526 research outputs found

    Interbank markets and multiplex networks: centrality measures and statistical null models

    Full text link
    The interbank market is considered one of the most important channels of contagion. Its network representation, where banks and claims/obligations are represented by nodes and links (respectively), has received a lot of attention in the recent theoretical and empirical literature, for assessing systemic risk and identifying systematically important financial institutions. Different types of links, for example in terms of maturity and collateralization of the claim/obligation, can be established between financial institutions. Therefore a natural representation of the interbank structure which takes into account more features of the market, is a multiplex, where each layer is associated with a type of link. In this paper we review the empirical structure of the multiplex and the theoretical consequences of this representation. We also investigate the betweenness and eigenvector centrality of a bank in the network, comparing its centrality properties across different layers and with Maximum Entropy null models.Comment: To appear in the book "Interconnected Networks", A. Garas e F. Schweitzer (eds.), Springer Complexity Serie

    Information transfer in community structured multiplex networks

    Get PDF
    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.Comment: 13 pages, 6 figure

    Identifying Multiple Influential Users Based on the Overlapping Influence in Multiplex Networks

    Get PDF
    Online social networks (OSNs) are interaction platforms that can promote knowledge spreading, rumor propagation, and virus diffusion. Identifying influential users in OSNs is of great significance for accelerating the information propagation especially when information is able to travel across multiple channels. However, most previous studies are limited to a single network or select multiple influential users based on the centrality ranking result of each user, not addressing the overlapping influence (OI) among users. In practice, the collective influence of multiple users is not equal to the total sum of these users' influences. In this paper, we propose a novel OI-based method for identifying multiple influential users in multiplex social networks. We first define the effective spreading shortest path (ESSP) by utilizing the concept of spreading rate in order to denote the relative location of users. Then, the collective influence is quantified by taking the topological factor and the location distribution of users into account. The identified users based on our proposed method are central and relatively scattered with a low overlapping influence. With the Susceptible-Infected-Recovered (SIR) model, we estimate our proposed method with other benchmark algorithms. Experimental results in both synthetic and real-world networks verify that our proposed method has a better performance in terms of the spreading efficiency. © 2013 IEEE

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Influence Robustness of Nodes in Multiplex Networks against Attacks

    Full text link
    Recent advances have focused mainly on the resilience of the monoplex network in attacks targeting random nodes or links, as well as the robustness of the network against cascading attacks. However, very little research has been done to investigate the robustness of nodes in multiplex networks against targeted attacks. In this paper, we first propose a new measure, MultiCoreRank, to calculate the global influence of nodes in a multiplex network. The measure models the influence propagation on the core lattice of a multiplex network after the core decomposition. Then, to study how the structural features can affect the influence robustness of nodes, we compare the dynamics of node influence on three types of multiplex networks: assortative, neutral, and disassortative, where the assortativity is measured by the correlation coefficient of the degrees of nodes across different layers. We found that assortative networks have higher resilience against attack than neutral and disassortative networks. The structure of disassortative networks tends to break down quicker under attack

    Multilayer Networks in a Nutshell

    Get PDF
    Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system's constituents. During the last two decades, network science has provided many insights in natural, social, biological and technological systems. However, real systems are more often than not interconnected, with many interdependencies that are not properly captured by single layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.Comment: 16 pages and 3 figures. Submitted for publicatio

    Analysis of a Voting Method for Ranking Network Centrality Measures on a Node-aligned Multiplex Network

    Get PDF
    Identifying relevant actors using information gleaned from multiple networks is a key goal within the context of human aspects of military operations. The application of a voting theory methodology for determining nodes of critical importance—in ranked order of importance—for a node-aligned multiplex network is demonstrated. Both statistical and qualitative analyses on the differences of ranking outcomes under this methodology is provided. As a corollary, a multilayer network reduction algorithm is investigated within the context of the proposed ranking methodology. The application of the methodology detailed in this thesis will allow meaningful rankings of relevant actors to be produced on a multiplex network
    corecore