145 research outputs found

    Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning

    Get PDF
    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods

    Cross-Modality Feature Learning for Three-Dimensional Brain Image Synthesis

    Get PDF
    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors such as patient discomfort, increased cost, prolonged scanning time and scanner unavailability. In addition, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. Moreover, independently of how well an imaging system is, the performance of the imaging equipment usually comes to a certain limit through different physical devices. Additional interferences arise (particularly for medical imaging systems), for example, limited acquisition times, sophisticated and costly equipment and patients with severe medical conditions, which also cause image degradation. The acquisitions can be considered as the degraded version of the original high-quality images. In this dissertation, we explore the problems of image super-resolution and cross-modality synthesis for one Magnetic Resonance Imaging (MRI) modality from an image of another MRI modality of the same subject using an image synthesis framework for reconstructing the missing/complex modality data. We develop models and techniques that allow us to connect the domain of source modality data and the domain of target modality data, enabling transformation between elements of the two domains. In particular, we first introduce the models that project both source modality data and target modality data into a common multi-modality feature space in a supervised setting. This common space then allows us to connect cross-modality features that depict a relationship between each other, and we can impose the learned association function that synthesizes any target modality image. Moreover, we develop a weakly-supervised method that takes a few registered multi-modality image pairs as training data and generates the desired modality data without being constrained a large number of multi-modality images collection of well-processed (\textit{e.g.}, skull-stripped and strictly registered) brain data. Finally, we propose an approach that provides a generic way of learning a dual mapping between source and target domains while considering both visually high-fidelity synthesis and task-practicability. We demonstrate that this model can be used to take any arbitrary modality and efficiently synthesize the desirable modality data in an unsupervised manner. We show that these proposed models advance the state-of-the-art on image super-resolution and cross-modality synthesis tasks that need jointly processing of multi-modality images and that we can design the algorithms in ways to generate the practically beneficial data to medical image analysis

    Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding

    Get PDF
    Magnetic Resonance Imaging (MRI) offers high-resolution in vivo imaging and rich functional and anatomical multimodality tissue contrast. In practice, however, there are challenges associated with considerations of scanning costs, patient comfort, and scanning time that constrain how much data can be acquired in clinical or research studies. In this paper, we explore the possibility of generating high-resolution and multimodal images from low-resolution single-modality imagery. We propose the weakly-supervised joint convolutional sparse coding to simultaneously solve the problems of super-resolution (SR) and cross-modality image synthesis. The learning process requires only a few registered multimodal image pairs as the training set. Additionally, the quality of the joint dictionary learning can be improved using a larger set of unpaired images1. To combine unpaired data from different image resolutions/modalities, a hetero-domain image alignment term is proposed. Local image neighborhoods are naturally preserved by operating on the whole image domain (as opposed to image patches) and using joint convolutional sparse coding. The paired images are enhanced in the joint learning process with unpaired data and an additional maximum mean discrepancy term, which minimizes the dissimilarity between their feature distributions. Experiments show that the proposed method outperforms state-of-the-art techniques on both SR reconstruction and simultaneous SR and cross-modality synthesis
    • …
    corecore