5 research outputs found

    An Overlay Routing Protocol for Video over sparse MANETs in Emergencies

    Get PDF
    Video delivery over a mobile ad-hoc network that can be deployed by members of an emergency service in an incident zone is an appealing tool for emergency and rescue services, but has not be studied yet. In order to design and test a suitable solution, we have generated realistic evaluation scenarios by modeling fireman action plans and GPS traces from real situations. The Emergency Overlay Routing (EOR) protocol is a reactive protocol integrated into a store-carry-forward architecture. It selects ferry nodes to transport video data from a camera in the Incident Area to the Incident Chief’s node, looking for the minimum delay, but reliable, candidate. The evaluation of EOR shows its superiority to the well-known DTN routing protocol, PROPHET, under this conditions

    Towards reliable video transmission over sparse MANETs in emergencies

    Get PDF
    Video delivery in a mobile ad-hoc network that can be deployed by members of an emergency service in an incident zone is an appealing tool for emergency and rescue services, but has not been studied yet. In order to design and test a suitable solution, we have generated realistic evaluation scenarios by modeling fireman action plans and GPS traces from real situations. We propose an overlay network solution with routing and reliability mechanisms. The Emergency Overlay Routing (EOR) protocol is a reactive protocol integrated into a store-carry-forward architecture. It selects ferry nodes to transport video data from a camera in the Incident Area to the Incident Chief’s node, looking for the minimum delay, but reliable, candidate. We also propose a simple credit based mechanism (RTCP+) to improve the communication reliability. The evaluation of the whole system shows a great improvement against previous results and promising expectations

    Towards reliable video transmission over sparse MANETs in emergencies

    Get PDF
    Video delivery in a mobile ad-hoc network that can be deployed by members of an emergency service in an incident zone is an appealing tool for emergency and rescue services, but has not been studied yet. In order to design and test a suitable solution, we have generated realistic evaluation scenarios by modeling fireman action plans and GPS traces from real situations. We propose an overlay network solution with routing and reliability mechanisms. The Emergency Overlay Routing (EOR) protocol is a reactive protocol integrated into a store-carry-forward architecture. It selects ferry nodes to transport video data from a camera in the Incident Area to the Incident Chief’s node, looking for the minimum delay, but reliable, candidate. We also propose a simple credit based mechanism (RTCP+) to improve the communication reliability. The evaluation of the whole system shows a great improvement against previous results and promising expectations

    Network Resource Allocation for Competing Multiple Description Transmissions

    Get PDF
    Providing real-time multimedia services over a best-effort network is challenging due to the stringent delay requirements in the presence of complex network dynamics. Multiple description (MD) coding is one approach to transmit the media over diverse (multiple) paths to reduce the detrimental effects caused by path failures or delay. The novelty of this work is to investigate the resource allocation in a network, where there are several competing MD coded streams. This is done by considering a framework that chooses the operating points for asymmetric MD coding to maximize total quality of the users, while these streams are sent over multiple routing paths. We study the joint optimization of multimedia (source) coding and congestion control in wired networks. These ideas are extended to joint source coding and channel coding in wireless networks. In both situations, we propose distributed algorithms for optimal resource allocation. In the presence of path loss and competing users, the service quality to any particular MD stream could be uncertain. In such circumstances it might be tempting to expect that we need greater redundancy in the MD streams to protect against such failures. However, one surprising aspect of our study reveals that for large number of users who compete for the same resources, the overall system could benefit through opportunistic (hierarchical) strategies. In general networks, our studies indicate that the user composition varies from conservative to opportunistic operating points, depending on the number of users and their network vantage points
    corecore