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Abstract

Providing real-time multimedia services over a best-effort network is challenging due to the stringent delay

requirements in the presence of complex network dynamics. Multiple description (MD) coding is one approach to

transmit the media over diverse (multiple) paths to reduce the detrimental effects caused by path failures or delay.

The novelty of this work is to investigate the resource allocation in a network, where there are several competing

MD coded streams. This is done by considering a framework that chooses the operating points for asymmetric MD

coding to maximize total quality of the users, while these streams are sent over multiple routing paths.

We study the joint optimization of multimedia (source) coding and congestion control in wired networks. These

ideas are extended to joint source coding and channel codingin wireless networks. In both situations, we propose

distributed algorithms for optimal resource allocation.

In the presence of path loss and competing users, the servicequality to any particular MD stream could be

uncertain. In such circumstances it might be tempting to expect that we need greater redundancy in the MD streams

to protect against such failures. However, one surprising aspect of our study reveals that for large number of users

who compete for the same resources, the overall system couldbenefit through opportunistic (hierarchical) strategies.

In general networks, our studies indicate that the user composition varies from conservative to opportunistic

operating points, depending on the number of users and theirnetwork vantage points.
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I. I NTRODUCTION

The proliferation of multimedia applications has greatly increased the demand for real-time communi-

cation network services. Such services are challenging since existing protocols deployed in the Internet

mainly cater for delay insensitive applications. The problem is more challenging in wireless networks

because link failure may occur in addition to network congestion. It is well understood that new network

architecture and protocols have to be developed to support real-time multimedia communications, such as

real-time video.

Without link failures, the performance of multimedia applications (such as video, images etc.) can be

succinctly described through a rate versus quality (distortion) trade-off. However, in best-effort traffic,

traditional single stream coding may fail if the stream encounters loss or excessive delay. Multiple

description (MD) coding is one technique that can be used to reduce the detrimental effects due to

packet loss or link failure [10]. In an MD system, a data source, such as a video sequence, is coded into

multiple streams (or descriptions) in such a way that each stream is independently decodable; furthermore,

any subset of these streams can be used to reconstruct the source with improved quality (lower distortion).

MD coding can be understood as addingredundancy1 among descriptions for better protection against the

uncertainty in communication [10] [27].

The following question is our main interest in this work: given a resource-limited network, namely

limited link capacity, how should we allocate resources to different sources who share the network, such

that the total distortion can be minimized? We are motivatedto asked this question since with MD coding,

it is natural to send the descriptions through different paths. For such a case, the encoders should choose

their rate-distortion operating points such that the network resource is utilized efficiently. Then a natural

choice to quantify efficiency is the total distortion of the source-destination pairs in the network. Clearly,

if a source chooses high coding rates (bits per sample), the distortion may be small if the transmission

is successful. However, high rates mean more network traffic, which may result in larger packet loss due

to congestion or unreliable wireless links, hence the overall performance may suffer. Optimizing network

resource allocation for competing multiple-description transmissions is a challenging and important task.

There has been some research into network resource allocation where the sources use MD coding, when

there is unreliability due to congestion or link losses; see[1]–[3], [16], [18], [22] and references therein.

Paper [1] studies the multiple description coding in point-to-point networks with congestion problem,

1This redundancy is more general than that seen in packet erasure error correcting codes since each packet needs to be individually useful
and needs to refine each other.
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where there is a single source and a single destination with multiple single-link paths between source and

destination. The advantage of MD over single description insuch setting is shown to be related to the

rate-distortion operating point of the MD source via numerical results only, but there does not seem to be

attempt to solve the related optimization problem. Papers [3] [22] [18] focus on how to select paths for each

description of a source such that the distortion of the videois minimized. These papers consider multiple

paths each with several links, but onlya single source-destination pair is considered. The problems are

conjectured as NP-hard, so heuristics is used to find the solution. In [16], the authors propose an algorithm

on how to jointly adjust the rate of MD source coding and the redundancy of channel coding to minimize

the distortion, but only a single receiver is considered, and the multiple source-destination pairs sharing

the limited link bandwidth are not taken into account. In [2], the author proposes an algorithm on how to

split the traffic from the source with symmetric multiple descriptions (a very special MD where the rates

of the all the descriptions are the same) to all the availablepaths, and adjust the coding at each source,

for multiple source-destination pairs in auniform sensor network (a special network), and the general

asymmetric MD and general network topology are not considered.

There are other papers that study MD and congestion control,but on a single path. Paper [20] proposes

protocols for the congestion control and adaptive multipledescription source coding in a network with

multiple source-destination pairs, but the possibility ofutilizing multiple paths is not considered.

In summary, network resource allocation for competing MD sources over unreliable network is still

not well understood. The design of distributed resource allocation algorithms (with provable guarantee)

of MD rate-distortion tuples (with two degrees of freedom, rate and distortion) over multiple paths, is

still an open problem. In addition, to the best of our knowledge such resource allocation algorithm in the

presence of multiple competing MD flows have not been studied. Therefore our formulation of combining

multipath routing with competing MD flows and distributed algorithm for optimizing the total distortion

performance is to the best of our knowledge, unique.

Along another thread, some researchers have studied the joint network congestion control and multipath

routing, see [12], [14], [15], [26] and the references therein. Joint optimization of the routing and

congestion control was considered, such that the network can be stable, robust and the users can have

better QoS for the applications. In [14], [15] congestion control and multipath routing were studied and it

was demonstrated that there are significant advantages wheneach source randomly selects multiple paths

from all its available choices.
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In this work, we propose a framework to combine multipath routing with the asymmetric MD coding

(the general MD coding) in a general network with multiple competing source-destination pairs, such

that the total distortion of all users can be minimized. Motivated by [14], [15], we adopt random path

selection for descriptions of each source-destination pair in a large time scale. Over a small time scale, the

rate-distortion operating points are found for the given paths, such that the total distortion is minimized.

We consider the packet loss due to end-to-end delay exceeding some deadline and unreliable wireless

links in wired and wireless networks, respectively. The framework can be further generalized to include

the packet loss due to both factors without difficulty. It is worth noting at this point that our proposed

framework reflects the intrinsic tradeoff between the ratesand distortions at source coding, as well as the

tradeoff between the rates at the source coding and packet loss due to congestion or unreliable links. This

is inherently a design problem involving many degrees of freedom normally residing in different layers

in a protocol stack.

Within the proposed framework, we study distributed algorithms for the optimal resource allocation,

with techniques similar to those for network utility maximization (NUM) [5], [13]. In the basic NUM [13],

convexity properties of the optimization problem readily lead to a distributed algorithm that converges to

the globally optimal transmission rate allocation. In certain regimes, our problem is convex, and therefore,

using the NUM techniques, we can develop distributed algorithms based on network pricing. In contrast

to standard pricing-based algorithms for the basic NUM, in which each user communicates its willingness

to pay for rate allocation to the network, in our algorithms each user provides willingness to pay for the

reduction of end-to-end packet loss to the network.

Our framework provides full flexibility in the design space of rate-distortion. In the literature of the

resource allocation in a network with MD coding, the full flexibility in the design space has not been

fully investigated. For example, with fixed coding rates, the encoder can still adjust distortions for each

subset of descriptions to minimize the overall distortion;similarly, with fixed distortions, the source can

choose different coding rate pair. In this work, we investigate the importance of this design flexibility.

Hierarchical coding, which is also called layered or successive-refinement (SR) coding, can be consid-

ered as an extreme case of MD coding, where streams are usefulonly after successful reception of higher

priority layers. Such schemes, which are part of standard image/video coding standards, add almost no

redundancy to each stream since they need not be individually useful, but only refine previously received

streams [9]. Therefore, this can be understood as an opportunistic scheme since it assumes reliable delivery
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of higher priority layers. In contrast, when the service is unreliable, descriptions need to be individually

useful, and hence more redundancy is needed, leading to conservative approaches. Therefore, it is of

interest to measure the amount of redundancy in the optimal solution in a network, and to determine

whether the solution operates closer to SR rate-tuple or MD coding with more redundancy. The question

has important engineering implication, since adaptive SR coding is less involved than adaptive MD coding.

In order to better understand whether the SR rate-tuples aresufficient to achieve the optimal solution

of network resource allocation, we examine the operating points for the source coding in two cases: (i)

Firstly, the case where thesame links (representing paths) are shared byall the users; (ii) Secondly,

the case where the resources of the network represented by a graph are disparately shared by users. We

investigate how the number of users, the packet size and the channel coding block length influence the

resource allocation.

The main contributions of this work are as follows:

1) We propose a general framework to combine multipath routing with the asymmetric MD coding for

a network with competing flows for different source-destination pairs.

2) Based on the framework, we propose distributed algorithmsfor resource allocation to maximize

end-to-end utilities, for both wired and wireless networks.

3) We investigate the redundancy of the resulting operatingpoints of the MD rate-tuples. Our results

suggest that when many users are sharing the resources, it might be better to be opportunistic rather

than conservative.

The rest of this paper is organized as follows. In Section II,we provide the system model for the

network with asymmetric MD sources. In Section III and Section IV, we investigate the optimal resource

allocation problem. The distributed algorithms are also given. We provide analysis and numerical examples

in Section V and VI to illustrate how our framework and algorithms can be used to achieve optimal resource

allocation, and investigate whether the sources operate onthe SR rate-tuple. Section VII concludes the

paper.

II. SYSTEM MODEL

Consider a communication network withL logical links, wired or wireless, each with a capacity of

Cl (bps), andS source-destination pairs (orS users), each using asymmetric MD source coding. Though

general MD coding can produce more than two descriptions, the two description problem is the most
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well understood [8], [23], and therefore we focus on two descriptions in this work. Each sources has

two descriptions, denoted assi for i = 1, 2, each using a fixed setL(si) of links in its path. Each linkl

is shared by a set∪2
i=1Si(l) of descriptions of sources. We abuse the notation of the number of links or

users and the set of links or users.

For sources, denoteds0 as the central distortion when both descriptions are received, dsi for i = 1, 2

as the side distortion if descriptionsi is received, andds3 as the distortion if none of the description is

received. Denotersi (bits/sample) fori = 1, 2 as the rates for descriptionsi.

Assume the number of the samples transmitted per second is fixed to beb (samples/second). Suppose

data from a source is transmitted in packets and each packet consists ofK bits. Denotepsi for i = 1, 2 as

the packet loss probability of the path for descriptionsi. We consider the packet loss due to the end-to-end

packet delay exceeding some threshold for wired networks, and due to the unreliable wireless links for

wireless networks.

Assume in a large time scale, a path is randomly selected for each description of each user. In a small

time scale, given the paths, users find the optimal rate-distortion operating points to minimize the total

distortion,

minimize
∑

s Ds, (1)

whereDs is the distortion of each users,

Ds = ds0(1 − ps1)(1 − ps2) + ds1(1 − ps1)ps2

+ds2ps1(1 − ps2) + ps1ps2ds3.
(2)

It can be seen in the following subsections that the distortions dsi are related to the ratesrsi. A higher

rate yields a lower distortion in general. Furthermore, thepacket losspsi is related to the rates of all the

users who share the links on its path. For a fixed number of samples per second and a fixed link capacity,

having more bits per sample of the descriptions sharing the link with descriptionsi will result in larger

psi, hence larger distortionDs.

A. Distortion

Assuming Gaussian sources with mean zero and unit variance,the distortionds3 is always 1. The

distortion-rate region is given by [8], [23]
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ds0 ≥ 2−2(rs1+rs2) 1
1−(

√
Π−

√
Γ)2

dsi ≥ 2−2rsi , i = 1, 2
, (3)

whereΠ = (1 − ds1)(1 − ds2) andΓ = ds1ds2 − 2−2(rs1+rs2).

A special case of MD is successive refinement, for which the distortion-rate region is [9]






ds0 ≥ 2−2(rs1+rs2)

ds1 ≥ 2−2rs1 , ds2 = 1
. (4)

B. High-Rate Regime

If the link capacity is large, for a fixed number of samples persecond at the sources, a large number

of bits per sample is expected, which means the ratersi can be high.

In high-rate regime, the distortion-rate (3) can be simplified. A simplified expression for symmetric

MD is given in [25], and it is straightforward to extend it to asymmetric MD. This regime yields the

approximation to the distortion-rate tuple as follows,







ds0 ≥ 2−2(rs1+rs2−min(Es1,Es2))

dsi ≥ 2−2Esi , Esi ∈ [0, rsi), i = 1, 2
, (5)

whereEsi is the exponent characterizing the distortion for only the descriptioni of users being successfully

received.

In high-rate regime, for either wired or wireless networks,the optimal packet loss is small, otherwise

the distortion would be large and the entire minimization would force the rate to be reduced until the total

distortion is minimized. In this regime, the distortion of users in (2) can be simplified tods0 + ds1ps2 +

ds2ps1 + ps1ps2. Hence the objective function (1) can be simplified to

∑

s ds0 + ds1ps2 + ds2ps1 + ps1ps2. (6)

C. End-to-End Packet Loss

1) Wired networks: For wired networks, the communication channels can be assumed to be noise-free.

We consider the packet loss due to the end-to-end delay of thepacket exceeds some deadline∆ (in

second).

At each link, assume the packets from sources are stored in a queue and transmitted in a first-in-first-out

(FIFO) fashion. Assume only the destination drops the packet whose end-to-end delay exceeds deadline.

The end-to-end delay is dominated by the delay at the bottleneck links [11]. We focus on the core network,
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where it is reasonable to assume Poisson arrivals of packetsat each link. Assume each linkl, in addition

to the MD traffic we are interested in, there isωl bps background traffic. Assume all the packets are of

the same length, then the queue isM/D/1 queue; assume the packet size is various, then the queue can

be assumed asM/M/1 queue [17].

The end-to-end delay tail probability for descriptionsi is

psi = F (yl, l ∈ L(si)) ≈ maxl∈L(si) exp[f(yl)], (7)

whereyl is the MD traffic on link l, F and f are functions. The end-to-end delay tail probability is a

function in the traffic load of all the links on the path. Note that in equation (7) we use the bottleneck

delay tail probabilitymaxl∈L(si) exp[f(yl)] to approximate the delay tail of the entire path because the

end-to-end delay is dominated by the delay at the bottlenecklinks [11]. For M/M/1 queue, functionf

takes the form off = −µ∆(1 − ρ) and exp(f) is the delay tail probability of the queue [17], and for

M/D/1 queuef ≈ −2µ∆(1−ρ)(1+(1−ρ)/3) [24], whereµ is the service rateCl/K (in packets/second,

whereK is the average packet length) andρ is the load(yl + ωl)/Cl at link l. We have done extensive

numerics which are not presented in here that suggest such delay tail approximation is reasonable.

2) Wireless networks: For wireless networks, we consider the packet loss due to unreliable wireless

links.

Assume that the adaptive channel coding is used, similar to [19]. After link l receives the data of sources

from the upstream link, it first decodes it to extract the information data of the source and encodes it

again with its own coding rateθl, where the coding rate is defined by the ratio of the information data rate
∑

i

∑

s∈Si(l) rs,ib at the input of the encoder to the transmission data rateCl at the output of the encoder,

θl =
∑

i

∑

s∈Si(l) rsib/Cl, (8)

whereb is the number of samples per second.

The bit error probability of descriptionsi at link l can be defined as an increasing function of the coding

rate θl. An exact characterization of this function is difficult. However, an upper bound using an error

exponent function can be found.2 Error probability of descriptionsi at link l is [19] p̂sil ≥ 1
2
2−N(R0−θl)

whereN is the block length andR0 is the information-theoretic capacity of the link.

For a packet of lengthK bits, assuming the bits are independent, the packet error probability of

2This bound is applicable for the fast fading case when the transmission is over several fade intervals. In the high SNR regime, this bound
can be used for the case where we have a random quasi-static fading channel as well.



9

descriptionsi at link l is psil = 1−(1−p̂sil)
K , where for smallpsil, it can be approximated aspsil ≈ Kp̂sil.

The end-to-end packet error probability for descriptionsi is psi = 1 − ∏

l∈L(si)(1 − psil). Assuming that

the error probability of each link is small, we can approximate psi as

psi ≈
∑

l∈L(si) psil ≈
∑

l∈L(si)
K
2
2−N(R0−θl) (9)

whereθl is defined in (8).

III. JOINT RATE-DISTORTION ADAPTATION AND CONGESTIONCONTROL FORWIRED NETWORKS

This section develops the optimal resource allocation in wired networks. To minimize the total distortion,

each sources may increase its ratersi and decrease distortiondsi, but the increased rate may increase

the load of the links on its path, hence the link may be congested, the packet loss may be increased and

the total distortion may be increased. There is an intrinsictradeoff between the rate-distortion adaptation

at the sources and the congestion control at the links. We investigate the optimal resource allocation by

jointly optimizing the rate-distortion adaptation and congestion control.

A. Optimization Problem

The optimization problem is

minimize
∑

s Ds

subject to psi = exp(f(yl, l ∈ L(si))),∀s, i = 1, 2

yl =
∑2

i=1

∑

si∈Si(l) rsi · b < Cl − ωl,∀l

variables ds0, dsi, rsi, psi, yl,∀s, i = 1, 2,∀l,

(10)

together with the constraints of distortion-rate region (3), whereDs is in (2). The first constraint is for

the packet loss, and the second is the flow constraint.

This problem is a non-convex optimization problem. All the constraints on the distortions are in convex

form (since the distortion-rate region is convex), but the constraint for packet loss may not be convex

because the functionf may not be convex iny, the objective function is in non-convex form because

there are products of variables with negative coefficients.In the following, we discuss how to tackle this

non-convex optimization problem.

B. Distortion

We consider the distortion in high-rate regime given by (5).The distortion formula (5) is not convex in

Esi. But if for every sources it is known whethermin(Es1, Es2) is Es1 or Es2, the distortion formula is
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convex inEsi, and the optimization problem is a convex optimization if weapply log change of variable

to variablep and if the functionf for packet loss is convex iny. We propose to randomly choose the

ordering ofEs1 andEs2 for each users and therefore specifically choose which path carries the individual

description with lower distortion. From our numerical studies this choice does not seem to significantly

affect the resulting total distortion.

C. Packet Loss

For M/D/1, function f in the packet loss expression (7) is not convex iny. To make it convex iny,

we approximate it byf(yl) ≈ −2∆
K

(Cl − ωl − yl) because bottleneck has a large load in general.

With the additional log change of variable top,

psi = exp(msi), msi ≤ 0,

optimization problem (10) then becomes

minimize
∑

s 2−2Es1ems2 + 2−2Es2ems1

+ems1ems2 + 2−2(rs1+rs2−min(Es1,Es2))

subject to Esi ∈ [0, rsi),∀s, i = 1, 2

msi ≥ f(yl),∀s, i = 1, 2, l ∈ L(si)
∑2

i=1

∑

si∈Si(l) rsi · b ≤ yl − ǫly
2
l ,∀l

variables Esi, rsi,msi, yl,∀s, i = 1, 2,∀l,

(11)

whereyl ≤ Cl − ωl. The inequality of the last constraint is because the objective function is decreasing

in r. To make the problem (10) strictly convex iny, we add−ǫly
2
l to the right hand side of the last

constraint, whereǫl is a small number such thatǫly
2
l is small compared withyl.

Given the ordering ofEs1 and Es2 for every users, the optimization problem (11) is a convex

optimization. By the standard dual decomposition approach [19], we propose the following distributed

algorithm where each source and each link solve their own problem with only local information.

D. Distributed Algorithm

Distributed Algorithm 1:

In each iterationt, by solving the following problem (12) over(Esi, rsi,msi), for each description

i, each sources determines its distortion exponentEsi(t), rate rsi(t) and packet loss exponentmsi(t)
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that maximize its net utility based on the prices(νsi(t), ϕsil(t)) in the current iteration. Furthermore, by

price update equation (13), the source adjusts its offered prices per unit traffic load reduction for each

description and each link on its path for the next iteration.

Source problem and delay price update at source s:

Source problem over(Esi, rsi,msi):

minimize 2−2(rs1+rs2−min(Es1,Es2)) + 2−2Es1ems2

+2−2Es2ems1 + ems1ems2

−∑

i

∑

l∈L(si) ϕsilmsi + b
∑

i rsiν
si(t)

subject to Esi ∈ [0, rsi), i = 1, 2

(12)

whereνsi(t) =
∑

l∈L(si) νl(t) is the end-to-end congestion price at iterationt.

Price update:

ϕsil(t + 1) = [ϕsil(t) + α(t)f(yl)]
+, l ∈ L(si), (13)

whereα(t) is the step size, and[a]+ = max(a, 0).

Concurrently at each iterationt, by solving problem (14) overyl, each linkl determines its total traffic

yl(t) that maximize the ‘net revenue’ of the network based on the prices. In addition, by price update

equation (15), the link adjusts its congestion price per unit rate for the next iteration.

Link problem and congestion price update at link l:

Link problem overyl:
minimize ϕl(t)f(yl) − νl(yl − ǫly

2
l )

subject to yl < Cl − ωl,
(14)

whereϕl(t) =
∑2

i=1

∑

si∈Si(l) ϕsil(t) is the aggregate traffic load reduction price paid by sourcesusing

link l.

Price update:

νl(t + 1) = [νl(t) + α(t)(rl(t)b − yl(t) + ǫly
2
l )]

+, (15)

whererl(t) =
∑2

i=1

∑

si∈Si(l) rsi is the aggregate number of bits per sample of all the sources on link l

at iterationt, α(t) is the step size, and[a]+ = max(a, 0).

To get νsi(t), ϕl(t) and rl(t), a message passing procedure similar to the one in [19] is needed. The

step sizeα(t) satisfieslimt→∞ α(t) = 0 and limt→∞
∑t

i=1 α(i) = ∞.

After the above dual decomposition, the following result can be proved using standard techniques from
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the convergence analysis of the distributed gradient algorithm:

Theorem 1: Given the ordering ofEs1 and Es2 for each users, the optimization problem (11) is a

convex optimization. By Algorithm 1, dual variablesν(t) andϕ(t) converge to the optimal dual solutions

ν
∗ and ϕ

∗ and the corresponding primal variablesE∗, r∗, m∗ and y∗ are the globally optimal primal

solutions of this convex optimization problem.

Proof: Since strong duality holds for the primal problem and its Lagrange dual, we solve the dual

problem through distributed gradient method and recover the primal optimizers from the dual optimizers.

The algorithm is a gradient projection algorithm for dual problem. The proof uses the results of [4] and

is similar to that given in [19] and we omit the details.

IV. JOINT RATE-DISTORTION ADAPTATION AND CHANNEL CODING ADAPTATION FOR WIRELESS

NETWORKS

This section discusses the optimal resource allocation in wireless networks. Different from wired net-

works, wireless networks can have link failure because of the unreliable radio communication environment

such as path loss and channel fading, which adds on the challenges for the resource allocation in wireless

networks. This brings another design knob, the channel coding which adds protection (redundancy) for

the source information, into our design space. The packet loss due to exceeding the deadline as discussed

in wired network can be incorporated, but for simplicity, here we mainly consider the packet loss due to

unreliable wireless links. We assume the redundancy added at link to protect the source information is

adaptive.

To minimize the total distortion, each sources may increase its ratersi and decrease the distortion

dsi, but the increased rate may increase the incoming information of the links on its path, hence the

redundancy that the channel coding can add may be reduced, the end-to-end packet loss probability may

be increased and the total distortion may be increased. There is an intrinsic tradeoff between the rate-

distortion adaptation at the sources and the channel codingadaptation at the links. We try to utilize

the diversity in networks [6], [7]. The optimal resource allocation by jointly optimize the rate-distortion

adaptation and channel coding adaptation is investigated.

A. Optimization Problem

Similar to the wired case, we consider the distortion-rate in high-rate regime. The optimization problem

is
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minimize
∑

s 2−2(rs1+rs2−min(Es1,Es2)) + 2−2Es1ems2

+2−2Es2ems1 + ems1ems2

subject to Esi ∈ [0, rsi),∀s, i = 1, 2

msi ≥ log[
∑

l∈L(si)
K
2
2−N(R0−θl)],∀s, i = 1, 2

∑

i

∑

s∈Si(l) rsib ≤ θlCl,∀l

variables Esi, rsi,msi, θl,∀s, i = 1, 2,∀l.

(16)

This problem is to minimize the total distortion. The first constraint is for the rate-distortion region, the

second denotes a performance bound on the packet loss, and the third is the flow constraint.

Given the ordering ofEs1 andEs2 for every users, problem (16) is a convex optimization. The second

constraint is convex because log-sum-exp function is convex. Hence problem (16) can be solved in a

centralized way for its unique optima.

B. Distributed Algorithm

Although problem (16) is in convex form given the ordering ofEsi for every users, the distributed

algorithm cannot be readily derived because the second constraint is not separable, though it can be written

asemsi ≥ ∑

l∈L(si)
K
2
2−N(R0−θl) which is separable, but not in convex form.

To derive distributed algorithm, we consider relaxation ofthe second constraint. The packet error

probability
∑

l∈L(si)
K
2
2−N(R0−θl) can be upper bounded by|L(si)|K

2
2−N(R0−maxl∈L(si) θl), which may be

conservative, but it still captures the major characteristic of the error probability. Therefore, the second

constraint in problem (16) is replaced by

msi ≥ βsi − N(log 2)(R0 − θl),∀s, i = 1, 2,∀l (17)

whereβsi = log(|L(si)|K
2
) are constants.

Compared with problem (11) in wired network, problem (16) with the second constraint replaced by

(17) has the same structure as (11). The distributed algorithm is readily derived and proved to converge

to the optima, which is similar to Algorithm 1 and the detailsare omitted.

V. A NETWORK WITH TWO PARALLEL LINKS

In this section we consider a simple topology of two parallellinks each with capacityC shared by

S users, as shown in Fig. 1. This is done to build intuition for the structure of the resource allocation

solution.
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A. Model and analysis

In this network, since there are only two paths available to each source-destination pair, there is no

further choice in the routing resources. Therefore our interest is in examining how this completely shared

resource gets allocated among the users. We do this for wirednetworks in Section V-A.1 and for wireless

networks in V-A.2.

1) Wired networks: We consider two cases, (i) the capacity scales with the number of usersS, say,

the capacity beingSC; (ii) the capacity is fixed to beC.

We define a measure of how muchrelative redundancy is added in the source coding as,

min(Es1,Es2)
rs1+rs2

, ∀s. (18)

The following lemma (which is proved in the Appendix) is useful in understanding the behavior of the

resource allocation with packet size and the number of users.

Lemma 1: Consider the following optimization problem,

minimize e−(2 log 2)(r1+r2−B) + e−(2 log 2)Ae−h+(2 log 2)αr2

+e−(2 log 2)Be−h+(2 log 2)αr1

+e−2h+(2 log 2)α(r1+r2)

subject to A ∈ [0, r1], B ∈ [0, r2], B ≤ A

0 ≤ r1 < R, 0 ≤ r2 < R

variables r1, r2, A,B,

(19)

whereR is a positive constant,h and α are functions ofR where e−h+(2 log 2)αri → 1 as ri → R for

i = 1, 2. Denote the optima as(r∗1, r
∗
2, A

∗, B∗).

(i) If the following condition (20) holds, thenB∗=0,

α ≥ 1+
√

5
2

. (20)

(ii) If α < 1+
√

5
2

, and if B∗ ∈ (0, min(r∗1, r
∗
2)), then

B∗ = 1+α
1+2α

log(1 + α − α2) − log(α)

− 1
1+2α

log(1 + α) + 1
1+2α

h,
(21)

r∗1 + r∗2 = 2+3α
(1+α)(1+2α)

log(1 + α − α2) − 2
1+α

log(α)

− 2
1+2α

log(1 + α) + 3+4α
(1+α)(1+2α)

h,
(22)
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where the parametersh andα are assumed to makeB∗ andr∗1 + r∗2 feasible.

Observation: If h is not a function inα, if α ≥ 0.1 and h ≥ 2, by (21) and (22),B∗/(r∗1 + r∗2) is

decreasing inα. If h = αm wherem is a positive constant, ifα ≥ 0.1 and m ≥ 3, by (21) and (22),

B∗/(r∗1 + r∗2) is decreasing inα. This can be easily checked by plotting the curves.

For the case ofS users sharing a two-parallel-link network and all the usershaving the same distortion

orderingEs1 ≥ Es2,∀s, the optimization problem (11) is the same as (19) in Lemma 1,with specificα

andh. For the case of the link capacity scaling withS, say, beingSC, α andh are both related toS,

α = ab∆S
K(2 log 2)

, h = αC
b
, (23)

wherea is some constant (a = 2 in this work), b is samples/sec,∆ is maximum allowable delay (sec)

andK is bits/packet. While for the case of no capacity scaling,α keeps the same, buth is not related to

S,

α = ab∆S
K(2 log 2)

, h = a∆C
K

. (24)

Applying Lemma 1 (i) leads to Proposition 1 which gives a sufficient condition on the parameters such

that MD has the same performance as SR, under the high-rate regime assumption (5). ConsiderS users

using MD coding, in the setting of point-to-point two parallel links each with capacitySC bits/second or

capacity beingC available for MD flows whereC is a constant, where each description takes one link

respectively. Assume the delay tail probability isexp(−a(µ−λ)∆) whereµ andλ are the packet service

rate and arrival rate (in packets/second) respectively,a is some constant,∆ is the maximum allowable

delay (in second). Assume all the users have the same distortion orderingEs1 ≥ Es2,∀s.

Proposition 1: If

a∆bS
K

≥ (1 +
√

5) log 2, (25)

whereb is the number of samples transmitted per second andK is the number of bits per packet, then

in high-rate regime, MD has the same distortion performanceas SR.

Note that all the statement in Proposition 1 is under the high-rate assumption (5).

2) Wireless networks: WhenS users sharing the links, assuming all the users have the samedistortion

orderingEs1 ≥ Es2,∀s, scaling the capacity withS does not change the formulation of problem (16),

while if the capacity does not scale up withS, the packet loss is affected byS.

Similar to wired network, we have Proposition 2, under the high-rate assumption (5). ConsiderS users

using MD coding, in the setting of point-to-point two parallel links each with capacityC bits/second
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available for MD flows, where each description takes one linkrespectively. Assume the packet loss

probability is 2−N(1− ribS

C
) whereN is the block length of channel coding,b is the number of samples

transmitted per second andri is the number of bits per sample for descriptioni. Assume all the users

have the same distortion orderingEs1 ≥ Es2,∀s.

Proposition 2: If

NbS
C

≥ 1 +
√

5, (26)

then in high-rate regime, MD has the same distortion performance as SR.

B. Numerical examples

Assume the background traffic is 50% of the total capacity andin the figures in this section, capacity

refers to the capacity available for MD flows (total capacityminus background traffic).

1) Wired networks: Assume the number of samples transmitted per second isb = 100, 000, the maximal

allowable end-to-end queueing delay is∆ = 0.2 s.

a) Single user: For single user case, the performance comparison of MD, SR and single description

(SD) is shown in Fig. 3. For SD, the traffic is split equally to the two links, while for MD and SR, each

description takes one link. Our main focus is to compare MD and SR. SD is here only for a baseline

reference. Fig. 3 shows that the distortion decreases as capacity increases. In general, MD is better

than SR and SR is better than SD. As packet size decreases, thedistortion decreases, and SR performs

more similarly to MD, and when packet size goes up to some point, SR has the same performance as

MD (SR=MD). Intuitively, when packet becomes small, the congestion is less likely to happen and the

queueing delay is reduced, hence the packet loss becomes small and the extreme case is that for zero

packet loss we have SR=MD.

More precisely, by the distortion formula and packet loss formula, the distortion decays at a speed of

r(2 log 2) exponentially, while delay tail increases at a speed ofr(a∆b
K

) exponentially wherer is the rate,

a is a positive constant (in this work,a = 2). By the tradeoff in rater, these parameters can affect the

operating point of MD to be close SR or away from SR.

The condition (25) yields that ifK < 17, 833, then SR=MD. Figure 3 shows that condition (25) can

give a very good estimation on the packet size for SD=MD.

b) Multiple users: From (23) and (24), the delay tail increases at a speed ofr(a∆bS
K

) exponentially.

Since we have seen smaller packet sizeK can push the operating point moving towards SR, we expect



17

that largerS can have the same effect. To see the performance with respectto S, Fig. 4(a)-4(c) are for

the case of capacity beingSC, and Fig. 5(a)-5(c) are for the case of capacity beingC. Assuming all the

users use SR or general MD, Fig. 4(a), 4(b), 5(a), 5(b) show the distortion and distortion performance

gap between SR and MD for differentS. Indeed, the performance gap decreases asS increases.

In Fig. 4(c) and Fig. 5(c), assuming all the users use generalMD, the rate-distortion operating points for

users are investigated, by measuring the relative redundancy (18), which captures whether the sources are

likely to be opportunistic or conservative. For SR, the relative redundancy is zero becausemin(Es1, Es2)

is zero. From Fig. 4(c) and Fig. 5(c), it is clear that as the number of users sharing the same resource

increases, the optimal operating points are moving towardsSR, which means opportunistic approach is

becoming optimal.

Applying Observation based on Lemma 1 (ii), it can be easily understood that the relative redundancy

decreases as the number of usersS increases for both cases of scaling the capacity or no scaling.

Given packet sizeK = 80, 000 bits, the condition (25) gives us SR=MD ifS > 4.47, which can be

checked by Fig. 4(a), 5(a) that SR=MD forS = 5. Again, the condition (25) gives a very good guideline.

2) Wireless networks: For a wireless network as in Fig. 1, the performances are shown in Fig. 7-8(c). It

can be seen in Fig. 7 that as the block lengthN of the channel coding increases, the packet loss decreases,

the distortion decreases, and the performance gap between SR and MD decreases. Suppose the capacity

does not scale up with user numberS, the packet loss increases at a speed ofr(NbS
C

) exponentially where

r is the rate. Since a largerN can push the operating point moving towards SR, we expect thatlarger

S can have the same effect. Indeed, the results in Fig. 8(a)-8(c) show that asS increases the users are

more likely to operate at SR tuples.

VI. RESULTS FOR GENERAL NETWORKS

In order to understand the behavior for general networks we have run experiments on several networks.

The numerical results presented in this section are representative of the observations made on them. In

general networks, the multiple paths are not completely shared among the users as was done in Section V.

Therefore, the operating points become more complicated with a distribution of user population having

low and high redundancy. However, for when the network growsand each user shares resources with

many other users, our numerics suggest that the population shifts towards lower redundancy, suggesting

a similar behavior as Section V.
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For instance, consider a network with 14 links as shown in Fig. 2. Suppose each link has same capacity.

Suppose there are 10 users (S=10), using paths (in terms of link order) (1 4; 2 5), (3 4; 5), (1; 2 3), (5

7; 3 6), (9 10, 6 11), (10, 8 11), (11 12; 13), (7 13, 14), (6 13; 4 14), (6; 9 8), respectively. ForS = 20

andS = 30, each user in 10 users case is replaced by 2 and 3 users, respectively.

Figure 6(a) shows the distortion comparison, assuming all the users use SR or general MD, for different

S. As S increases, the gap between SR and MD reduces. Assuming all the users use general MD, Fig.

6(b) shows the fraction of the users operating at SR, where by saying that a user operates at SR we mean

that its relative redundancy (18) is less than 0.001. As the packet size decreases, or asS increases, more

and more users are operating at SR. We have investigated othernetworks and similar phenomenon can

be seen for general networks.

Figure 9(a) and Fig. 9(b) are for the 14-link wireless network. Again, it can be seen that when many

users share the resource, the user population tends towardslower redundancy (opportunistic) operating

points.

VII. C ONCLUSIONS

In this paper we have studied how competing MD coded streams interact in a resource constrained

network. The framework is based on the availability of multiple routing paths and NUM formulation with

end-to-end distortion measuring user utility function.

Though the exact delay dynamics of networks is hard to model/analyze, numerics suggest that our

approximation captures the behavior of the asymptotic delay tail. This modeling then allows us to develop

distributed algorithms, which can be implemented in networks. This in itself is an important step in

deploying real-time MD service with competing flows in a best-effort network.

In addition to these distributed algorithms, we also gainedarchitectural insight into the value of MD

coding when many users share a network. In particular if thesame resources are shared byall the users,

both analysis and numerics suggest that SR coding may be sufficient to achieve the full flexibility of

general MD coding. However, when the users have disparate access to network resources, we could

have groups of users using different operating points of various redundancy. Our distributed algorithms

automatically adapt to these diverse scenarios and choose the correct operating points. We believe that

this is the first step in understanding the important question of how competing MD flows can co-exist in

an unreliable network. Several extensions can be investigated including use of arbitrary number of MD

descriptions per flow, implementation in real networks, andso on.
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APPENDIX

Proof of Lemma 1.

Proof: (i) It is easy to see thatA∗ = r∗1. Letting z = r1 + r2, the objective function can be written as

a function in(r1, z, B), denoted asF (r1, z, B). If r∗1 = 0, thenA∗ = 0, B∗ = 0. If r∗2 = 0, thenB∗ = 0.

It is easy to check that∂F
∂z
|z→2R > 0 by the assumption thate−h+(2 log 2)αri → 1 asri → R for i = 1, 2. If

r∗1 > 0 and r∗2 > 0, since the objective function is strictly convex inr1 and z, there exist unique optima

r∗1 ∈ (0, z∗1) andz∗ ∈ (r∗1, 2R) where ∂F
∂r1

|r∗1 = 0 and ∂F
∂z
|z∗ = 0.

From ∂F
∂r1

= 0 we havee(2 log 2)(−r1+α(z−r1)) = e(2 log 2)(−B+αr1) α
1+α

. Plugging this to∂F
∂z

= 0 yields

−e(2 log 2)(−z+B) + e−he(2 log 2)(−B+αr1) α2

1+α
+ e−2he(2 log 2)αzα = 0, and since the last term is positive, and

(20) gives us α2

1+α
≥ 1, we havee(2 log 2)(−z+B) > e−he(2 log 2)(−B+αr1), which is exactly the same as∂F

∂B
> 0,

meaning the objective function is strictly increasing inB, henceB∗ = 0.

(ii) If B∗ ∈ (0, min(r∗1, r
∗
2)), since the objective function is strictly convex inB, there exists a unique

optimaB∗ at ∂F
∂B

|B∗ = 0. From (i), if r∗1 > 0 andr∗2 > 0 there exist unique optimar∗1 ∈ (0, z∗1) andz∗ ∈

(r∗1, 2R) where ∂F
∂r1

|r∗1 = 0 and ∂F
∂z
|z∗ = 0. Equations∂F

∂B
= 0 and ∂F

∂r1
= 0 give us−z +B = −h−B +αr1

and−r1+α(z−r1) = −B+αr1+log α
1+α

. Plugging these to∂F
∂z

= 0 yields−B+αr1 = αz+log α(1+α)
1+α−α2−h.

Solving these for(B, z, r1) yields (21) and (22).
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Fig. 1. A 2-link network.

Fig. 2. A 14-link network.
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Fig. 4. Numerical results in 2-linkS-user wired networks with capacitySC available for MD flows.
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Fig. 5. Numerical results in 2-linkS-user wired network with capacityC available for MD flows.
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Fig. 6. Numerical results in a wired network with 14 links.
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Fig. 8. Numerical results in 2-linkS-user wireless networks with capacityC available for MD flows.
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Fig. 9. Numerical results in wireless networks with 14 links.


