12 research outputs found

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Dealing with diversity in computational cancer modeling.

    Get PDF
    This paper discusses the need for interconnecting computational cancer models from different sources and scales within clinically relevant scenarios to increase the accuracy of the models and speed up their clinical adaptation, validation, and eventual translation. We briefly review current interoperability efforts drawing upon our experiences with the development of in silico models for predictive oncology within a number of European Commission Virtual Physiological Human initiative projects on cancer. A clinically relevant scenario, addressing brain tumor modeling that illustrates the need for coupling models from different sources and levels of complexity, is described. General approaches to enabling interoperability using XML-based markup languages for biological modeling are reviewed, concluding with a discussion on efforts towards developing cancer-specific XML markup to couple multiple component models for predictive in silico oncology

    Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Resampling, and ANOVA

    Get PDF
    To date, parameters defining biological properties in multiscale disease models are commonly obtained from a variety of sources. It is thus important to examine the influence of parameter perturbations on system behavior, rather than to limit the model to a specific set of parameters. Such sensitivity analysis can be used to investigate how changes in input parameters affect model outputs. However, multiscale cancer models require special attention because they generally take longer to run than does a series of signaling pathway analysis tasks. In this article, we propose a global sensitivity analysis method based on the integration of Monte Carlo, resampling, and analysis of variance. This method provides solutions to (1) how to render the large number of parameter variation combinations computationally manageable, and (2) how to effectively quantify the sampling distribution of the sensitivity index to address the inherent computational intensity issue. We exemplify the feasibility of this method using a two-dimensional molecular-microscopic agent-based model previously developed for simulating non-small cell lung cancer; in this model, an epidermal growth factor (EGF)-induced, EGF receptor-mediated signaling pathway was implemented at the molecular level. Here, the cross-scale effects of molecular parameters on two tumor growth evaluation measures, i.e., tumor volume and expansion rate, at the microscopic level are assessed. Analysis finds that ERK, a downstream molecule of the EGF receptor signaling pathway, has the most important impact on regulating both measures. The potential to apply this method to therapeutic target discovery is discussed

    Cancer systems biology: a network modeling perspective

    Get PDF
    Cancer is now appreciated as not only a highly heterogenous pathology with respect to cell type and tissue origin but also as a disease involving dysregulation of multiple pathways governing fundamental cell processes such as death, proliferation, differentiation and migration. Thus, the activities of molecular networks that execute metabolic or cytoskeletal processes, or regulate these by signal transduction, are altered in a complex manner by diverse genetic mutations in concert with the environmental context. A major challenge therefore is how to develop actionable understanding of this multivariate dysregulation, with respect both to how it arises from diverse genetic mutations and to how it may be ameliorated by prospective treatments. While high-throughput experimental platform technologies ranging from genomic sequencing to transcriptomic, proteomic and metabolomic profiling are now commonly used for molecular-level characterization of tumor cells and surrounding tissues, the resulting data sets defy straightforward intuitive interpretation with respect to potential therapeutic targets or the effects of perturbation. In this review article, we will discuss how significant advances can be obtained by applying computational modeling approaches to elucidate the pathways most critically involved in tumor formation and progression, impact of particular mutations on pathway operation, consequences of altered cell behavior in tissue environments and effects of molecular therapeutics

    Dynamic Targeting in Cancer Treatment

    Get PDF
    With the advent of personalized medicine, design and development of anti-cancer drugs that are specifically targeted to individual or sets of genes or proteins has been an active research area in both academia and industry. The underlying motivation for this approach is to interfere with several pathological crosstalk pathways in order to inhibit or at the very least control the proliferation of cancer cells. However, after initially conferring beneficial effects, if sub-lethal, these artificial perturbations in cell function pathways can inadvertently activate drug-induced up- and down-regulation of feedback loops, resulting in dynamic changes over time in the molecular network structure and potentially causing drug resistance as seen in clinics. Hence, the targets or their combined signatures should also change in accordance with the evolution of the network (reflected by changes to the structure and/or functional output of the network) over the course of treatment. This suggests the need for a ā€œdynamic targetingā€ strategy aimed at optimizing tumor control by interfering with different molecular targets, at varying stages. Understanding the dynamic changes of this complex network under various perturbed conditions due to drug treatment is extremely challenging under experimental conditions let alone in clinical settings. However, mathematical modeling can facilitate studying these effects at the network level and beyond, and also accelerate comparison of the impact of different dosage regimens and therapeutic modalities prior to sizeable investment in risky and expensive clinical trials. A dynamic targeting strategy based on the use of mathematical modeling can be a new, exciting research avenue in the discovery and development of therapeutic drugs

    MEASURING SINGLE CELL RESPONSES TO LAPATINIB IN A HETEROGENEOUS POPULATION

    Get PDF
    Cancer is notonedisease butasaga of diseases and is the outcome of disturbed homeostasis in the normal cells due to the deregulation of its genetic makeup. With advent of technologies thatallowdetailed molecular characterizationoftumors, targeted therapies have emerged as a more promising and specific mode of treatment. However, a major challenge with targeted therapy is the acquired resistance in the cancer cells to these therapies, quite often very rapidly in the course of a few months. One of the major targets in cancer has been the EGFR/ErbB2 network in breast and other cancer types. Prior work from our lab and others have shown alterations in the cellular network whereby compensatory upregulation of alternative pathways such as glucose uptake and metabolism can lead to acquired resistance to anti- EGFR/ErbB2 therapy in breast cancer to Lapatinib [1]. However, one the of the very important unanswered questions at the cellular and molecular level is the mechanismsthatleadstoselection of cells that are resistant to Lapatinib whereby there exists two possibilities: 1. Cells are intrinsically resistant and are less likely to respond to the drug and get selected for2.Cellsswitch response phenotype over time leading to increased metabolism and resistance. In this proposal I will develop a predictive computational model that can be used to dynamically model the response of cellstolapatinibanddetermine what underlying response mechanisms can lead to adaptive resistance cell populations based on single cell dynamics. Models to predict the internal environment of the cell by the phenotype and vice versa will be a very novel approach to understand the adaptive resistance mechanism and to overcome it. Here, I propose to utilize an Agent-based cellular automata model to represent the cellularmicroenvironment, which can track the cellular response to drugs by tracking the metabolite or signaling levels which can then be experimentally constrained and tested using live cell FRET reporter constructs

    A mechanistic protrusive-based model for 3D cell migration

    Get PDF
    Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of researchā€”mainly on flat surfacesā€”, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cellā€™s adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cellā€™s migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context

    Modeling The Spatiotemporal Dynamics Of Cells In The Lung

    Get PDF
    Multiple research problems related to the lung involve a need to take into account the spatiotemporal dynamics of the underlying component cells. Two such problems involve better understanding the nature of the allergic inflammatory response to explore what might cause chronic inflammatory diseases such as asthma, and determining the rules underlying stem cells used to engraft decellularized lung scaffolds in the hopes of growing new lungs for transplantation. For both problems, we model the systems computationally using agent-based modeling, a tool that enables us to capture these spatiotemporal dynamics by modeling any biological system as a collection of agents (cells) interacting with each other and within their environment. This allows to test the most important pieces of biological systems together rather than in isolation, and thus rapidly derive biological insights from resulting complex behavior that could not have been predicted beforehand, which we can then use to guide wet lab experimentation. For the allergic response, we hypothesized that stimulation of the allergic response with antigen results in a response with formal similarity to a muscle twitch or an action potential, with an inflammatory phase followed by a resolution phase that returns the system to baseline. We prepared an agent-based model (ABM) of the allergic inflammatory response and determined that antigen stimulation indeed results in a twitch-like response. To determine what might cause chronic inflammatory diseases where the twitch presumably cannot resolve back to baseline, we then tested multiple potential defects to the model. We observed that while most of these potential changes lessen the magnitude of the response but do not affect its overall behavior, extending the lifespan of activated pro-inflammatory cells such as neutrophils and eosinophil results in a prolonged inflammatory response that does not resolve to baseline. Finally, we performed a series of experiments involving continual antigen stimulation in mice, determining that there is evidence in the cytokine, cellular and physiologic (mechanical) response consistent with our hypothesis of a finite twitch and an associated refractory period. For stem cells, we made a 3-D ABM of a decellularized scaffold section seeded with a generic stem cell type. We then programmed in different sets of rules that could conceivably underlie the cell\u27s behavior, and observed the change in engraftment patterns in the scaffold over selected timepoints. We compared the change in those patterns against the change in experimental scaffold images seeded with C10 epithelial cells and mesenchymal stem cells, two cell types whose behaviors are not well understood, in order to determine which rulesets more closely match each cell type. Our model indicates that C10s are more likely to survive on regions of higher substrate while MSCs are more likely to proliferate on regions of higher substrate

    Localized surface functionalization with atmospheric-pressure microplasma jet for cell-on-a-chip applications

    Get PDF
    Surface properties of biopolymers are crucial for providing topographical and chemical cues to affect cellular behaviors, such as attachment, spreading, viability, proliferation, and differentiation. As an effective surface modification technique, plasma treatment is often applied to enhance surface wettability, adhesion, and biocompatibility of polymers. This study concentrates on developing technical platforms, experimental procedures, and computational-statistical models to manipulate and control the cellular functions on specifically modified polymer surfaces. A novel freeform microplasma-generated maskless surface patterning process was developed to create spatially defined topological and chemical features on biopolymer surface. Global and localized plasma functionalization was performed on polycaprolactone (PCL) samples to introduce biophysical, biochemical, biological and structural cues to enhance cellular response including attachment, proliferation and differentiation. A plasma computational-statistical model was developed to predict the changes in biopolymer surface physicochemical properties following the oxygen based plasma surface functionalization. Furthermore, an integrated system including localized plasma functionalization was specifically designed for the development of biologically inspired devices. The capabilities, benefits, and challenges of the integrated multifunctional biofabrication system to develop cell-on-a-chip device were also illustrated. The objective of this thesis is to contribute scientific and engineering knowledge to the utilization of plasma chemistry to enhance surface functionalization, development of an engineering model for local plasma treatment, and integration of biofabrication processes to assemble cell-on-a-chip devices.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201
    corecore