular FNNs include Multi-Layer Perceptrons (MLPs) and Radial Basis Function
Networks (RBFNs). MLPs are the most popular category of ANNs and are widely
used in various applications. They have been applied successfully to solve some
difficult and diverse problems by training them in a supervised manner (Haykin,
1999; Haykin, 2009), in which the expected outcomes are provided along with the
inputs. RBFNs have similar structures to MLPs. But instead of applying linear or
sigmoid activation functions, neurons in RBFNs use radial basis functions (RBFs)
as their activation functions. Typical RBFs include the Gaussian function and the
Multiquadratic function (Rao and Srinivas, 2003). The expression of the Gaussian

function is:

2
fO)=exp(-5) o>0 (2.6)
and the expression of the multiquadratic function is:

fr)=+vr2+c2 >0 (2.7)

MLPs and RBFNs are examples of non-linear layered feedforward neural

networks and they are both universal approximators.

In a RNN, the connections to a layer of neurons are not only from the adjacent
layer below, but also from some ANs from the same layer or the layers above. The
connections from the same layer or the layers above are generally called feedback
connections, which add the ability to learn from the temporal characteristics of
the input signals as they can ‘memorise’ the previous states of the network (Pham

and Liu, 1995). Figure 2.5 illustrates the structure of a simple RNN.

34

Intelligent System Techniques

Figure 2.5: A simple RNN

SOM is a feed forward neural network using unsupervised learning algorithm
(Hassoun, 1995; Kohonen, 2001). In SOMs, neurons are placed at the node of a
lattice, which usually contains one or two dimensions. Figure 2.6 illustrates a
simple SOM network. Neurons in SOMs have two different types of connections,
which are forward connections and lateral connections. The forward connections
connect the neurons in the input layer to the neurons in the output layer. The

lateral connections are the connections between the neurons in the output layer.

Figure 2.6: A simple SOM (adopted from Yang, 2010)

35

Intelligent System Techniques

2.2.3.2 Learning Algorithm Categorisation

As the ANNs learn from the external environment, there are two types of learning
algorithms allowing them to adapt to the environment: supervised learning and
unsupervised learning. In addition to these two learning algorithms, there is a
third type, the reinforcement learning, which is a special form of supervised

learning (Basheer and Hajmeer, 2000; Nilsson, 1998).

Supervised learning, also known as associative learning, requires a train set
consisting of an input vector and it corresponding output vector. The output
vector is used to determine how well the network is trained to adapt to the
environment and the strengths or weights of the inter-neuron connections are
adjusted according to the difference between the provided output vector and the
actual network output vector to reduce the overall error. Among the ANNs
mentioned in the previous section, FNNs and RNNs use supervised learning

algorithms.

Unsupervised learning aims to discover patterns or features in the input data
without ‘knowledge’ from the environment. It does not require the expected
output vector to be provided. During training, only the input vectors are passed to
the neural network and the strengths or weights of the inter-neuron connections
are adjusted automatically to group the input vectors into different clusters. The

SOM network is a good example of unsupervised learning.

Reinforcement learning, also known as graded training, is defined as learning by

trial-and-error from feedback from the environment. Instead of providing desired

36

Intelligent System Techniques

outputs, a reinforcement learning algorithm evaluates the goodness of the
network output corresponding to a given input rather than an explicit target to be
replicated. Depending on the performance of the network, a reward, which can be
a positive or negative signal, will be issued. The reward causes a change in the

network and therefore affects the future performance of the network.

2.2.4 Applications and Advantages of ANNs

It has been decades since the first introduction of ANNs. Thousands of
researchers have put their efforts into improving the ANN models and applying
ANNSs to various applications. Nowadays, ANNs have been shown to be useful in a
wide variety of practical applications and their potential is far from realisation.
Some common applications of ANNs include modelling, data analysis, forecasting
and optimisation in areas such as speech recognition, pattern recognition and
classification, image processing, and system control (Rao and Srinivas, 2003;
Taylor, 1995; Taylor, 1996). The characteristics or advantages of ANNs that make
them superior in these practical applications are discussed below:

e Computational ability. It has been proved mathematically by Cybenko
(1989) that MLPs can be used as universal function approximators. MLPs
can virtually approximate any function with any level of desired accuracy if
there are sufficient numbers of ANs in the hidden layer and the amount of
available data points is sufficient.

¢ Non-linearity. Depending on the type of activation function used in the
ANs, ANNs can behave in either linear or non-linear ways. Non-linear

systems have inputs that are not proportional to the outputs. The non-

37

Intelligent System Techniques

linearity of ANNs allows them to learn the nonlinear relationships within
the training data directly. Traditional linear models are simply inadequate
when modelling non-linear data.

Flexibility/adaptability. This is the key characteristic that makes ANNs
‘intelligent’. ANNs can learn from the external environment by using
examples, which are represented by a set of training data. ANNs adapt to
the environment by automatically adjusting the internal parameters,
which are the strengths or weights of the connections between ANs. ANNs
generalises ‘knowledge’ to produce adequate responses to unknown
situations based on the ‘relationship’ discovered in the previous examples.
Parallel processing. Neurons in the ANN are individual processing units
and are typically placed in parallel structures. The computations in ANNs
may be carried out in parallel as well depending on the structures of the
ANNSs. The parallel processing allows the computation to be performed
more rapidly and special hardware implementations are being designed to
take advantage of this feature.

Robustness and fault tolerance. ANNs are noise-insensitive and capable
of handling incomplete data (Basheer and Hajmeer, 2000). As ANNs are
distributed information systems and each AN is an arithmetic element, the
parallel processing ability makes ANNSs relatively fault tolerant. The failure
of one or more ANs or connections in the network may degrade the
performance and accuracy of the system but it does not break the entire

network (Du and Swamy, 2006; Li, 1994).

38

Intelligent System Techniques

2.2.5 Disadvantages of ANNs

Although ANNs are undoubtedly powerful tools for many applications, they do
have some possible weaknesses in them.

e ANNs do not produce explicit models. ANNs are regarded as ‘black box’
processing tools. Apart from defining the structure of an ANN and perhaps
the initial weights of the connections, there is no other activity to interact
with the network than to feed it with the available data. In the general
applications of ANNs, no information is available in the form of symbolic
expressions representing the behaviours of the ANNs and the relationship
between the inputs and outputs. The network itself is the expression of
such a relationship.

e ANNs are generally lack the means to explain. It is usually difficult to
justify the correctness of a result as the connection strengths/weights do
not have obvious interpretations.

e There is no structured methodology for choosing the appropriate network
topology, determining effective initial internal parameters, training the
neural network, and verifying the network. It is known that the
performance of an ANN is generally determined by a number of factors,
including number of network layers, number of neurons in each layer, the
connections topology, the type of activation functions of each neuron, the
training process, etc. The selection of these determinant parameters is
another research area. In general, developers would conduct several trials
to identify an appropriate configuration of the network (Li, 1994; Shriver,

1988).

39

Intelligent System Techniques

2.3 Evolutionary Computation (EC)

EC is a key subfield of Al that may generally be used to solve combinational
optimisation problems. The term ‘evolution’ usually refers to the optimisation
process that aims to improve the ability of a species or system to survive in a
competitive environment. A French biologist, Jean-Baptiste Lamarck (1744-
1829), defines evolution as heredity, which is the inheritance of acquired traits, in
his theory of evolution. His main idea is that individuals adapt to the environment
during their lifetimes and pass the traits that make them survive to their
offspring. The offspring then continue to adapt. Charles Darwin (1809-1882),
whose theory of natural selection became the foundation of biological evolution,
states in his theory of evolution that in a world of limited resources, each
individual has to compete with others in order to survive. Those individuals with
the best traits, which make them outstanding, are more likely to survive and
reproduce, and those traits will be passed on to their offspring (Affenzeller, 2009;

Banzhaf, 1998; Engelbrecht, 2007).

EC represents a powerful search and optimisation system that employ the
computational models of evolutionary processes, such as natural selection and
reproduction, as the fundamental elements of the system. Evolutionary
Algorithms (EAs) is a subset of EC and generally refer to the generic population
based metaheuristic optimisation algorithms. Generic components in EAs include
an encoding method, a fitness function, an initialisation function, a selection
function and a reproduction function. The functionalities of these components are

(Affenzeller, 2009; Rothlauf, 2006):

40

Intelligent System Techniques

Encoding. This converts the potential solutions into the data format that can be
interpreted by the EA. In the biological world, the traits of individuals are stored
in their chromosomes. Chromosomes are structures of compact intertwined
molecules of DNA in the nucleus of organic cells. Each chromosome contains a
large number of genes, which are the units of heredity. In the context of EA, each
individual is a candidate solution to an optimisation problem. The characteristics
or traits of an individual are represented by a chromosome and the variables that
need to be optimised are referred as genes, the fundamental units of information.
Fitness function. In the Darwinian model of evolution, individuals with the best
traits are more likely to survive and reproduce. The fitness function is a
mathematical function that is used to evaluate all the potential solutions
represented as chromosomes and determine the ability of each individual to
survive. Generally, the fitness function would issue a quantitative fitness score to
each candidate to quantify how well the candidate fits the environment, or its
ability to survive.

Initialisation. As EAs are stochastic population-based search algorithms, each EA
contains a group of candidate solutions, known as a population. Initialisation is
the first step in the EA process and it generates the initial population. The initial
population is generally generated randomly to ensure a uniform representation of
the entire search space. The size of the initial population has consequences in the
computational complexity and exploration ability. A Large population size
generally increases diversity and improves the exploration ability, but it also
leads to higher computational complexity.

Reproduction. This is the process of producing offspring from selected parents

using crossover and mutation operators. Crossover creates offspring by the

41

Intelligent System Techniques

combination/exchange of randomly selected genetic information in chromosomes
from the parents. Mutation is the process of randomly changing the genetic
information in chromosomes to increase genetic diversity. In general, mutation is
applied as a low probability to avoid the distortion of good genetic information.

Selection. This is one of the key operators in EA. The main objective of selection
is to emphasize better solutions. The selection process is usually carried out at the
end of each generation to select a new population of chromosomes. The new
population could be selected from only the offspring or from both the parents and

offspring.

In addition to these fundamental operations, there is another key operator in EA,
the stopping condition. The evolutionary operators are executed iteratively in an
EA process until the stopping condition is met. Commonly used stopping
conditions include the discovery of an acceptable solution and the maximum

number of EA iterations (generations).

The different implementations of those EA components result in different EC
paradigms. There are a variety of classes of evolutionary computational models,
including Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary

Programming (EP), etc.

472

Intelligent System Techniques

2.3.1 Genetic Algorithms (GAs)

GAs represents one of the key paradigms of EA. Although the idea of GA was
proposed by Fraser (1957) and later by Bremermann (1962), Holland (1975) is

credited for popularising GAs and is generally considered as the father of GAs.

GAs are based on the mechanics of natural selection and natural genetic
recombination using a simulated version of the survival of the fittest. The driving
operators of a GA are fitness evaluation, selection and reproduction. Figure 2.7
illustrates the generic GA procedures. An initial population of a number of
individuals, in the format of a selected representation scheme, is generated
randomly to represent potential solutions. The quality or fitness of each
individual in the initial population is then evaluated using a fitness function. A set
of parent chromosomes are selected based on their fitness scores and the fittest
are selected to be the parent chromosomes and are mated to produce new
individuals or offspring using the genetic operators, including crossover and
mutation. The offspring is believed to inherit the advantages or traits of their
parents. A selection mechanism is then used to select a new group of individuals
from the parents and the offspring to form the new population. Finally, all the
operations performed on the initial population, including fitness evaluation,
parent chromosome selection, reproduction and new population selection, are

carried out iteratively until the predefined stopping condition is met.

43

|

Initialisation

Intelligent System Techniques

i

Fitness Evaluation

Mutation

Stop criterion

T

Crossaover

T

Selection

Figure 2.7: Simple GA procedures

The canonical GA proposed by Holland in 1975 follows the general procedures

illustrated in Figure 2.7 and is implemented as follows:

e Abitstring (binary) of fixed length is used to represent each chromosome.

e Proportional selection is used to select the most-fit parents for

reproduction.

e One-point crossover operation is used to produce offspring.

e Uniform mutation is used.

Since the introduction of canonical GA, several variations have been developed

based on different mechanisms in the fundamental elements, including

chromosome representation scheme, selection operator, crossover operator and

mutation operator. Some of the main variants are discussed in the following

sections.

44

Intelligent System Techniques

2.3.1.1 Binary GA vs. Continuous GA

In general, there are two common types of chromosome representation schemes,
which are the binary representation and continuous representation (floating-
point representation). In the binary representation, each chromosome is
represented by a string of binary numbers (0 or 1), while in the continuous
representation each chromosome is a list of floating-point numbers. Figure 2.8

illustrates the difference between the binary chromosome and the continuous

chromosome.
(a) Binary ololo|1|o|lo|l1|1]|o|1|0o]|o|1]|0|0]|1
(b} Continuous 0.125 0.375 0.5 0.625

Figure 2.8: Chromosome types. (a) binary chromosome, (b) continuous

chromosome.

Both the binary GA and the continuous GA follow the general processing
procedures illustrated in figure 2.7. However, the binary GA requires an extra
procedure, decoding, before evaluating the candidate chromosomes. The
decoding procedure converts the chromosomes into variables of various formats
(depending on the type of application) that can be processed by the fitness

function.

45

Intelligent System Techniques

2.3.1.2 Crossover

Most of the crossover operators for binary representations are applied to two
parent chromosomes. Several crossover operators have been developed and these
operators can be divided into four groups (Sumathi, 2010):

One-point crossover: this operator randomly selects a crossover point and the
bitstrings after the crossover point are swapped between the two parent
chromosomes. Figure 2.9 (a) illustrates the one-point crossover.

Two-point crossover: in this operation, two crossover points are selected at
random and the bitstrings between these two points are swapped. Figure 2.9 (b)
illustrates the two-point crossover.

N-point crossover: this operator is a generalised version of the two-point
crossover. In this case, N crossover points are selected at random. These
crossover points divide the chromosome pairs into N+1 sections indexed by
positive integers, and the bitstring sections of even indices are swapped. Figure
2.9 (c) illustrates a four-point crossover.

Uniform crossover: this is a bit-wise crossover operator. Each bit in the bitstring
has a probability to be swapped. A binary crossover mask can be used to indicate
which bit of the parents should be swapped. This uniform crossover can be
regarded as the generalised operator for all the crossover operators. Figure 2.9

(d) illustrates the uniform crossover.

46

Intelligent System Techniques

(a)

Parent 1 |0]1|o]1]0]1] 0]1]o[1]0]1] Offspring 1
Parent 2 [1]o[1]0[1]0] : [1]o[1]o[1]o] Offspring 2

Parent 1 [o] 1] oSl o]2[o]1] [o] 2] o[BI o[1]o]1] Offspring 1
Parent2 [1]o]1 [1[o]1]o] [1]o]2 JEBI 1]o[1]o] Offspring 2

(b)

(c)

Parent 1 |D|1-D|1|D-E : |D|1-D|1|D-E| Offspring 1
Parent 2 ‘1|D-1|D‘1-E |1|D-1|D|1-E| Offspring 2

Parent 1 En n nnn n n nﬂn n Offspring 1

R nmnnnm E:>

Mask [o[o[1]o[1]o]o]0[1]0]

E m Enn m Offspring 2

Figure 2.9: Crossover operators. (a) one-point crossover; (b) two-point

crossover; (c) four-point (N-point) crossover; (d) uniform crossover.

2.3.1.3 Mutation

Mutation aims to add diversity to the genetic characteristics of the chromosomes
by introducing new traits or changes to the existing individuals. It prevents the GA
from converging too fast into one region. Mutation is generally applied to each
gene of the offspring at a certain probability. Figure 2.10 illustrates an example of

binary chromosome mutation.

Before u1u1u.u1u1

After |n|1|u|1|u.u|1|u|1|

Figure 2.10: Mutation example

47

Intelligent System Techniques

2.3.1.4 Advantages and Disadvantages of GAs

Some of the advantages of GAs over the conventional optimisation and search
methods are:

e GAs can scan the solution hyper-space quickly and bad initial candidates
(individuals) do not have a negative effect on the end solutions as they are
simply discarded.

¢ GAs work with a coding of the parameter set, which is to be optimised, not
the parameters themselves.

¢ GAs scan the solution hyper-space with a population of points, not a single

point.

Although GAs have been proven to be an efficient and powerful optimisation and
search strategy, they have drawbacks as well. The main disadvantage of GAs is
actually its advantage, evolution. As evolution is inductive, it is generally slower
than traditional techniques to converge to a solution and the solution is not

guaranteed to be optimal but satisfactory to user’s expectation.

2.3.2 Genetic Programming (GP)

GP is the extension of GA into the space of computer programs (Affenzeller,
2009). In GP, the individual chromosomes are not fixed length binary strings or
numerical lists that encode possible solutions, they are programs that express the
solutions to the problem. In the late 1950s, Friedberg (1958, 1959) was the first

person who tried to produce computer programs by evolution. The first attempt

48

Intelligent System Techniques

to apply GAs to tree-structured program induction was proposed by Cramer
(1985). John Koza explored the power of evolutionary program induction and
established the field of GP by extensive demonstrations of using GP to solve
problems (Koza, 1992). Compared with GAs, the GP is different principally in it
representation but inherits most of GA’s features, including crossover, mutation

and selection.

The GP process is similar to the GA, it starts with an initial population of randomly
generated programs (tree-structured chromosomes) composed of functions and
terminals. The functions include the arithmetic operators (+, -, *, /, etc.), logical
operators (AND, OR, NOT, etc.) and programming operators (IF-THEN-ELSE, etc.).

The terminals are the input variables/parameters to the program. Figure 2.11

illustrates two simple GP chromosomes.

©)
oG "
(b}

O © O

(a)

Figure 2.11: GP chromosome examples

Each GP chromosome in the population is measured in terms of how well it
performs by executing the expression/program represented by the chromosome
and a fitness value indicating its performance will be associated with the

chromosome. After evaluating all chromosomes in the population, a new

49

Intelligent System Techniques

population will be created using the GP operators, including selection, crossover
and mutation. The selection operator is adopted from traditional GAs, it selects
pairs of chromosomes (parents) to produce new chromosomes (offsprings).
Commonly used selection methods include roulette-wheel selection, random
selection, stochastic uniform selection and tournament selection (Banzhaf et al,,
1998; Haupt and Haupt, 2004). After selecting the parent chromosomes, the
offspinrgs are produced using the crossover and mutation operators. Crossover
and mutation operate on randomly selected subtrees. Figures 2.12 and 2.13

illustrate GP crossover and mutation.

Parent 1

o crossover point

e Offspring 2

()
(. O
2 O ®
OXO

Figure 2.12: GP crossover operation

50

Intelligent System Techniques

Randomly generated tree Mutation point

Figure 2.13: GP mutation operation

In general, a small proportion of chromosomes in the population, which have the
highest fitness, are passed to the new generation without modification (crossover
and mutation). The new population usually has the same number of
chromosomes as the previous population and the chromosomes are evaluated
followed by selection, crossover and mutation. These processes (evaluation,
selection, crossover and mutation) are carried out iteratively to evolve towards a
solution. However, due to the stochastic features in GP, an acceptable solution
cannot be guaranteed. Thus, the stopping conditions are usually set to prevent GP
from endless evolutions. Commonly used stopping conditions include the
discovery of an acceptable solution, a maximum number of GP generations have
been evolved and a maximum amount of processing time has been allowed. Once
the GP process stops, the chromosome of the best performance discovered so far

is generally considered the solution or an approximate solution to the problem.

51

Intelligent System Techniques

GP has been applied successfully in many areas, such as circuit design (Lee and
zhang, 2000; Wang et al., 2007), economics (Potwin et al., 2004; Salcedo-Sanz et
al, 2005), chemistry (Chen et al, 2004), and symbolic regression (Salhi et al,

1998).

2.3.3 Genetic Algorithm vs. Genetic Programming

As GA and GP are both evolutionary algorithms and GP is a derivation of GA, they
share many common characteristics, such as random hyper-space exploration,
stochastic evolution, long processing time, etc. The main characteristics that differ
them from each other are listed below (Banzhaf et al., 1998; Koza, 1992):

e Design objective: the GA was designed to evolve optimal numerical
solutions while GP was designed to evolve expressions or programs.

e Representation: in GA, chromosomes take various forms, such as bit
strings or numeric lists. In GP, chromosomes are executable structures,
such as computer programs or symbolic expressions.

¢ Fitness evaluation: in GA, the fitness of a chromosome is usually derived
by evaluating the chromosome using a predefined fitness function and the
chromosome itself is either the input to the fitness function or the
representation which is used to produce inputs to the fitness function. In
GP, the fitness is usually assessed by executing the chromosome and each

chromosome can be considered as a fitness function.

52

Intelligent System Techniques

2.3.4 Genetic Neural Mathematical Method (GNMM)

GNMM is a general purpose hybrid intelligent optimisation technique developed
by Jianhua Yang in 2007 (Yang, 2010; Yang et al., 2007). GNMM inherits the key
characteristics of GA and ANNs, such as robustness and nonlinearity, and it is
usually used as a pattern classifier and analyser. In addition, GNMM incorporates
GA and mathematical programming to perform feature selection and rule
extraction respectively (Yang, 2010). Yang (2007, 2008 and 2010) has
demonstrated the utility of GNMM in many applications, such as predicting the
longitudinal dispersion coefficient in rivers, optimising the number of e-nose

sensors, selecting effective channels in EEG signals, and more.

GNMM is usually performed in three steps (Yang, 2010; Yang et al., 2007; Yang et
al,, 2008):

1. GA based input variable selection. In this step, GA is used to evolve an
optimal set of variables from the available variables. The selected variables
are used as the inputs in MLP models, which are also used as the fitness
functions in the GA. An adaptive mutation rate is used in the GA based on
the average fitness of successive generations. When the former generation
has higher fitness, the mutation rate is reduced to encourage exploitation
of the current discoveries; conversely, when the fitness is lower, the
mutation rate is increased to encourage further exploration in a wider
search space. GNMM uses the elite group and appearance percentages of
individual variables to minimize the randomness associated with GA.
Instead of using the chromosome of the best performance discovered in GA

as the final solution, GNMM uses the appearance percentages of the

53

Intelligent System Techniques

variables in the winning chromosome (the best performing chromosome)
in each generation as indications of the variables’ preferences. Variables of
higher appearance percentages are more preferable than those with lower
appearance percentages.

MLP modelling. In this step, MLPs are used as the tools to perform the
actual tasks, which are classification or regression. The input variables of
these MLPs are the groups of variables of high appearance percentages
selected from the results produced in the first step. The common MLP
training problem, overfitting, is avoided by K-fold cross-validation. The fast
Levenberg-Marquardt (LM) learning algorithm is used to achieve a second-
order speedup in the MLP training.

Rule extraction using mathematical programming. In this step, the
mathematical programming technique proposed by Tsaih and Lin (2004)
is implemented to extract regression rules from the trained MLPs. This
mathematical method is not only used to identify the polynomial
regression rules, but is also used to explore features from the extracted

rules based on data samples associated with each rule.

2.3.5 Sensitive Genetic Neural Optimisation (SGNO)

SGNO performs dimension reduction by selecting input variables relevant to the

neural modelling of the input-output relationship using ANNs, GAs and Sensitivity

Analysis. The curse of dimensionality is a serious issue on models of multivariate

data processing because there are many more possible combinations of variables

that can be observed in datasets. As the data dimensionality increases, the

54

Intelligent System Techniques

complexity of data processing increases, in some cases even exponentially. In case
of ANN applications, additional input variables require extra processing (learning
and testing) time and computer resources. However, extra input variables cannot
guarantee better performance (better fitting) as the extra inputs may bring extra
noise into the neural model and the learning process cannot eliminate the noise in
dataset. In addition, an ANN treats all input variables equally and it is unable to
determine which variable or group of variables from all input variables can

produce the best fitting.

GAs had been approved to be a good tool in FS. However, GA’s application is
limited to the variable combinations generated during the GA evolution and the
size of the best combination is unpredictable. In case a fixed number of variables
are preferred, a common approach is to find all variable combinations generated
during the evolution that meet the size requirement and use the combination
giving the best fitness. If the situation changed and more variables are required
instead of the previous group of variables, a completely new variable group needs
to be discovered. This approach is unfavourable for the applications where
reorganising the whole input configuration is impractical (expensive sensors or
complicated systems). SGNO simplifies this process by selecting variables based
on their importance in the system and extra variables can be identified by looking

up in the variable importance rank table.

55

Intelligent System Techniques

2.4 Conclusion

In this chapter, some of the well-known ISTs, including ANNs, GAs and GPs are
reviewed briefly. In addition, a recently developed hybrid intelligent optimisation
technique, GNMM, is introduced as well. These techniques are powerful tools that
have been proved to be successful in many areas, such as machine learning,

decision support, pattern recognition, and data regression.

Among these techniques, ANNs are often referred to as ‘black box’ models as
there is generally no interactive activity with an ANN apart from feeding it with
the available data. In addition, ANNs are generally lack of explanation capabilities
and there is no information available to represent their behaviours and the
relationship between the inputs and outputs. GAs and GPs are known as
evolutionary algorithms due their biological background, which is natural
evolution and selection. Due to their differences in solution representation and
evolution operations, GAs are well suited to perform feature selection, while GPs
are more suitable for rule extraction and decision making. GNMM is implemented
using ANNs and GAs, it inherits the advantages from these two techniques. As a
result, it is able to optimise the number of inputs and perform data regression and

classification.

In the following chapter 3, a novel hybrid intelligent system, known as SGNO, is
introduced. SGNO is a general purpose optimisation (feature selection) tool that
combines the advantages of ANNs and GAs together with the ability to quantify

the influence/importance of individual variables on the model output.

56

Intelligent System Techniques

References

Affenzeller, M. (2009). Genetic algorithms and genetic programming: Modern
concepts and practical applications. Boca Raton: CRC Press.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic
Programming, An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications: Morgan Kaufmann.

Basheer, 1. A, & Hajmeer, M. (2000). Artificial neural networks: fundamentals,
computing, design, and application. Journal of Microbiological Methods, 43,
3-31.

Beale, R, & Jackson, T. (1990). Neural Computing: An Introduction. Bristol: Adam
Hilger.

Berthold, M., & Hand, D. J. (2007). Intelligent data analysis: an introduction. Berlin:
Springer.

Bremermann, H. J. (1962). Optimisation through Evolution and Recombination. In
M. C. Yovits, G. T. Jacobi & G. D. Goldstine (Eds.), Self-Organisation Systems
(pp. 93-106): Spartan Books.

Chen, X,, Gui, W,, Wang, Y., & Cen, L. (2004). Multi-step optimal control of complex
process: a genetic programming strategy and its application. Engineering
Applications of Artificial Intelligence, 17(5), 491-500.

Cramer, N. L. (1985). A representation for the adaptive generation of simple
sequential programs. Paper presented at the International Conference on
Genetic Algorithm and their Applications, Carnegie-Mellon University.

Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions.

Mahtematics of Control, Signals and Systems, 2, 303-314.

57

Intelligent System Techniques

Du, K. L, & Swamy, M. N. S. (2006). Neural Network in a Softcomputing
Framework. London: Springer.

Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction (2nd ed.).
Chichester: Wiley.

Fraser, A. S. (1957). Simulation of Genetic Systems by Automatic Digital
Computers I: Introduction. Austrilian Journal of Biological Science, 10, 484-
491.

Fraser, A. S. (1957). Simulation of Genetic Systems by Automatic Digital
Computers II: Effects of Linkage on Rates of Advance Under Selection.
Austrilian Journal of Biological Science, 10, 492-499.

Friedberg, R. M. (1958). A Learning Machine: Part 1. IBM Journal of Research and
Developmenet, 2, 2-13.

Friedberg, R. M. (1959). A Learning Machine: Part II. IBM Journal of Research and
Developmenet, 3, 183-191.

Haken, H. (1996). Principles of Brain Functioning: A Synergetic Approach to Brain
Activity, Behavior and Cognition. Berlin: Springer.

Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks: The MIT Press.

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. New Jersey: Wiley-
Interscience.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). New
Jersey: Prentice-Hall.

Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). New Jersey:
Pearson Education.

Holland,]J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press.

58

Intelligent System Techniques

Kohonen, T. (2001). Self-Organizing Maps (3rd ed.). Heidelberg: Springer.

Koza, J. R. (1992). Genetic Programming, On the Programming of Computers by
Means of Natrual Selection: The MIT Press.

Lee, K.], & zhang, B. T. (2000). Learning robot behaviors by evolving genetic
programs. Paper presented at the 26th annual conference of the IEEE.

Li, E. Y. (1994). Artificial neural networks and their business applications.
Information & Management, 27, 303-313.

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. San Francisco: Morgan
Kaufmann Publishers.

Parks, R. W,, Levine, D. S., & Long, D. L. (Eds.). (1998). Fundamentals of Neural
Network Modeling: The MIT Press.

Pham, D. T., & Liu, X. (1995). Neural Networks for Identification, Prediction and
Control. Tyne and Wear: Springer.

Potwin,]. Y., Soriano, P., & Vallee, M. (2004). Generating trading rules on the stock
markets with genetic programming. Computers and Operations Research,
31(7),1033-1047.

Rao, M. A, & Srinivas,]J. (2003). Neural Networks: Algorithms and Applications.
Pangbourne: Alpha Science.

Richards, D., Clark, T. & Clarke, C. (Eds.). (2007). The Human Brain and its
Disorders. Oxford: Oxford University Press.

Salcedo-Sanz, S., Fernandez-Villacanas,]. L., Segovia-Vargas, M.]., & Bousono-
Calzon, C. (2005). Genetic programming for the prediction of insolvency in
non-life insurance company. Computers and Operations Research, 32(4),

749-765.

59

Intelligent System Techniques

Salhi, A., Glaser, H., & De Roure, D. (1998). Parallel implementation of a genetic
programming based tool for symbolic regression. Information Processing
Letters, 66(6), 299-307.

Shriver, B. (1988). Artificial Neural Systems. IEEE Computer, 12(3), 8-9.

Sumathi, S. (2010). Computational Intelligence Paradigms: theory & applications
using Matlab. Boca Raton: CRC Press.

Taylor, J. G. (1995). Neural Networks. Oxon: Alfred Waller.

Taylor, J. G. (Ed.). (1996). Neural Networks and Their Applications. London: John
Wiley and Sons.

Tsaih, R., & Lin, C.-C. (2004). The Layered Feed-Forward Neural Networks and Its
Rule Extraction. In F.-L. Yin,]J. Wang & C. Guo (Eds.), Advances in Neural
Networks - ISNN 2004 (Vol. 3173, pp. 377-382): Springer Berlin /
Heidelberg.

Wang, F., Li, Y. X,, Li, L., & Li, K. (2007). Automated analog circuit design using
two-layer genetic programming. Applied Mathematics and Computation,
185(2),1087-1097.

Yang, J. H. (2010). Intelligent data mining using artificial neural networks and
genetic algorithms: techniques and applications. Unpublished PhD,
University of Warwick, Coventry.

Yang,]. H,, Hines, E. L, lliescu, D. D., & Leeson, M. S. (2007). GNMM and accurate
longitudinal dispersion coefficient prediction. Paper presented at the The
Seventh UK Chinese Association of Resource and Environment (CARE)
Annual Meeting.

Yang, J. H,, Hines, E. L., lliescu, D. D., Leeson, M. S., & Boilot, P. (2008). Optimising

the Number of Electronic Nose Sensors needed using Genetic Algorithms

60

Intelligent System Techniques

and Neural Networks. In E. L. Hines, M. S. Leeson, M. Martinez-Ramon, M.
Pardo, E. Llobet, D. D. Iliescu &]J. H. Yang (Eds.), Intelligent Systems:

Techniques and Applications: Shaker Publishing.

61

Sensitive Genetic Neural Optimisation

CHAPTER 3

Sensitive Genetic Neural Optimisation

3.1 Overview

Chapter 2 has provided the theoretical background to some important ISTs. As
explained in section 2.3.1, a Genetic Algorithm (GA) is a stochastic heuristic tool
capable of generating useful global solutions to optimisation and search problem.
An Artificial Neural Network (ANN), discussed in section 2.2.3, is a non-linear
adaptive modelling tool which is usually used to model complex relationships.
This chapter introduces a hybrid optimisation system, namely the Sensitive
Genetic Neural Optimisation (SGNO) system based on GA, ANN and sensitivity
analysis (SA). The system is designed to identify the most efficient subset of input

variables from all the available ones, also known as dimensionality reduction.

One obvious advantage of dimensionality reduction is that it reduces the amount
of data and thus simplifies the problem. In term of ANNs, reducing dimensionality
(number of variables) reduces the number of input parameters of the network.
The selection of appropriate subset of variables is important to obtain good
generalisation for data driven techniques like ANNs with finite data (Bishop, 2005;
Tarassenko, 1998). The dimensionality reduction is usually achieved either by
selecting features from the raw data, commonly known as feature selection (FS)
or deriving new features from the raw data, known as feature derivation (FD)
(Marsland, 2009). Broadly speaking, the SGNO is an intelligent FS algorithm.

62

!

Sensitive Genetic Neural Optimisation

general structure of this optimisation system.

Neural Networks Module
Examining the ‘goodness’ of
proposed feature combinations

Requesting
Genetic Algorithm examination
Module
Generating random combination
of features and evolving
towards ‘go?d solutions’ Returning
‘goodness’
Selecting 'good’ feature
combinations from each GA je——
generation

Neural Networks Module
Testing the effectiveness of

Sensitivity Analysis
Module
Analysing the importance of
each feature in selected ‘good’
feature combinations

v

the selections of various
numbers of features

!

Ranking features using their
sensitivity (importance) scores

Discovering the symbaolic expressions of the relationships between input features
and output features using Genetic Programming

Figure 3.1: General structure of the SGNO system

The SGNO system combines the advantages of GA, which are the stochastic search
in the search space and the evolution towards better solutions, together with the
strength of SA in the study of how the model responds to the changes in the
inputs (Saltelli et al., 2000). The SA provides further and detailed study on the
search spaces that have been explored by the GA. In this thesis, the terms ANNs

and Neural Networks (NNs) are used interchangeably. Figure 3.1 illustrates the

The SGNO system can be divided into three parts, the GA module, the SA module
and the NN module. The GA module defines the key skeleton of the entire system,

which is the same as the structure of a standard GA optimisation system. The NN

63

Sensitive Genetic Neural Optimisation

module plays the parts of (a) the fitness function in the GA module and (b) the
final modelling tool after the most efficient input subset is selected. Depending on
the design of the NN module, the SGNO can be used to optimise and solve either
regression modelling or classification problems. The SA module refines the
stochastic search in the search space by investigating how the NN model responds
to the variations in its inputs and thus identifying the variables that contribute the
most to the output variability. The input variables that contribute more variation
to the outputs are believed to be more influential than those variables that
generate less variation in the model and thus the model is more sensitive to these

variables (Saltelli et al., 2000).

3.2 SGNO Explained

The optimisation procedures of SGNO consist of three key steps including data
pre-processing, variable selection (optimisation) and system remodelling. The

details of SGNO are explained in the following sections.

3.2.1 Data Pre-processing

In practice, ANNs rarely operate on raw data. The raw data is usually processed
using initial pre-processing procedure(s) that transforms the raw data into
reasonably comparable ranges or eliminates some of the raw data that carry
redundant information (Tarassenko, 1998). For most applications, data
transformation is necessary as the raw data usually contains noisy variables

presented in different ranges. For ANNs, transforming the variables in the raw

64

Sensitive Genetic Neural Optimisation

data into similar or specific ranges allows the ANNs to learn more quickly and

perform better (Bishop, 2005).

In the simplest case, data transformation takes the form of a linear transformation,
such as Min-Max normalisation, expressed as function 3.1, and Mean-Standard

Deviation normalisation, expressed as function 3.2.

r X—-min (X)
" max(X)—min X)

(3.1)
where X represents the samples of a variable in the raw data and X’ represents the
transformed variable.
o Xow
X' == (3.2)

where X represents the samples of a variable in the raw data, u is the mean of X

and o represents the standard deviation of X.

3.2.2 Variable Optimisation

Variable optimisation is the most important step in SGNO, it employs three
techniques, which are GA, ANN and SA. These techniques are known as the core
modules in SGNO. The GA module controls the progress of the algorithm and
employs the NN module as its fitness function. The SA module quantifies the
importance of each available variable using the results generated in the GA
module. The main procedures in this variable optimisation step include variable
encoding, initial population generation, population evaluation, new population

generation and variable selection. Each is now considered in turn.

65

Sensitive Genetic Neural Optimisation

3.2.2.1 Variable Encoding

In the theory of evolutionary biology, evolution takes place by operations on
chromosomes, which hold the characteristics of the living subjects (Sivanandam
and Deepa, 2008). In GAs, the potential solutions are encoded as chromosomes,
which may be represented (encoded) in different formats depending on the type
of application. General encoding methods include bit strings and real numbers
(Reeves and Rowe, 2003). Real number encoding represents chromosomes as a
series of real numbers and is usually used when the GA is used to search for a
numerical solution. Bit string encoding, also known as binary encoding,
represents chromosomes as collections of binary digits (1 and 0) and it is
commonly used to solve optimisation and FS problems (Handels et al., 1999; Lu et

al, 2008).

In this case in SGNO, binary encoding is more appropriate as the binary values (0
and 1) are efficient and effective to determine the absence or presence of a certain
variable. The length of a chromosome, i.e. the number of binary digits in the bit
string, corresponds to the number of potential variables. Each bit in the
chromosome represents the absence or presence of a specific variable. In general,
1 indicates that the variable is selected (present) and 0 indicates that the variable

is not selected (absent).

3.2.2.2 Initial Population Generation

A GA begins with a population of potential solutions encoded in the chromosomes,

known as the initial population. The initial population is generally generated

66

Sensitive Genetic Neural Optimisation

randomly across the search space. The size of the initial population is crucial in a
GA. A small number of chromosomes may only search a small region of the
solution space and the GA may take a very long time to find a reasonable solution
and it is likely to lock on a local minimum or maximum. A large population of
chromosomes covers too much of the search space. It often lacks genetic diversity
and may require a large number of generations to find high performance
chromosomes (Cox, 2005). The population size is generally dependent on the
complexity of the problem and there is no broadly agreed ‘optimal’ number (Cox,
2005; Sumathi, 2010). Sivanandam and Deepa (2008) summarised that a
population of around 100 chromosomes is frequently used. Sumathi (2010)
suggests that a larger number would be useful but demands excessive costs of
memory and time. In SGNO, a rule of thumb suggested by Cox (2005), which
calculates the minimum size of initial populations based on the number of
variables and states, is employed. The formula is expressed in 3.3 and says that
the size should be at least as large as five times the number of variables or half the

number of possible states, whichever is smaller.
. 1
p = min (517,5 s) (3.3)
where p is the estimate of the population size, v is the number of variables and s is

the number of possible states in the search space.

For example, a GA containing 10 variables in binary encoding has 210=1024

possible states and thus the suggested initial population size should be at least

1
p = min (5 X 10,5 x 1024) — min(50,512) = 50

67

Sensitive Genetic Neural Optimisation

3.2.2.3 Population Evaluation

Each chromosome in the population is evaluated by a fitness function and a
goodness-of-fit or performance measure is associated with the chromosome. In
SGNO, Multi-Layer Perceptrons (MLPs) are used to determine the fitness of
chromosomes. Instead of generating goodness-of-fit value, MLPs produce an error
measure for each chromosome. The details of MLPs are discussed in the following

sub-sections.

3.2.2.3.1 MLP Architecture

As discussed in section 2.2.5, the characteristic features of an MLP include the
number of inputs and outputs, the number of hidden layers, the number of hidden
neurons in each hidden layer, the weights of the neurons and the activation

functions for the neurons.

In SGNO, the number of inputs is determined by the number of ON-bits (digit 1) in
the binary chromosome and the number of outputs depends on the application. In
regression problems, e.g. the applications presented in chapters 4 to 7, there is
usually only one output. For some classification problems, the number of outputs
may be more than one and each output indicates the association with a certain
type of class/group. The number of hidden layers is generally difficult to
determine a priori. The literature suggests that one hidden layer is adequate to
approximate any function with arbitrary accuracy (Ghaffari et al, 2006;
Moghaddam et al., 2010; Tarassenko, 1998). Therefore, MLPs of one hidden layer

are used.

68

Sensitive Genetic Neural Optimisation

The number of neurons in the hidden layer is very import and hard to determine.
[t affects the training time and generalisation of the MLP. A large number of
hidden neurons may allow the ANN to memorise, also known as overfit, the
pattern it has been trained with, whereas too few hidden neurons may waste a
great deal of training time in order to try to generalise. There is no general rule
for determining the optimal number of hidden neurons. The most popular
approach to finding the optimal number of hidden neurons is by trial and error
(Ahmed, 2005), which is an experimental method of reaching a satisfactory
solution by trying out various means until error is eliminated or sufficiently
reduced. However, a trial and error approach is impractical in SGNO as it
increases the complexity of the system dramatically. Therefore, SGNO employs a
simple rule of thumb approach, which dynamically determines the numbers of
hidden neurons based on the numbers of inputs and outputs instead of assigning
a fixed number of neurons to all ANNs. It halves the sum of the number of inputs

and outputs as expressed in equation 3.4.
1
H = [E (Nin + Nout)] (3.4)
where [] is the ceiling operator, and Ni, and N, are the numbers of inputs and

outputs respectively.

The activation functions of the neurons are determined based on the type of the
application. In general, sigmoid functions are commonly used in forecasting and
regression, while step functions are used for classification. Details of activation

functions are discussed in section 2.2.2.1. The commonly used weights

69

Sensitive Genetic Neural Optimisation

initialisation method, which generates random numbers between -1 and 1, is

employed to initialise the neurons in MLPs (Sumathi, 2010).

3.2.2.3.2 Chromosome Evaluation

Evaluation of a chromosome involves training the MLP with a certain subset of
the available data and testing the trained MLP with the rest of the data, which has
not been ‘seen’ by the MLP. However, overfitting may occur if the MLP is trained
too many times, which leads to poor generalisation and test results. To overcome

this problem, SGNO performs multi-fold cross-validation with early stopping.

To realise this, the data is randomly partitioned into 5 approximately equal-sized
groups and these data groups are used for training (3 groups), validation (1 group)
and testing (1 group) in turn (MathWorks, 2010; Setiono, 2001). Figure 3.1

illustrates the five-fold cross-validation.

oecOo---000O O

oS <

Training Validation Testing

HEHE
J111

Figure 3.2: Five-fold cross-validation

70

Sensitive Genetic Neural Optimisation

The training subset is used to train the NN, i.e. updating the weights in neurons.
The validation subset is used to determine when to stop training (early stopping)
and it does not contribute to the weights update in neurons. The testing subset is
used to measure the performance of the trained NN by evaluating the data in the

subset.

During the training process, the trained NN is monitored continually by keeping a
close watch on the validation error. Experience suggests that the training error
and validation error decrease at the early stage of training. After a certain number
of training cycles, the training error still decreases while the validation error
stops decreasing or even starts to rise. It is a good indicator as the start of
overfitting (over training) and training should stop. Hence the stopping criterion
should be the point at which the minimum validation error is reached (Prechelt,

1998; Tarassenko, 1998). Figure 3.2 illustrates the early stopping scenario.

Early-stopping point
1

Error

Training error

L1
Mo. of training cycles

Figure 3.3: Early stopping scenario

71

Sensitive Genetic Neural Optimisation

Finally, the performance of the trained NN is measured using the test subset. The
NN takes the input variables from the testing subset and generates outputs. The
mean squared error (MSE) between these generated outputs and the
corresponding expected outputs in the testing subset are then calculated as the

assessment of fitness.
1
MSE = ﬁZ?’ﬂ()’i —-y')? (3.5)
where N is the number of input-output pair in the test subset, y; represents the

output generated by the NN and y’; is the corresponding expected output.

In the case of five-fold cross-validation, five MLPs are required, one for each of the
possible sequential combinations of the training, validation and testing groups.
The mean of the MSEs from the five MLPs is determined and used as the fitness of

the chromosome.

3.2.2.4 New Population Generation

After evaluating all the chromosomes in the current generation, a new generation
of chromosomes will be generated based on the fitness values using genetic
operators, such as selection, crossover and mutation. Regeneration and
evaluation are repeated until a predefined termination criterion is met.
Commonly used termination criteria include fixed maximal number of evolved

generations or the attainment of an acceptable level of fitness (Sumathi, 2010).

Selection is an important operator in GAs, it chooses the parents from the

chromosomes in the current generation based on their fitness to produce

72

Sensitive Genetic Neural Optimisation

offspring chromosomes in the new generation. Common selection methods
include stochastic uniform selection and roulette wheel selection. In SGNO,
stochastic uniform selection is used as it provides zero bias, which means an
individual’s selection probability equals its expected number of trials, and
minimum spread, which is the minimum number of trials in selection that
theoretically permits zero bias (Baker, 1987; Zalzala and Fleming, 1997). It lays
out a line in which each chromosome in the generation corresponds to a portion
of the line and the length of that portion is proportional to the scaled fitness value.
A pointer scans along the line in equal steps. At each step, the chromosome
corresponding to the section it lands on is selected as a parent. Chromosomes
with higher fitness values have better chances to be selected. Figure 3.3 illustrates

stochastic uniform selection.

point 1 point 2 point 3 point 4 point 5 point &

individual I 1 2 3 4 5] 71¢8g

random
start point

Figure 3.4: Stochastic uniform selection operation

Parent chromosomes will then be used to generate offspring. There are four
common crossover methods as discussed in section 2.3.1.2. In SGNO, the N-point
(scattered) crossover is used as it is the most flexible crossover operator and all
other crossover operators can be considered as special cases of this operator.

New chromosomes are generated by swapping the bits at a number of random

73

Sensitive Genetic Neural Optimisation

positions of the parent chromosomes. Figure 3.5 illustrates the operation of N-

point crossover.

Parent 1 [O[1B 2B 2]o] 2 1] [o[[l :[l2[o[: 1] Offspring 1
parent 2 [1[oJl[oJlo[1]ofl[o] (1o ofo]1[o[f[o] Offspring 2

Mask |o|lo|1]o]1|o]o[o]1]0]

Figure 3.5: N-point (scattered) crossover

In general, a small number of chromosomes with the highest fitness in the
generation are guaranteed to be passed to the next generation without
modification to ensure the best characteristics are ‘preserved’ in the new
generation. These are called the elite chromosomes or elite children (Haupt and

Haupt, 2004; Sumathi, 2010).

3.2.2.5 Variable Selection

After the termination of the GA process, a large number of chromosomes and their
fitness for the problem will be available. Among them, those chromosomes with
fitness in the upper quartile range in a generation are selected to carry out
detailed study, the SA analysis, of the importance of the variables in those

chromosomes.

3.2.2.5.1 Sensitivity Analysis (SA) of High Fitness Chromosomes

The SA is a group of statistical evaluation methods in mathematical modelling. It
helps to determine how the changes in the values of parameters influence the

outputs of the model, i.e. how ‘sensitive’ the model is to changes in parameters.

74

Sensitive Genetic Neural Optimisation

The sensitivity of an input variable or parameter is an indication of the effect that
a variation of that input will have on the output. An input variable of higher
sensitivity will result in a greater variation of the output and vice versa. In general,
the variables of higher sensitivity would draw higher level of interest and thus are
more favourable than those of lower sensitivity (Saltelli et al., 2000; Saltelli et al.,

2008).

In SGNO, the sensitivity of an input variable is defined as its impact on the outputs
when it is replaced by arbitrary values instead of fixed values at a number of
discrete levels as in the original SA. The SA analysis is implemented using the

Monte Carlo Simulation (MCS).

3.2.2.5.2 Monte Carlo Simulation (MCS)

The MCS is a powerful stochastic technique which has been applied in many fields
of mathematics, physics and engineering. It is a method that uses random
processes or random numbers and performs statistical sampling experiments to
find approximate solutions to problems. The key characteristic of MCS is the
simulation process based on random numbers (Dimovivan, 2008; Shonkwiler and

Mendivil, 2009).

The MCS is usually used to simulate complicated problems which are difficult and
time-consuming to analyse or the problems have some components behaving in a
random way. In SGNO, the MCS used to estimate the sensitivity of a particular

variable in a given chromosome is summarised as follows:

75

Sensitive Genetic Neural Optimisation

Step 1: for a chromosome of M selected variables, a group of M+1 random
numbers is generated and each random number is within the domain of its
corresponding variable in the chromosome. The extra random number
represents an arbitrary value of the variable of interest and it is within the

domain of that variable.

Step 2: the group of random numbers is evaluated using the following equation

and the generated value is stored at the end of a numeric list.

Y Cerxz, X1, XX i 1o X M) =Y (X1,X 2,00 X i 1 XM 41X i 150X M)
I = (3.6)
XM+1—%Xi

where X, Xz,..., xu represent the random numbers for those variables in the
chromosome, x; is the variable of interest, xu-: is the extra random number to

replace x;, and Y represents the trained NN, which has M input variables.

Step 3: repeat step 1 and step 2 for a fixed number of cycles, say 10 or 20, and

then calculate the mean of the values stored in the numeric list.

Step 4: repeat all the previous steps until the mean values converge. Then the
latest mean value, which is calculated using a large number (hundreds or

thousands) of I, is used as an approximation of the sensitivity of the ith variable.
These 4 steps are repeated to approximate the sensitivities of all the variables in

the chromosome. Hence the variables of higher sensitivity scores are of higher

importance as they generate higher variation in the outputs.

76

Sensitive Genetic Neural Optimisation

3.2.2.5.3 Variable Ranking

By repeating the MCS described in the previous section, 3.2.2.5.2, a sensitivity
matrix containing all the sensitivity scores of all the selected chromosomes is
produced. The rows in the sensitivity matrix represent those selected
chromosomes and each column holds the sensitivities of a particular variable in
different chromosomes. The global sensitivity score (the mean sensitivity score)
of a variable will be calculated by taking the mean of its sensitivity scores in all

chromosomes. This can be expressed as the following equation:
. 1
St =215 (3.7)
where S% is the global sensitivity score of the ith variable, N is the number of

chromosomes in the sensitivity matrix and S;; is the sensitivity score of the ith

variable in the jth chromosome.

Based on the global sensitivity scores, the variables can be ranked. The variables
with higher global sensitivity scores are preferable over those of lower scores as
they are considered more important/influential to the model. It is possible that
some of the variables are missing, i.e. they are not present in the selected
chromosomes. These variables will not be considered as they are ‘eliminated’ by

the GA process.

3.2.3 System Remodelling using MLP

In SGNO, MLPs are not only the evaluation functions during the GA process but
they are also used as the modelling tool to generate the efficient solutions using
the optimised variables. Following the determination of variables’ importance, the

77

Sensitive Genetic Neural Optimisation

performance of SGNO is evaluated by MLPs taking various numbers of input
variables with the highest global sensitivity scores. The architectures of the MLPs
used in this evaluation are estimated in the same way as the MLPs used as the

fitness functions in the GA process (see section 3.2.2.3.1 for details).

As discussed previously in section, 2.2.5, the key features that affect the
performance of MLPs include the number of hidden layers, the number of neurons
in each hidden layer, the initial weights and activation functions of the neurons,

the number of training cycles and the training functions.

It is well-known that an MLP without a hidden layer is only capable of
representing linearly separable functions or decisions; one hidden layer is
generally sufficient for approximating any functions containing continuous
mapping from one finite space to another; an extra hidden layer helps to model
any functions of any shape including discontinuities. In addition, there is no

theoretical reason to use MLPs of more than two hidden layers (Heaton, 2005).

There is also no clear determination of the numbers of hidden neurons to be used
in an MLP of best performance. However there are many rules-of-thumb methods
to approximate the number of hidden neurons. Some of them are summarised as
follows (Heaton, 2005):

® The number of hidden neurons should be between the input layer size and

the output layer size.

Noutputs < Nhidden < Ninputs

78

Sensitive Genetic Neural Optimisation

® The number of hidden neurons should be two thirds of the input layer size

plus the size of the output layer.

Nhigden = §Ninputs + Noutputs

® The number of hidden neurons should be no more than twice the input layer

size.

Nhidden < 2Ninputs

These rules-of-thumb methods are guidance only. To find the most appropriate
architecture for a particular problem, the selection is normally made by trial and
error (Heaton, 2005). In SGNO, the architecture of the best performance is
achieved by applying a ‘forward’ selection which is an iterative operation that
gradually increases the number of hidden neurons in the MLP until either an
acceptable error level is achieved or increasing the number of neurons would not
improve the performance further. Again, the five-fold cross-validation with early
stopping criterion and random initial weights in the neurons are applied (Setiono,

2001).

3.2.4 Symbolic Rule Discovery using Genetic Programming

Genetic Programming (GP) is an extension of GA, differing principally in its
operators and representations. In GP, the individuals (chromosomes) are
expressions, such as a piece of computer program or an equation, instead of
binary strings. One of the advantages of Genetic Programming (GP) is the tree-
structured representation of chromosomes, which is particularly useful to

generate tree-based solutions, such as mathematical expressions and decision

79

Sensitive Genetic Neural Optimisation

trees. In SGNO, a specially tuned GP method using Multiple-Branch Encoding
(MBE) is employed to find an appropriate and concise mathematical expression
for the best performing NN discovered. The key features of the GP method are

discussed in the following subsections.

3.2.4.1 Multiple-Branches Encoding

MBE was proposed by Rodriguez-Vazquez and Oliver-Morales (2003) and aims to
produce simple syntax expressions of good quality avoiding the problem of
oversized expressions, which is also known as bloat (Rodriguez-Vazquez and
Oliver-Morales, 2003; Rodriguez-Vazquez and Oliver-Morales, 2004). In MBE,
instead of using a single tree structure as a chromosome, the weighted sum of a
group of single trees (multiple branches) and a constant value is used as the MBE

chromosome. Figure 3.4 illustrate the construction of an MBE chromosome.

Figure 3.6: MBE chromosome example

The mathematical expression for the MBE chromosome is as follows:

Y = CO + Zn BiCi (38)

80

Sensitive Genetic Neural Optimisation

where Y represents the output, Cy is the constant value, B; is the ith branch, C; is
the weight of the ith branch, F; is the function expressed in the ith branch, and X

represents all the inputs.

The weight for each branch is determined using multiple linear regression (MLR)
based on the set of training data and the performance (fitness) of the MBE

chromosome is measured using the test data set.

Compared with the conventional GPs, MBE-GP can be more effective theoretically
to deliver an acceptable solution due to the encoding method. Instead of relying
on the proposed individual chromosome, MBE-GP establishes connections (the
weight compositions) between tree-structured branches, which are used as
individual chromosomes in conventional GPs. Thus, MBE-GP is more likely to find

a solution.

3.2.4.2 MBE Population Initialisation

In this MBE-GP, a syntax tree is constructed using input variables and operators in
an operator pool, i.e. +, -, *, /, etc. Instead of using MBE chromosomes of fixed
length (the number of trees in a chromosome) proposed by Rodriguez-Vazquez
and Oliver-Morales (2003), the length of a chromosome is dynamic up to an upper
limit. The depth of the trees in chromosomes is limited to 3 in the initial
population i.e. there are at most three operators and four terminals (variables) in

a tree.

81

Sensitive Genetic Neural Optimisation

It is not hard to imagine that the problems using GP are generally more
complicated than those applying GA. The GA based optimisation using binary
string representations attempts to find the ‘optimal’ combination of binary digits
in chromosomes, while GP chromosomes consists not only of the input variables,
but also the available mathematical operators and the syntax trees that represent
the potential relationships. Hence, the population size of GP is considerable,

usually several hundred or thousand (Iba et al., 2009; Poli et al., 2008).

Similar to the GA process discussed previously in section 3.2.2, the initial
population of this MBE-GP is generated randomly. Again, the estimate of
population size is a problem. There is no agreed way to estimate an appropriate
number and researchers choose population sizes up to several thousand at their
own wills (Koza, 1992; Xie et al., 2007). In the MBE-GP proposed here, the
population size is determined using an extension of Cox’s formula for GA
population size estimation (see equation 3.3). Thus, the population size is
determined using the following expression:

p=5*v=*op (3.10)
where p is the population size, v is the number of inputs (terminals) and op is the

number of operators.

After generating the initial population, all chromosomes will be evaluated and a

new generation will be produced using the evaluation results.

82

Sensitive Genetic Neural Optimisation

3.2.4.3 Chromosome Evaluation

As expressed in Equations 3.8 and 3.9, each chromosome represents a linear
composition of a group of functions, which can be linear or non-linear. The
coefficient (weight) of each function is not determined when the chromosome is
produced. Hence the evaluation of a chromosome takes two steps, which are
coefficient determination using MLR, and testing. Five-fold cross-validation is
used in this evaluation as well. Instead of dividing the data set into three groups,
which are training (60%), validation (20%) and testing (20%), GP chromosome
evaluation requires only two groups, which are training (80%) and testing (20%).
The training data set is used to determine the coefficients in the chromosome and

the testing data set is used evaluation its performance.

3.2.4.4 New Population Generation

The main genetic operators, crossover and mutation, in MBE-GP are defined in a
similar way as those in GA. The crossover between two MBE chromosomes is
performed on the basis of branches, a subset of trees (branches) in each
chromosome is randomly selected and the selected branches are crossed over in
the traditional way. The mutation operation can be performed at any level
(individual branch or sub-branch). The selected tree/sub-tree in a chromosome
would be replaced by a newly generated tree/sub-tree up to the current
maximum depth of trees (Ghanea-Hercock, 2003; Rodriguez-Vazquez and Oliver-

Morales, 2003).

83

Sensitive Genetic Neural Optimisation

In this MBE-GP, there are two different methods to generate the new population,
i.e. low level generation and high level generation. Low level generation is similar
to the generation method used in GAs as discussed in section 3.2.2.4. It generates
offspring by applying crossover and mutation operators to the chromosomes
selected using stochastic uniform selection (Banzhaf et al., 1998; Koza, 1992). In
addition, a small group of chromosomes of high fitness (elite group) is passed to

the new generation without modification.

The role of high level generation is to increase the complexity (depth of the trees)
of the chromosomes every time it is applied. This should only be applied if an
acceptable solution has not been discovered after a certain number of generations,
say 50. High level generation selects a relatively large portion of the
chromosomes, say 30%, of high fitness in the populations that have been explored
so far and passes them to the new population without modification. New
chromosomes with higher complexity are generated to fill the new population, e.g.
assuming the current tree depth limit is 4 and the new chromosomes would

contain branches up to 5 levels.

These two generation methods work together to gradually expend the search
space and look for the ‘optimal’ solution. The stopping criterion of this MBE-GP
would be the discovery of an acceptable solution, or that a certain number of
generations have been evaluated, or the chromosomes reach a certain level of
complexity (overcomplicated), in which case the MBE-GP fails to derive a solution.
In the case that an acceptable solution cannot be found after a few trials,

modifications can be made to the population size and the complexity of branches

84

Sensitive Genetic Neural Optimisation

to cover a larger search space. Figure 3.5 illustrates the general operations of the

High level generation

MBE-GP.
Population
Imitialisation
r
Chromosomes |
Evaluation
Low level generation
Terminate Acceptable Selection,
solution found? Crossover,
Mutation

Selection,
Increase complexity,
Random regeneration

F Y

eneration limi
reached for current
complexity?

Mo

F 3

Figure 3.7: MBE-GP structure

3.3 Benchmarking Techniques

In order to assess the relative performance of SGNO, several commonly used

dimensionality reduction techniques are implemented in this thesis to benchmark

the SGNO. The selected benchmarking techniques include Principal Component

Analysis (PCA), Forward Feature Selection (FFS), Backward Feature Selection

(BFS) and the Genetic Neural Mathematical Method (GNMM). The following

sections explain these benchmarking techniques in turn.

85

Sensitive Genetic Neural Optimisation

3.3.1 Principal Component Analysis (PCA)

PCA is one of the most famous mathematical techniques widely used in data
dimensionality reduction. It performs vector space transformation on the given
data set to rearrange the data into a new coordinate system (Dunteman, 1989).
The transformed data is the linear combinations of the original data. In the new
coordinate system, the number of coordinates is generally equals to the original
coordinate system and all coordinates are orthogonal to each other. The new
coordinates are ordered so that the first coordinate accounts for most of the
variations in the original data; the second coordinate explains the maximum
variances for the residual data; the third coordinate explains the majority of the
variation for the next residual data and so on. Hence, the first coordinate is
considered to be the most important coordinate, known as the first principal
component (PC); the second coordinate is called the second PC, and so on.
Generally speaking, a certain number of PCs, less than the number of coordinates
in the original data, are enough to account for most of the variance in the original
data. This is to say that PCA can transform a high dimensional data set to a lower
dimensional space without losing significant amounts of information when

compared with the original data set (Dunteman, 1989; Zhang et al., 2006).

In general, a PCA transformation can be performed using the following 4 steps
(assuming X is an n-by-p matrix, where n is the number of variables and p is
number of records in each variable):

Step 1: subtract the mean value

X'=x-X (3.11)

Where X is an n-by-1 vector containing the mean of each variable in data set X,

86

Sensitive Genetic Neural Optimisation

and X’ is the new data set.
Step 2: calculate the covariance matrix

A=covX)=X'X")/(p-1) (3.12)
Where S represents the covariance matrix, X7 is the transpose of matrix X’ and p
is the size of each variable.

Step 3: calculate the eigenvectors and the eigenvalues of the covariance matrix

Ax = AMx (3.13)
(A-AD)x =0 (3.14)
det(A—AI) =0 (3.15)

Where A is the square covariance matrix derive in step 2, [is the identity matrix, A
is a vector of eigenvalues and x is the matrix of eigenvectors.
Step 4: reorder the eigenvectors based on their associated eigenvalues, from the

highest to the lowest, which represent the explained variance of the eigenvectors.

3.3.2 Forward Feature Selection (FFS) and Backward Feature Selection (BFS)

FFS and BFS are two widely used conventional FS techniques. These are also
known as the sequential methods as they both select features/variables one by
one. FFS starts with an empty selection list and repetitively adds features to the
list. At each step, all the variables that are not in the list are tested individually
with the variables already in the list and the one that generates the lowest error is
added to the list. This process is repeated until all features are included in the list
or when certain predefined conditions (stopping criteria) are met, such as
acceptable level of accuracy or limitation on the number of selected variables. In

the case where all the variables are added to the list, the order in which the

87

Sensitive Genetic Neural Optimisation

variables are added to the list could be considered to be the preference order of
the variables and the variables added at earlier times are more preferable than

the latter ones. Table 3.1 illustrates the general routine of the FFS (Rub and Kruse,

2010).
Table 3.1: FFS algorithm
S=1] {solution list}
F = features {available features list}
REPEAT
E=1] {temporatory evaluation results}
FORj=1TO length(F)
f=F[j] {select jth feature}
Sj=1[S, f] {add jth feature to current solution}
M = model(Sj) {create a regression model}
Ej = evaluate(M) {evaluate the regression model}
E = [E, Ej] {save evaluation result}
END FOR
S =[S, Flmin(E)]] {add the best feature to solution list}
F = F-F[min(E)] {remove the best feature from features list}

END REPEAT IF min(E)<threshold OR F=[] OR length(S)>threshold
RETURN S

On the other hand, BFS tries to solve problems from another direction; it starts
with a list containing all the variables and iteratively removes variables from the
list. At each step, the variables in the list are tested and the one that produces the
lowest error when eliminated is removed from the list. This process is repeated
until the following conditions are met:

1. All variables are removed, or

2. A certain level of estimation error is reached, or

3. A certain number of variables are eliminated.

Unlike the FFS, the variables selected to be eliminated at early times in BFS are

considered unfavourable. Table 3.2 illustrates the procedures in BFS (Jain and

88

Sensitive Genetic Neural Optimisation

Zongker, 1997; Karagiannopoulos et al., 2007; Pudil et al., 2002; Rub and Kruse,

2010).
Table 3.2: BFS algorithm
S=1] {solution list}
F = features {available features list}
REPEAT
E=1] {temporatory evaluation results}
FOR j=1TO length(F)
f=F[j] {select jth feature}
Fi=F-f {remove jth feature from feature list}
M = model(Fj) {create a regression model}
Ej = evaluate(M) {evaluate the regression model}
E = [E, Ej] {save evaluation result}
END FOR
S = [F[min(E)], S] {add the worst feature to solution list}
F = F-F[min(E)] {remove the worst feature from features list}

END REPEAT IF min(E)>threshold OR F=[] OR length(S)>threshold
RETURN S

In this thesis, the implementation of the FFS and BFS uses NNs as the regression
models, while the FFS and BFS only set out the routine of the selection procedures.
These NN models employ the same architectures as the NN module in SGNO as
discussed previously in section 3.2.2.3.1, e.g. single hidden processing layer and
the number of hidden neurons is estimated by halving the total number of inputs

and outputs of the NN model.

3.3.3 Genetic Neural Mathematical Method (GNMM)

GNMM is a general purpose intelligent FS technique developed by Yang (2007).
The technique is implemented using GAs and ANNs. In GNMM, the preferences of
variables are determined by their appearance percentages during the GA process.

The variables of higher appearance frequencies are more preferable than those of

89

Sensitive Genetic Neural Optimisation

lower appearance frequencies. The implementation details were discussed in

section 2.3.4.

3.4 Theoretical Computational Complexity

The efficiency of an algorithm is generally measured by its computational
complexity. In the literature, this concerns determining an expression for the
number of steps (operations) needed to finish the task as a function of the
problem size. As the exact step count is generally difficult to measure and the
complete expression might be hard to interpret, instead of obtaining the exact
step count, one attempts only to get asymptotic bounds, denoted using the Big-O

notation, on the step count (Sait and Youssef, 1999; Yang, 2008).

In the case of this work, the conventional Big-O notation, which indicates the
upper bound of operational steps, is inappropriate as GAs and ANNs are both non-
deterministic systems, in which the intermediate processing states and the
outputs cannot be predicted. Thus, instead of representing the efficiency of an
algorithm using the number of operational steps, a simple notation method, which
measures the number of ANN training processes, is used to indicate the efficiency
of an algorithm. This notation method is feasible as ANN is the key functioning
component to evaluate the performance of the proposed solutions (subsets of
input variables) in SGNO and all the benchmarking techniques, including BFS, FFS,
GNMM and PCA. ANN training is probably the most time consuming operation in
the implementation of all these techniques, as it involves repetitive updates of the

hidden neurons’ weights, which are represented as matrices in complexly

90

Sensitive Genetic Neural Optimisation

structured data blocks. In addition, the number of update cycles in the training
process is unpredictable (Blum and Rivest, 1992; Wang, 1995). In modern
implementations of ANNs, the training process is usually limited by three
conditions to ensure that it can terminate within acceptable times and thus these
conditions can be considered as the upper bounds of ANNs’ complexities. These
conditions are (MathWorks, 2010):

1. The total number of training cycles, or

2. The detection of convergence, or

3. An acceptable level of testing error.

In BFS, FFS, GNMM, PCA and SGNO, the ANN components are of similar
architectures and are trained and evaluated using the identical five-fold data set.
All these ANN components only have a single hidden processing layer; the
number of hidden neurons in BFS, FFS, PCA and SGNO is estimated by halving the
numbers of inputs and outputs, while GNMM employs fixed number of hidden
neurons, which is estimated by halving the number of all available input variables.
Hence, the ANNs in these techniques are likely to have similar training

complexities.

As discussed in section 3.2, SGNO employs a GA to outline the general structure of
the algorithm and uses ANNs as the fitness functions to evaluate the
chromosomes. Hence, the number of ANN trainings involved in the SGNO process
is dependent on the number of GA chromosomes evaluated. The number of ANN
trainings can be expressed as:

C = PopSize » GenSize = 5 * N * GenSize (3.10)

91

Sensitive Genetic Neural Optimisation

where PopSize is the size of a GA population, GenSize is the number of GA

generation evolved and N is the total number of variables to be optimised.

As GNMM was structured in the same way as SGNO, the number of ANN trainings

involved is of similar level as SGNO and thus Equation 3.10 applies to GNMM.

BFS and FFS are of similar levels of complexity. Although they work towards a
solution from distinct directions, the total number of ANN evaluations in these
two techniques is the same. They both start with a number of ANN evaluations
which equals the total number of variables in the first processing cycle; in the
second processing cycle, the number of ANN evaluations is reduced by 1 as one of
the variables is either removed or added to the solution list; in the third
processing cycle, the number of ANN evaluations is reduce further by 1, and so on.

Hence, the total number of ANN evaluations in BFS and FFS can be expressed as:

__ N(N+1)

¢ 2

(3.11)

where N represents the total number of variables.

In PCA benchmarking, ANNs are only used to evaluate the performance of various
numbers of PCs. Hence the total number of ANN evaluations is the same as the

number of all available variables, which can be expressed as:

C=N (3.12)

92

Sensitive Genetic Neural Optimisation

Based on the derived expressions 3.10, 3.11 and 3.12, PCA is no doubt the most
efficient technique; BFS and FFS are more expensive than PCA. The complexities
of GNMM and SGNO are not directly comparable to BFS, FFS and PCA as their
complexities are dependent on the number of generations as well. However, in
the case of applications presented in Chapters 4 to 7, in which the GA usually
evolves for 50 generations and the total number of variables is generally no more

than 50, BFS and FFS are more efficient than GNMM and SGNO.

3.5 SGNO Computation Times

The implementation of SGNO and the examinations of its feasibility together with
the benchmarking techniques were all completed using MATLAB® 2009a on a PC
with an Intel® Core at 2.13 GHz, 4GB memory and a 150GB 3.5” standard hard
drive running Microsoft® Windows XP service pack 3. Table 3.3 summarises the
computation times of SGNO on four different types of applications. The details of

the applications will be explained in following chapters.

Table 3.3: Computations of SGNO

Number of
Application Data Size Features Computation Time
Tomato Yield Prediction 884 50 19.50 hrs
Longitudinal Dispersion
Coefficient Prediction 127 20 2.26 hrs
Wave OV(.EI‘t.Opplng 5277 14 72.52 hrs
Prediction
Industrial Production
Growth Prediction 493 50 22.35 hrs

93

Sensitive Genetic Neural Optimisation

Based on the numeric entries in Table 3.3, direct relationships between
computation times and dataset characteristics (data size and number of features)
are not observable. The trend of numeric entries in the bottom 3 rows suggests
that the computation time is approximately proportional to the product of the
data size and the number of features. However, the first numeric entry opposes
this. Hence the actual computation time may depend on the size of the dataset, the
number of features to be optimised and the complexity of the problem itself,
which is hard to measure but it determines how quickly NNs can learn from the

dataset.

3.6 Conclusion

In this chapter, the general procedures of SGNO have been explained in detail. The
SGNO consists of three key modules, which are the GA module, the NN module
and the SA module. The GA module controls the progress of the algorithm and
employs the NN module as its fitness function to evaluate the performance of
proposed chromosomes, which represent potential solutions. In the NN module,
five-fold cross-validation with early-stopping is used in the training process to
prevent the overfitting problem. After the execution of the GA module, the SA
module takes a quarter of the population from each GA generation and calculates
the sensitivity measures of the selected variables in those chromosomes. The
global sensitivity measure of a variable is derived by taking the average of its
sensitivity measures in the chromosomes. The importance or influence of a
variable is determined by its global sensitivity measure and a variable with higher
value is considered more important/influential than those with lower values.

94

Sensitive Genetic Neural Optimisation

Compared with 4 benchmarking techniques, which are BFS, FFS, GNMM and PCA,
SGNO has a similar complexity level to GNMM in terms of the number of ANN
trainings. PCA is the most efficient among these techniques. The complexities of
BFS and FFS are more efficient than GNMM and SGNO in the case of applications

presented in chapters 4 to 7 in this thesis.

95

Sensitive Genetic Neural Optimisation

References

Ahmed F.E. (2005) Artificial neural networks for disgnosis and survival prediction
in colon cancer. Molecular Cancer 4.

Baker J.E. (1987) Reducing bias and inefficiency in the selection algorithm, 2nd
International Conference on Genetic Algorithms. pp. 14-22.

Banzhaf W., Nordin P., Keller R.E., Francone F.D. (1998) Genetic Programming, An
Introduction: On the Automatic Evolution of Computer Programs and Its
Applications Morgan Kaufmann.

Bishop C.M. (2005) Neural Networks for Pattern Recognition Oxford University
Press, New York.

Blum A.L., Rivest R.L. (1992) Training a 3-Node Neural Network is NP-Complete.
Neural Networks 5:117-127.

Cox E. (2005) Fuzzy Modeling and Genetic Algorithms for Data Mining and
Exporation Morgan Kaufmann, San Francisco.

Dimovivan T. (2008) Monte Carlo Methods for Applied Scientists World Scientific
Publishing.

Dunteman G.H. (1989) Principal Components Analysis SAGE Publications.

Ghaffari A., Abdollahi H., Khoshayand M.R., Bozchalooi I.S., Dadgar A., Rafiee-
Tehrani M. (2006) Performance comparison of neural network training
algorithms in medeling of bimodal drug delivery. International Journal of
Pharmaceutics 327:126-138.

Ghanea-Hercock R. (2003) Applied evolutionary algorithms in Java Springer-

Verlag.

96

Sensitive Genetic Neural Optimisation

Handels H., Rob T., Kreusch]., Wolff H.H., Poppl S.J. (1999) Feature selection for
optimized skin tumor recoginition using genetic algorithms. Artificial
Intelligence in Medicine 16:283-297.

Haupt R.L., Haupt S.E. (2004) Practical Genetic Algorithms Wiley-Interscience,
New Jersey.

Heaton J.T. (2005) Introduction to Neural Networks with Java Heaton Research.

Iba H., Hasegawa Y., Paul T.K. (2009) Applied Genetic Programming and Machine
Learning CRC Press.

Jain A.K., Zongker D. (1997) Feature Selection: evaluation, application and small
sample performance. IEEE Transactions PAMI 19:153-158.

Karagiannopoulos M., Anyfantis D., Kotsiantis S.B., Pintelas P.E. (2007) Feature
selection for regression problems, HERCMS'07, Athens University of
Economics and Business.

Koza J.R. (1992) Genetic Programming, On the Programming of Computers by
Means of Natrual Selection The MIT Press.

Lu].J., Zhao T.Z., Zhang Y.F. (2008) Feature selection based-on genetic algorithm
for image annotation. Knowledge-Based Systems 21:887-891.

Marsland S. (2009) Machine Learning, An Algorithmic Perspective CRC Press.

MathWorks. (2010) MathWorks Matlab Documentation: Neural Network Toolbox,
MathWorks.

Moghaddam M.G., Ahmad F.B.H., Basri M., Rahman M.B.A. (2010) Artificial neural
network modeling studies to predict the yield of enzymatic synthesis of
betrlinic acid ester. Electronic Journal of Biotechnology 12:1-12.

Poli R., Langdon W.B., McPhee N.F. (2008) A Field Guide to Genetic Programming

Lulu.

97

Sensitive Genetic Neural Optimisation

Prechelt L. (1998) Automatic early stopping using cross validation: quantifying
the criteria. Neural Networks 11:761-767.

Pudil P., Novovicova], Somol P. (2002) Feature selection toolbox software
package. Pattern Recognition Letters 23:487-492.

Reeves C.R., Rowe].E. (2003) Genetic Algorithms: Principles and Perspectives - A
Guide to GA Theory Kluwer Academic Publishers, Dordrecht.

Rodriguez-Vazquez K., Oliver-Morales C. (2003) Divide and Conquer: Genetic
Programming Based on Multiple Branches Encoding, in: C. Ryan, et al.
(Eds.), Genetic Programming, Springer Berlin / Heidelberg. pp. 218-228.

Rodriguez-Vazquez K., Oliver-Morales C. (2004) Multi-branches Genetic
Programming as a Tool for Function Approximation, Genetic and
Evolutionary Computation - GECCO 2004, Springer Berlin / Heidelberg. pp.
719-721.

Rub G., Kruse R. (2010) Feature selection for wheat yield prediction, in: M.
Bramer, et al. (Eds.), Research and Development in Intelligent Systems
XXVI, Springer-Verlag, London.

Sait S.M., Youssef H. (1999) Iterative Computer Algorithms with Applications in
Engineering IEEE Computer Society Press.

Saltelli A., Chan K., Scott E.M. (2000) Sensitivity Analysis Wiley, Chichester.

Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni]., Gatelli D., Saisana M,
Tarantola S. (2008) Global Sensitivity Analysis: The Primer Wiley-
Blackwell.

Setiono R. (2001) Feedforward Neural Network Construction Using Cross

Validation. neural Computation 13:2865-2877.

98

Sensitive Genetic Neural Optimisation

Shonkwiler RW., Mendivil F. (2009) Explorations in Monte Carlo Methods,
Springer.

Sivanandam S.N., Deepa S.N. (2008) Introduction to Genetic Algorithms Springer,
Berlin Heidelberg.

Sumathi S. (2010) Computational Intelligence Paradigms: theory & applications
using Matlab CRC Press, Boca Raton.

Tarassenko L. (1998) A Guide to Neural Computing Applications Arnold, Bristol.

Wang S. (1995) The unpredictability of standard back propagation neural
networks in classification applications. Management Science 41:555-559.

Xie H.Y., Zhang M.]., Andreae P. (2007) Genetic Programming for New Zealand CPI
Inflation Prediction, Evolutionary Computation, 2007, CEC 2007, IEEE
Congress on. pp. 2538-2545.

Yang J.H., Hines E.L., Iliescu D.D. Leeson M.S. (2007) GNMM and accurate
longitudinal dispersion coefficient prediction, The Seventh UK Chinese
Association of Resource and Environment (CARE) Annual Meeting,
Greenwich, London.

Yang X.S. (2008) Introduction to Computational Mathematics World Seientific
Publishing, Singapore.

Zalzala AM.S., Fleming P.J. (1997) (Ed.)*(Eds.) Genetic algorithms in engineering
systems, The Institution of Electrical Engineers, London. pp. Pages.

Zhang Y.X,, Li H,, Hou AX, Havel]J. (2006) Artificial neural networks based on
principal component analysis input selection for quantification in
overlapped capillary electrophoresis peaks. Chemometrics and intelligent

laboratory systems 82:165-175.

99

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

CHAPTER 4

Greenhouse Tomato Weekly Yield Prediction

4.1 Overview

In the previous chapter, the procedures of SGNO were described in detail together
with the explanations of the benchmarking techniques, which are BFS, FFS, GNMM
and PCA. This chapter introduces a greenhouse tomato weekly yield prediction
system developed using SGNO to process the environmental data, such as
temperature, radiation, CO2 concentration, vapour pressure deficit and previous

yields, without relying on complex physiological models.

Both supermarkets and tomato growers require reliable supplies of high quality
fruit in agreed quantities. Growers have increased fruit quality and yields in many
parts of the world through the wuse of greenhouses where the
growing/environmental conditions can be controlled and by selecting better
cultivars. However, weekly yields can fluctuate and this can pose problems of
both over-demand and over-production if the yield cannot be predicted
accurately. In this respect growers and scientists are looking for ways to forecast
tomato yield in order to plan greenhouse operations and marketing and thus
reduce costs and increase profits. A large number of prediction models and
prototypes have been developed in the past few decades, based on specialist
knowledge of tomato physiology and growing conditions. However, they tend to
deal accurately with total yields, but poorly with weekly yield fluctuations.

100

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

4.2 Background

As outlined in section 4.1 above, tomato growers are sometimes contracted to sell
agreed quantities of produce to supermarkets. However, tomato yields often vary
from week to week, and so the ability to accurately predict future yields would
give them a competitive advantage. If a grower is forecast to have insufficient
fruits in a given week they could source additional produce from elsewhere, and if
they are predicted to have excess fruits they could look for alternative markets or
arrange promotions (Zhang et al.,, 2010). As a result there has been considerable
interest from growers and researchers in developing tomato yield prediction

systems.

Modern plant production systems are very complex. The fruit yield as the output
is determined to be the result of complex interactions of many factors. There is no
doubt that the environment at a fixed period in the past is a major factor that has
an effect on the present plant growth and development. Environmental conditions
that influence the growth and development of tomato plants include air
temperature (day and night), fruit temperature, radiation, CO; concentration, fruit
load, nutrients, plant density and stress. Scientists have put considerable effort
into the relationships between crop yields and various environmental conditions.
The research work of Willits and Peet (1998) suggests that warmer conditions in
the greenhouse at night can significantly improve the quality and quantity of
tomatoes. The fluctuation of temperature affects mostly the time of fruit ripening

and rate of fruit growth. The relationship between temperature and yield is

101

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

complex and studies have shown that the sensitivity of fruits to temperature
changes over time, as fruits become more sensitive to temperature as they
approach maturity. This explains why raising the greenhouse temperature results
in a peak in yield followed a few days later by a yield reduction (Adams and
Valdes, 2002; Mulholland et al, 2003). However, although temperature
fluctuations influence the weekly tomato yields in greenhouses, they do not
significantly influence the overall tomato yields when compared with
temperature controlled growing conditions (de Koning, 1988; de Koning, 1990).
Other work showed that the primary cause of fluctuations in yield was due to the
effect of temperature on fruit ripening and the variation in ripening time
smoothes out the effect on the yield that the fruit set may have (Adams et al.,
2001a; Adams et al., 2001b). Another important environmental factor is CO»,
which is a key source in photosynthesis. Nilsen, et al. (1983) discovered that the
tomato total yield showed a significantly positive responsive to CO2 enrichment in
greenhouses provided that this is provided throughout the entire harvest period.
Recent work by Li, et al. (2007) showed that tomato plants could benefit from CO-

enrichment.

In general the prediction systems are based on the development of various types
of mathematical and empirical models applied to parameters routinely monitored
in a greenhouse. Mathematical model based systems consider the parameters that
may influence the growth of tomato plants as the input variables and generate the
estimated yields as the outputs using their uniquely developed algorithms. O’Kane
(1973) stated that the amount of solar radiation received by the plant would be

the main factor that affects the growth rate of plants in the greenhouse and

102

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

introduced a model of accumulated useful solar radiation to estimate the
development time of greenhouse tomatoes. Kano and van Bavel (1988) developed
a deterministic model based on a photosynthesis equation and a carbon
accumulation model. The model takes the concentration of CO2, temperature and
light level as inputs to calculate tomato yield, total dry matter and leaf area index.
Their simulation results show that their model can achieve up to 69% accuracy. In
1995, Tang (1995) introduced a multiple linear regression based empirical model
using cumulative light intensity and temperature. The empirical model could
estimate the clear long-term trend of tomato yields and produce estimation errors,
Root Mean Squared Errors (RMSEs), as low as 0.4kg/m?2. In addition, Tang also
determined the strong linear correlation between the cumulative light intensity
and the total yield discovered by McAvoy (1989). A topological case-based
modelling system was developed by Hoshi (2000) to predict the daily harvest of
cherry tomatoes in Japan. The system makes use of previous daily harvest, total
man-hours of daily working, daily solar radiation and daily air temperature as the
input variables. The evaluation results showed that the main factors influencing
the daily harvest were the past yield and the total working man-hours, rather

than the environmental factors.

Attempts have been made to use IS techniques, such as NNs and fuzzy logic, to
determine plant development and production modelling for decades (Kaul et al,,
2005; Kehagias et al.,, 1998; Pandey et al.,, 2010; Prasad et al., 2006; Simpson,
1994; Stoikos, 1995). In the recent work of Fitz-Rodriguez and Giacomelli (2009),
time-delay neural networks (TDNNs) were implemented to predict the seasonal

and weekly yield variation taking into account over 10 factors, including plant

103

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

observations (stem diameter, number of leaves, etc.), aerial environmental
conditions (air temperature, solar radiation, carbon dioxide, etc.) and root zone
environment conditions (irrigation, hydrogen ion concentration, etc.). The results
showed that the TDNN model can accurately estimate the weekly fluctuations of

fruit-related parameters with determination coefficients (R2) up to 0.92.

4.3 Datasets

The dataset used in this chapter was collected during a series of experiments
carried out at Warwick Horticultural Research International (WHRI) over the
period 1999 and 2007 to study the influence of various environmental conditions
on the growth and yields of greenhouse tomatoes. In the experiments, the weekly
tomato yields in a greenhouse and the daily internal environmental
measurements of the greenhouse, comprising of temperature (day time average,
night time average and 24hr average), solar radiation (day average), CO:
concentration (day average) and vapour pressure deficit (VPD, day time average,
night time average and 24 hr average), were collected. The yield data used in the
development of the prediction system was recorded on a weekly basis since mid
or late March (around the 12th calendar week) when the first fruits were picked.
The harvest generally lasts about 30 weeks (ends around the 42nd calendar week).
During the harvest season, the tomato yields are measured in three ways, kg per

mZ, number of fruits per m2 and average fruit weight.

In all the experiments, the greenhouse was divided into four compartments,

namely B8, B9, B10 and B11. The compartments were subject to different

104

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

environment regimes, such as temperature difference, lighting difference, etc. The
environment conditions in the compartments were monitored and stored
separately. The tomato plants placed in each compartment might be under
different treatments, e.g. pruning a truss to five fruits, removing leaves around a
truss, etc. The complete cultivation procedures and related treatments are
described by Adams (Adams et al.,, 2001b; Adams & Valdes, 2002). In this work,
only the yield data collected on the control plants, which grow naturally without
treatment in the greenhouse, are taken into consideration to minimise the

potential influences from human operations (plant pruning).

Based on the literature, all environmental factors may influence the growth of
tomato plants and thus cause the fluctuations in weekly yields. Tomato fruits
become more sensitive to temperature as they approach maturity (Adams and
Valdes, 2002; Adams et al., 2001a); solar radiation and CO; are the sources of
photosynthesis and thus the key factors in tomato growth and production
(O'Kane, 1973; Willits and Peet, 1998); high VPD enhances the variability of
tomato fruit weight (Leonardi et al., 2000); past yield was identified as a main

factor influencing tomato harvest (Hoshi et al., 2000).

In the dataset, the environmental factors were stored daily and the tomato yields
were stored weekly. In this work, instead of using the daily environmental
measurements, the weekly averages are calculated based on the calendar weeks
to be used as the inputs due to the fact that tomato growth and the environmental
influence are long-term processes. The tomato fruit growing cycle (from anthesis

to maturity) is about 60 days (Adams, 2002; Adams et al., 2001a), depending on

105

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

their genetic species and environmental condition and the earliest harvest season
started at the 11t calendar week for the experiments. Based on these, an
assumption is made that the yield of fruits might be related to the environmental
factors up to 10 weeks in the past. This assumption (10 weeks) should be long
enough to cover the development cycle of greenhouse tomatoes under various
conditions. In addition, the yields in previous weeks might also be used as
indicators for the yield in the upcoming week. For those non-harvest weeks (1st
week - 10t week), the weekly yields are padded with zeros as the inputs to a
regression model cannot be blank and zero is a fair value to replace any non-
recorded/missing value. Among all these variables, the environmental data,
including temperature, radiation, VPD and CO; density, are considered as the
independent variables and the yield is the dependent variable. The relationship
with the yield in a certain week could be expressed using the following equation:

Yn=F(Yn-1,..1,Yn-10, Rn-1,..,Rn-10, Tn-1, .., Tn-10, Cn-1, ++-,Cn-10, V-1, +-,Vin-10) (0.1)
where Y represents the yield, R represents radiation, T represents temperature, C
represents CO; density, V represents VPD and the subscripts n, n-1, ..., n-10
indicate the corresponding week, i.e. nth week, (n-1)th week, etc.

Table 4.1: Basic statistics of the variables

Standard
Unit Min. Max. Mean
Deviation
Yield Kg/m? 0.03 3.61 1.61 0.64
Temperature oC 16.50 24.44 19.27 1.54
Radiation M]/m?/day 1.05 17.41 7.71 3.85
VPD kPa 0.33 1.03 0.61 0.14
CO2 density p.p-m. 385.74 1152.00 691.86 161.74

106

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

Table 4.1 lists the basic statistics of the dataset after taking the weekly averages of
the environmental data. It is evident that these variables are in distinct ranges,

especially the measurements of the CO; density.

4.4 Data Pre-processing

All these variables (CO2 density, radiation, temperature, VPD and yield) will be
scaled individually using min-max scaling (equation 3.1) to transform them into
the range [0, 1]. After rescaling, the variables are restructured into a standard
format (50 inputs and 1 output) based on equation 4.1. For the prediction of yield
in a certain week, 10 past measurements from each of the variables (radiation,
temperature, COz, VPD and yield) are required as the input variables for the NNs.
After the restructuring, the size of the input variables increased to 50
representing 10 past measurements from each of the variables. Figure 4.1

illustrates the restructuring process.

10 9 eeeaes 2 nd n ol one?
co) [T T [T T T T T] i [T] [T 1
Radiaon [[1 [[[[[[[[T [T 1
Temperature || [[[[[[[[| slide | oo [T 1
weD)L [[T T T T [[] I [T]
Yield L [[[[[[[[| [| []

| 0. | Radiation [Temperature] VvPD | Yield |

L. A |
'
Inputs Qutput

Figure 4.1: Restructuring the variables

107

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

As introduced in the previous section, 3.2.2.3.2, five-fold cross-validation will be applied
to test the performance of the NNs. Hence the restructured dataset is divided into five
groups of roughly equal size, so that 60% of the samples are assigned to the training set,

20% to the validation set and 20% to the test set. Table 4.2 lists the distribution of the

samples.
Table 4.2: Sample distribution in the five-fold cross-validation
SetA SetB SetC SetD SetE Total
Count 178 176 184 171 175 884

4.5 Variable Selection using Sensitive Genetic Neural Optimisation

(SGNO)

The reason for using SGNO in this application is to determine the
influence/importance of each input variable in the production of the output. Then,
a small group of variables of high influence can be used as the representatives for
all the variables. As introduced in the previous section 3.2, SGNO consists of three
key components, which are the Genetic Algorithm (GA) module, Neural Network
(NN) module and Sensitivity Analysis (SA) module. The GA module determines
the general structure of the optimisation algorithm. The NN module functions as
part of the GA module and evaluates the performance of the potential solutions
generated in the GA module. The SA module provides a refined analysis of a group
of potential solutions of high performance, i.e. low prediction errors, to determine

the global influence of each variable.

108

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

4.5.1 Neural Network module

NNs are not only used as part of the SGNO algorithm to evaluate the
chromosomes in the GA module, they are also used as the modelling tool to re-
evaluate the input variables selected by the SGNO. When a NN is used as the NN
module in SGNO, the number of hidden layers is fixed to be 1, as NNs of a single
hidden layer are known to be good universal approximators and training NNs of
single hidden layer is more computationally efficient than NNs with multiple
hidden layers (Csaji, 2001; Heaton, 2005; Hornik et al., 1989). The number of
hidden neurons in NNs is estimated dynamically as half of the sum of inputs and
outputs (Equation 3.5) instead of using a fixed number of hidden neurons. In
addition, random initial weights are used in the NNs. The selection of activation
functions is generally application oriented and an activation function may only
work well for a specific type of application. In the case of this tomato yield
prediction application, the well-known tangent sigmoid function, aka hyperbolic
sigmoid function, (Equation 2.5) is used in the hidden neurons and the output
neuron. The tangent-sigmoid function is continuous non-linear and scales the

input in the range [-o0, o] to [-1, 1].

4.5.2 Genetic Algorithm module

The GA module constructs the general structure of the SGNO algorithm as
illustrated in Figure 3.1 (see Section 3.1). In this tomato yield prediction
application, the initial GA population consists of a group of randomly generated
50-bit binary chromosomes (potential solutions). The size of the initial population

is estimated using the rule of thumb, equation 3.3 (Cox, 2005). As there are 50

109

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

input variables, the total search space would have 250-1 » 1x1015 states. Hence the

size of the initial population is estimated to be 250.

Evaluation of the chromosomes’ fitness is performed using the NN module with
five-fold cross-validation. In each generation, an elite group of chromosomes with
the highest fitness in the population are selected and passed to the new
generation without going through the crossover and mutation operations to
ensure some of the good features are preserved in the new generation. In this
application, 12 elite chromosomes, which are approximately 5% of the population,
are selected in each generation. The chromosome mutation rate is set to be 5%

and the GA stopping criterion is the evaluation of 50 generations.

Petformance of Chrormosomes in GA Generations
I:|1? 1 1 1 1 1 T 1 1 1

—=— hdean performance (generation)
Individual performance (chromosame)

0.16

-

0.15

o

o e

0.14

-

b

T

-
=
|

0.13

012

T

o
LT
- -

T
-
*
S
-
-
o
-
@
il
]
-
-
-
-
-
-
PR

0.1

-
- an

.

-

|

0.1

Foot Mean Sguared Error

0.09 RS SRS

EE oY
-
S
ol o
1

G

v L 3%; ;

0.03 . : .

L]
ERETE T

1 1 1 1 1 1
] 5 10 15 20 25 30 35 40 45 =0
Generation Murmber

Figure 4.2: Performance of chromosomes in GA generations.

110

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

Figure 4.2 illustrates the performance of the chromosomes in each generation. As
the GA evolves, it can be seen in the figure that the mean error of chromosomes
decreases rapidly in the first 10 generations and then slows down in the following
20 generations. The mean error of a generation tends to converge from the 30th
generation. For the individual chromosomes, the error of a chromosome in later

generations is not guaranteed to be lower than the ones in former generations.

Mumber of Selected Variables in G& Generations

5':' T T T T T T T T T
.
45— L R B) o e =
L L A B I I S R B B S
- L - R B B L - BB -
L L A R B . R R LR -
LR L L R - BB B S T TR - T L)
z L L R I I - R B D T B B R B I -
DSI:I— - L B . LI T I B B B L . o =
e LI LI R T T I I I I I N B L L + *
[N I T T T T S B e % EE -
IJ_'IEE— L A) LI I B I B BB - - - - - —
)] L LT I TR R B - - -
E L I LI B L - L -
= P EEE = B P
= NEreieiEs I -
L L -
LI LRI
15k &= 20770 -
ses e e —=—Nlean size (generation)
1|:|—¢++¢ -
. Individual size (chromosome)
-
gLl T 1 1 1 1 1 1 1 1

Generation Mumber

Figure 4.3: Number of selected variables (ON bits) in each generation.

Figure 4.3 illustrates the changes in the sizes of chromosomes, which are the
numbers of selected variables (ON bits) in individual chromosomes, as the GA
evolves. It clearly shows that the mean chromosome size increases from
approximately 12.5 in the first generation to 39 in the 50th generation. The mean

chromosome size grows rapidly in the first 12 generations then increases

111

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

gradually at a reduced rate until approximately the 40th generation, beyond which

it tends to converge.

Chromosome Pedformance vs. Mumber of OM hits
I:|1I_'Ir T T T T T T T T T

—=—Mlean performance
* Individual chromosome performance

T
£

0.16

0.15 .

T
Y
|

-

0.14

T
ERY
L
R
-

fome e %

L

0.13

a0 ot ol 0
A
=
e -
-
-
%
EE
- &
|

0.12

“
L

0.11 :

T
o
|

Root Mean Sguared Error

01t iy 1t .

+

=
1

0.09

+
b

Ly

£
2
EEa

0.05

T
B
-
|

1 1 1
1] 5 10 15 20 25 30 35 40 45 a0
Mumber of QM bits

Figure 4.4: Chromosome Evaluation Error vs. Number of Selected Variables.

Figure 4.4 illustrates the relationship between the performance error (RMSE) and
the number of ON bits in the chromosomes. A near-linear relationship is
observable between the mean performance error and the number of ON bits. The
performance error decreases as the number of ON bits increases. The general
negative correlation trend suggests that almost all the input variables are
contributing to the output. However, it is not necessarily the case that more ON
bits would produce lower error. Chromosomes of the same number of ON bits
produce different errors covering a broad range of RMSEs. Possible factors that

cause the variation in performance include:

112

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

e The various combinations of the ON bits in chromosomes. Different
variables may have different influences in the NN models; some variables
may have strong contributions towards the model output and some may
have minor or even negative contributions, i.e. instead of improving the
NN model’s performance, they reduce its performance when added to the
NN model.

e The performance of the NN module that evaluates the chromosome. Every
chromosome is evaluated by a number of NNs with randomised initial
weights, which usually lead to minor differences in the outputs produced.
Hence, even identical chromosomes will have different fitness values

generated by the NN module.

4.5.3 Sensitivity Analysis module

In the SA module, a quarter of the chromosomes evaluated in each generation of
the GA module that produces the lowest errors are selected to carry out the
refined SA analysis on each of the input variables. In this application, the GA
population size is 250 and they have been evaluated for 50 generations. Hence, 62
(250/4~62) chromosomes will be selected from each generation and the total
number of chromosomes to carry out the SA analysis is 3100 (62x50=3100).
Figure 4.5 illustrates the size (number of selected variables) of these
chromosomes selected for the SA analysis. It shows clearly that most of the
selected chromosomes have a large number of ON bits (over 30) due to the fact

that the number of ON bits in the chromosomes increases as the GA evolves (see

113

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

Figure 4.3) and the chromosomes with larger numbers of ON bits are more likely

to produce better performance (see Figure 4.4).

Size of Selected Chromosomes

250

200

—

m

O
T

Frequency

100

a0

0.2

0.18

0.16

0.14

012%

Errar
(]

5 10 15 20 25 30 35 40 45 50
Mumber of ON bits

Figure 4.5: Size of the chromosomes selected for SA analysis

Sensitivity Analysis using Monte Carlo Simulation

hean Error
o |ndividual Sample Errar []
o [n]
[n]
a i
o

o 0 “

o
o B " o o o
[u] [u]
[n} 2 @ " -
[u]

ful [u] [n] o o o [n]

°a o, o 4
- o a o =]

50 100 150 200 250 300 350 400 450 500
honte Carlo Sirmulation Circle Mumber

Figure 4.6: Monte Carlo simulation

114

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

The SA analysis used in SGNO is based on the Monte Carlo simulation (MCS). The
sensitivity score of a certain variable is defined as the mean difference if it is
replaced by an arbitrary number. Figure 4.6 illustrates the MCS of a variable in a
randomly picked chromosome. In this figure, the mean error plot starts
converging after taking approximately 160 random samples. The converged mean
error is considered as the sensitivity score of the variable in that randomly
selected chromosome. Although the Monte Carlo simulation converges after
taking about 160 samples, more random samples were actually taken as shown in
Figure 4.6. The reason for taking more samples is due to the fact that the training
and evaluation (simulation) of NNs in Matlab® is operationally expensive. Hence,
it is preferable to perform training and evaluation on a large chunk of data rather

than repetitively performing the operations on the same amount data in smaller

blocks.

After computing the variables’ sensitivity scores in all the selected chromosomes,
the global sensitivity score of each variable can be derived by calculating the

mean value. Figure 4.7 illustrates the global sensitivity scores for all variables.

115

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

mensitivity Plot
I:II:I? 1 1 T 1 1 1 1 1 1 1

0.05

o o o
= = =
o = g

Sensitivity Measure

o
=
Fa

1] 5 10 15 20 25 30 35 40 45 a0
“Yariahle Index

Figure 4.7: Global sensitivity scores for all variables

As the sensitivity score of an input variable reflects its influence or contribution to
the output of the model, a variable of higher sensitivity score is considered more
important/influential than a variable of lower sensitivity score. By rearranging
the input variables according to their sensitivity scores, an importance rank table
can be constructed, which is listed below. The list is the importance rank table
containing the variable indices in GA chromosomes arranged in the descending
order of sensitivity scores from the highest to the lowest.

[18, 49, 15, 2,16, 19, 23,39, 7,17, 30, 32, 22, 44, 28, 24, 21, 10, 50, 14, 20, 34,
29, 35, 37, 38, 31, 12, 43, 25,11, 4, 40, 5, 26,48, 36,13, 1, 47,9, 41, 42, 3, 45,

27,46,6, 8, 33]

The ordered variable indices in the importance rank table represent the positions
in the chromosome. Table 4.3 shows the indices in the chromosomes and their

116

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

corresponding information.

Table 4.3: GA Chromosome explained

CO:

Index in chromosome

1 | 2 | 3] 4 | 5 | 6 | 7 | 8 | 9 | 10

Represent data collected in week

n-10| n-9 \ n-8 \ n-7 | n-6 \ n-5 \ n-4 \ n-3 \ n-2 | n-1

Radiation

Index in chromosome

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

Represent data collected in week

n-10| n-9 ‘ n-8 | n-7 ‘ n-6 | n-5 ‘ n-4 ‘ n-3 ‘ n-2 ‘ n-1

Temperature

Index in chromosome

21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30

Represent data collected in week

n-10| n-9 ‘ n-8 | n-7 ‘ n-6 | n-5 ‘ n-4 ‘ n-3 ‘ n-2 ‘ n-1

VPD

Index in chromosome

31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40

Represent data collected in week

n-10| n-9 ‘ n-8 | n-7 ‘ n-6 | n-5 ‘ n-4 ‘ n-3 ‘ n-2 ‘ n-1

Yield

Index in chromosome

41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50

Represent data collected in week

n-10| n-9 \ n-8 | n-7 \ n-6 | n-5 \ n-4 \ n-3 \ n-2 \ n-1

117

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

Frequency of Wariable Groups' Appearance in the Rank Table

1|:| T T T T T T T T e ’-.:l
—a— L0,
gl —=— Radiation |
—iZ— Temperature
g —&—PD
3 —&— Yield
= Rl -
r
L
ek}
[
@
s 4r 7
ak]
o
o
Ty
2 - -
| | |

|:| ST L L

1 1 1
] 5 10 15 20 25 30 35 40 45 50
Fosition in the Rank Table

Figure 4.8: Appearance of Variable Groups in the Rank Table

Based on the importance rank table, the appearance of a certain group of
variables (CO2, radiation, etc.) can be calculated. Figure 4.8 illustrates the
accumulated appearance frequencies of the five variable groups in the rank table.
In the figure, the appearance of radiation is dominant when a small number of
variables, say 15, is selected to represent the original data. The appearance of
temperature quickly rises following the radiation. When 20 variables are selected
to represent the original data, temperature and radiation become the most
important variable groups. The appearances of the CO; and yield variables
gradually increase indicating that these two groups are generally less important
than the other variable groups. To sum up, the radiation is no doubt the most
influential variable group as it always has the highest appearance frequencies.
The temperature group is of similar level of importance as the radiation group.

The VPD group is of medium influence in general, while the CO2 and yield are less

118

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

influential on average.

4.6 System Remodelling

As mentioned in the previous section 3.2.3, NNs are not only used as the fitness

functions in the GA module, but are also used to re-evaluate the performance of

variables selected in the SGNO. By selecting various numbers of variables from

the beginning of the importance rank table, it is presumed that a greater number

of variables would produce better results. Table 4.4 lists the re-evaluation results,

including RMSE and coefficient of determination (R2). The ‘Size’ rows indicate the

number of variables selected from the rank table. Figure 4.9 illustrates the results

of taking 5, 10 and 15 inputs from the importance rank table and figure 4.10

illustrates the re-evaluation results (RMSE) as compared to the chromosomes

evaluated in the SGNO’s GA module.

Table 4.4: SGNO remodelling results

Size 1 2 3 4 5 6 7 8 9
RMSE | 0.1392 | 0.1377 | 0.1374 | 0.1333 | 0.1282 | 0.1261 | 0.1217 | 0.1198 | 0.1194
R?2 10.3678 | 0.3815 | 0.3839 | 0.4204 | 0.4643 | 0.4815] 0.5173 | 0.5317 | 0.535
Size 10 11 12 13 14 15 16 17 18
RMSE | 0.1193 | 0.1169 | 0.1144 | 0.1136 | 0.1131 | 0.1089 | 0.1088 | 0.1063 | 0.1069
Rz |0.5357]0.5546 | 0.5733 | 0.5792 | 0.583 | 0.6134 | 0.6142 | 0.6312 | 0.627
Size 19 20 21 22 23 24 25 26 27
RMSE | 0.1019 | 0.103 | 0.1061 | 0.1035| 0.1027 | 0.1015 | 0.1015 | 0.1001 | 0.101
Rz |0.6616 | 0.6541 | 0.6326 | 0.6505 | 0.6559 | 0.6637 | 0.6643 | 0.6731 | 0.6675
Size 28 29 30 31 32 33 34 35 36
RMSE | 0.101 | 0.098 | 0.0968 | 0.0971 | 0.0986 | 0.0954 | 0.0944 | 0.0945 | 0.0966
R?2 | 0.667 | 0.6868 | 0.6946 | 0.6926 | 0.6832 | 0.703 | 0.7092 | 0.7088 | 0.6958

119

Estirnated

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

Size 37 38 39 40 41 42 43 44 45
RMSE | 0.093 | 0.0935 | 0.0938 | 0.0948 | 0.0926 | 0.0917 | 0.0889 | 0.0924 | 0.0911
R?2 10.718]0.7147 | 0.7132 | 0.7068 | 0.7203 | 0.7256 | 0.7423 | 0.7215 | 0.7293

Size 46 47 48 49 50
RMSE | 0.0917 | 0.0898 | 0.0879 | 0.0906 | 0.0889
R? 0.726 |1 0.7373 | 0.7483 | 0.7324 | 0.7423

Results of NN models using variaous numbers of inputs

5 inputs 10 inputs 15 inputs
1 1
s
A
*
0gr 08¢ 1
S
by 4
= 06} = 0B * e
= =
£ £
5 ooaf S & 04t Group]
Group2
Sraupd
0z 0.2 Groupd
F } Srauph
ol .] ' —— — Best fit
0 0.5 1 1] 0.5 1

Actual Actual

Figure 4.9: Remodelling results of various numbers of inputs

Mean Errar vs. Mumber of OM hits

0.14 ‘m. cooeme S8 module .
—— SGMNO rank table

=

.

L
T

0.12

=

.

—
T

o
.
T

Foat Mean Squared Errar

0.09

DDB | | | | 1 1
a 5 10 15 20 25 30 34 40 45 a0

Mumber of OM bits

Figure 4.10: Performance of variables in SGNO rank table against

chromosomes evaluated in the GA module

120

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

As illustrated in Figure 4.10, the variables selected from the SGNO rank table
always perform better than the average performance of the same number of
variables selected by chromosomes in the GA module. The advantage of using the
variables in the rank table gradually reduces as the number of selected variables
increases. The plot of the SGNO’s performance shows a decreasing trend.
However, there are certain points on the plot that do not follow the trend nicely.
This is due to the fact that NNs are non-deterministic models; different initial
weights in hidden neurons may lead to different generalised states after training,
and thus generating different outputs. On the other hand, some of the variables or
the combinations of some variables may have negative contributions to the NN
models and thus reduce the performance of the NN models when they are used as

the inputs.

The architectures of the NNs used so far are not optimal as the architectures of
the NN models are estimated using rule of thumbs, which suggests that a single
layer of hidden neurons is sufficient and the number of hidden neurons is
determined by halving the sum of the numbers of inputs and outputs. Hence the
regression results produced using the proposed variable combinations may not
be optimal. To explore the best performance achievable using the variable
combinations in the importance rank table, NNs of ‘optimal’ architectures taking
various numbers of input variables (5-variable, 10-variable, 15-variable and 20-
variable) are discovered. The ‘forward’ selection procedure, which was explained
in section 3.2.3, is implemented to find the best architecture, in which the number

of hidden neurons gradually increases until a certain condition is reached. The

121

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

following restrictions are implemented to limit the search domain of the ‘forward’
selection procedure (Heaton, 2005):
® The number of hidden neurons should be no more than twice the input layer
size.
Npidden < 2Ninputs (4.1)

® There are no more than two hidden layers.

The ‘optimal’ architecture of a certain NN is discovered using the following steps:

1. A single hidden layer NN of only 1 hidden neuron is first evaluated (The
NN is trained using the dataset and the training error is obtained to
represent the performance of the NN).

2. An extra hidden neuron is added to the NN and the NN is evaluated.

3. Step 2 is repeated until the number of hidden neurons is equal to twice the
number of input variables.

4. An extra hidden layer with one hidden neuron is added to the NN, the first
hidden layer is reset to 1 hidden neuron and re-evaluation is performed.

5. An extra hidden neuron is added to the first hidden layer and re-evaluation
is performed.

6. Step 5 is repeated until the total number of hidden neurons is equal to
twice the input variables.

7. An extra hidden neuron is added to the second hidden layer, the first
hidden layer is reset to 1 hidden neuron and re-evaluation is performed.

8. Steps 5 to 7 are repeated until the number of hidden neurons in the second

hidden layer is equal to twice the input variables.

122

Prediction of Longitudinal Dispersion Coefficient in Natural Streams

9. The evaluation results at each stage are stored in a matrix. The row index
of the matrix represents the number of hidden neurons in the first hidden
layer, i.e. the first row indicates the presence of 1 hidden neuron, the
second row indicates 2 hidden neurons, etc. The column index represents
the number of hidden neurons