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Abstract

Providing real-time multimedia services over a best-¢ff@twork is challenging due to the stringent delay
requirements in the presence of complex network dynamiestiple description (MD) coding is one approach to
transmit the media over diverse (multiple) paths to redheedetrimental effects caused by path failures or delay.
The novelty of this work is to investigate the resource atmmn in a network, where there are several competing
MD coded streams. This is done by considering a framewortkdhaoses the operating points for asymmetric MD
coding to maximize total quality of the users, while thegeans are sent over multiple routing paths.

We study the joint optimization of multimedia (source) aagiand congestion control in wired networks. These
ideas are extended to joint source coding and channel cadingreless networks. In both situations, we propose
distributed algorithms for optimal resource allocation.

In the presence of path loss and competing users, the saquiléy to any particular MD stream could be
uncertain. In such circumstances it might be tempting teeekthat we need greater redundancy in the MD streams
to protect against such failures. However, one surprisspeet of our study reveals that for large number of users
who compete for the same resources, the overall system beulefit through opportunistic (hierarchical) strategies.
In general networks, our studies indicate that the user ositipn varies from conservative to opportunistic

operating points, depending on the number of users and niegivork vantage points.
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I. INTRODUCTION

The proliferation of multimedia applications has greatlgreased the demand for real-time communi-
cation network services. Such services are challengingesaxisting protocols deployed in the Internet
mainly cater for delay insensitive applications. The peoblis more challenging in wireless networks
because link failure may occur in addition to network cotiges It is well understood that new network
architecture and protocols have to be developed to suppaktime multimedia communications, such as
real-time video.

Without link failures, the performance of multimedia agglions (such as video, images etc.) can be
succinctly described through a rate versus quality (distoy trade-off. However, in best-effort traffic,
traditional single stream coding may fail if the stream emters loss or excessive delay. Multiple
description (MD) coding is one technique that can be usedetiuce the detrimental effects due to
packet loss or link failure [10]. In an MD system, a data seysuch as a video sequence, is coded into
multiple streams (or descriptions) in such a way that eagast is independently decodable; furthermore,
any subset of these streams can be used to reconstruct tlee sath improved quality (lower distortion).
MD coding can be understood as addiedundancy! among descriptions for better protection against the
uncertainty in communication [10] [27].

The following question is our main interest in this work: giva resource-limited network, namely
limited link capacity, how should we allocate resourcesiftecent sources who share the network, such
that the total distortion can be minimized? We are motivatealsked this question since with MD coding,
it is natural to send the descriptions through differenhpafFor such a case, the encoders should choose
their rate-distortion operating points such that the nétwesource is utilized efficiently. Then a natural
choice to quantify efficiency is the total distortion of theusce-destination pairs in the network. Clearly,
if a source chooses high coding rates (bits per sample), iftertion may be small if the transmission
is successful. However, high rates mean more network traftiicch may result in larger packet loss due
to congestion or unreliable wireless links, hence the dvpeaformance may suffer. Optimizing network
resource allocation for competing multiple-descripticemsmissions is a challenging and important task.

There has been some research into network resource alloaaliere the sources use MD coding, when
there is unreliability due to congestion or link losses; gde[3], [16], [18], [22] and references therein.
Paper [1] studies the multiple description coding in pagpoint networks with congestion problem,

This redundancy is more general than that seen in packet erasore@mecting codes since each packet needs to be individuallylusefu
and needs to refine each other.



where there is a single source and a single destination wilkipte single-link paths between source and
destination. The advantage of MD over single descriptiosunh setting is shown to be related to the
rate-distortion operating point of the MD source via nuro@rresults only, but there does not seem to be
attempt to solve the related optimization problem. Pa@jr2P] [18] focus on how to select paths for each
description of a source such that the distortion of the videminimized. These papers consider multiple
paths each with several links, but ordysingle source-destination pair is considered. The problems are
conjectured as NP-hard, so heuristics is used to find théisolun [16], the authors propose an algorithm
on how to jointly adjust the rate of MD source coding and trgurelancy of channel coding to minimize
the distortion, but only a single receiver is considered] #re multiple source-destination pairs sharing
the limited link bandwidth are not taken into account. In, Bl author proposes an algorithm on how to
split the traffic from the source with symmetric multiple degtions (a very special MD where the rates
of the all the descriptions are the same) to all the availpblfis, and adjust the coding at each source,
for multiple source-destination pairs inuwmiform sensor network (a special network), and the general
asymmetric MD and general network topology are not consiler

There are other papers that study MD and congestion coburbhn a single path. Paper [20] proposes
protocols for the congestion control and adaptive multgdscription source coding in a network with
multiple source-destination pairs, but the possibilityutifizing multiple paths is not considered.

In summary, network resource allocation for competing Mirses over unreliable network is still
not well understood. The design of distributed resourcecation algorithms (with provable guarantee)
of MD rate-distortion tuples (with two degrees of freedorater and distortion) over multiple paths, is
still an open problem. In addition, to the best of our knowleduch resource allocation algorithm in the
presence of multiple competing MD flows have not been studibdrefore our formulation of combining
multipath routing with competing MD flows and distributedyatithm for optimizing the total distortion
performance is to the best of our knowledge, unique.

Along another thread, some researchers have studied titengtiwork congestion control and multipath
routing, see [12], [14], [15], [26] and the references timergloint optimization of the routing and
congestion control was considered, such that the netwankbeastable, robust and the users can have
better QoS for the applications. In [14], [15] congestiomtcol and multipath routing were studied and it
was demonstrated that there are significant advantages @dwnsource randomly selects multiple paths

from all its available choices.



In this work, we propose a framework to combine multipathtireuwith the asymmetric MD coding
(the general MD coding) in a general network with multiplengeting source-destination pairs, such
that the total distortion of all users can be minimized. Matied by [14], [15], we adopt random path
selection for descriptions of each source-destinationipa large time scale. Over a small time scale, the
rate-distortion operating points are found for the givethpasuch that the total distortion is minimized.
We consider the packet loss due to end-to-end delay exapedime deadline and unreliable wireless
links in wired and wireless networks, respectively. Therfesvork can be further generalized to include
the packet loss due to both factors without difficulty. It isniin noting at this point that our proposed
framework reflects the intrinsic tradeoff between the rated distortions at source coding, as well as the
tradeoff between the rates at the source coding and padsetle to congestion or unreliable links. This
is inherently a design problem involving many degrees oédmm normally residing in different layers
in a protocol stack.

Within the proposed framework, we study distributed algponis for the optimal resource allocation,
with techniques similar to those for network utility max@ation (NUM) [5], [13]. In the basic NUM [13],
convexity properties of the optimization problem read@gpd to a distributed algorithm that converges to
the globally optimal transmission rate allocation. In agrtregimes, our problem is convex, and therefore,
using the NUM techniques, we can develop distributed allgais based on network pricing. In contrast
to standard pricing-based algorithms for the basic NUM, imcl each user communicates its willingness
to pay for rate allocation to the network, in our algorithnasle user provides willingness to pay for the
reduction of end-to-end packet loss to the network.

Our framework provides full flexibility in the design space rate-distortion. In the literature of the
resource allocation in a network with MD coding, the full flgikty in the design space has not been
fully investigated. For example, with fixed coding rates #ncoder can still adjust distortions for each
subset of descriptions to minimize the overall distortisimilarly, with fixed distortions, the source can
choose different coding rate pair. In this work, we investiggthe importance of this design flexibility.

Hierarchical coding, which is also called layered or sussesrefinement (SR) coding, can be consid-
ered as an extreme case of MD coding, where streams are osgfuifter successful reception of higher
priority layers. Such schemes, which are part of standaabefvideo coding standards, add almost no
redundancy to each stream since they need not be indiwdusdiful, but only refine previously received

streams [9]. Therefore, this can be understood as an oppstituscheme since it assumes reliable delivery



of higher priority layers. In contrast, when the service msaliable, descriptions need to be individually
useful, and hence more redundancy is needed, leading termatise approaches. Therefore, it is of
interest to measure the amount of redundancy in the optiolatisn in a network, and to determine
whether the solution operates closer to SR rate-tuple or Mdng with more redundancy. The question
has important engineering implication, since adaptive 8@y is less involved than adaptive MD coding.

In order to better understand whether the SR rate-tuplesudfieient to achieve the optimal solution
of network resource allocation, we examine the operatinigtpdor the source coding in two cases: (i)
Firstly, the case where thsame links (representing paths) are shared dl the users; (ii) Secondly,
the case where the resources of the network represented taph gre disparately shared by users. We
investigate how the number of users, the packet size andhenel coding block length influence the
resource allocation.

The main contributions of this work are as follows:

1) We propose a general framework to combine multipath mgutvith the asymmetric MD coding for

a network with competing flows for different source-dedima pairs.

2) Based on the framework, we propose distributed algoritfongesource allocation to maximize

end-to-end utilities, for both wired and wireless networks

3) We investigate the redundancy of the resulting operatimigts of the MD rate-tuples. Our results

suggest that when many users are sharing the resourcegiht b@ better to be opportunistic rather
than conservative.

The rest of this paper is organized as follows. In Sectionmi, provide the system model for the
network with asymmetric MD sources. In Section Ill and SactV, we investigate the optimal resource
allocation problem. The distributed algorithms are als@gi We provide analysis and numerical examples
in Section V and VI to illustrate how our framework and algjoms can be used to achieve optimal resource
allocation, and investigate whether the sources operatb@ISR rate-tuple. Section VIl concludes the

paper.

Il. SYSTEM MODEL

Consider a communication network with logical links, wired or wireless, each with a capacity of
C; (bps), andS source-destination pairs (6f users), each using asymmetric MD source coding. Though

general MD coding can produce more than two descriptiors,two description problem is the most



well understood [8], [23], and therefore we focus on two desions in this work. Each source has
two descriptions, denoted as for i = 1,2, each using a fixed sdi(si) of links in its path. Each link
is shared by a set? ,Si(l) of descriptions of sources. We abuse the notation of the eumblinks or
users and the set of links or users.

For sources, denoted,, as the central distortion when both descriptions are redety,; for i = 1,2
as the side distortion if descriptiofi is received, andi,; as the distortion if none of the description is
received. Denote,; (bits/sample) for = 1,2 as the rates for descriptioti.

Assume the number of the samples transmitted per seconcke tiixbeb (samples/second). Suppose
data from a source is transmitted in packets and each pachsists of K bits. Denotep,; for i = 1,2 as
the packet loss probability of the path for descriptianWe consider the packet loss due to the end-to-end
packet delay exceeding some threshold for wired netwonkd,due to the unreliable wireless links for
wireless networks.

Assume in a large time scale, a path is randomly selectedaidn description of each user. In a small
time scale, given the paths, users find the optimal ratexdiigh operating points to minimize the total
distortion,

minimize Y, D, 1)

where D, is the distortion of each uset

Ds - dsO<]- _psl>(1 _ps2) + dsl<1 _psl)pSQ

+d32psl (1 - p52) + pslp52d53-

(2)

It can be seen in the following subsections that the distosti/,; are related to the rates;. A higher
rate yields a lower distortion in general. Furthermore, gheket losg,; is related to the rates of all the
users who share the links on its path. For a fixed number of esnper second and a fixed link capacity,
having more bits per sample of the descriptions sharingitikewith descriptions: will result in larger

psi» hence larger distortiol,.

A. Distortion

Assuming Gaussian sources with mean zero and unit varidheedistortiond,; is always 1. The

distortion-rate region is given by [8], [23]



dS Z 2_2(7‘514‘7’52);
0 1—(VII-VT)2 (3)

Ay > 277 i =1,2
wherell = (1 — dg)(1 — dy) andl = dg dg — 2721 47s2),

A special case of MD is successive refinement, for which tiséodion-rate region is [9]

dSO 2 2_2(7'51“‘7'52)
(4)

dsl > 2727«51, dsg =1
B. High-Rate Regime

If the link capacity is large, for a fixed number of samples pecond at the sources, a large number
of bits per sample is expected, which means the ratean be high.

In high-rate regime, the distortion-rate (3) can be simgyifiA simplified expression for symmetric
MD is given in [25], and it is straightforward to extend it t@yanmetric MD. This regime yields the

approximation to the distortion-rate tuple as follows,

dSO > 2_2(T51+Ts2_min(Esl7E32))
, )
dsi > 2_2E‘”, Esi € [O,?"Si), = 1,2
whereF; is the exponent characterizing the distortion for only teedaliption: of users being successfully
received.
In high-rate regime, for either wired or wireless networltee optimal packet loss is small, otherwise
the distortion would be large and the entire minimizatiorulddforce the rate to be reduced until the total

distortion is minimized. In this regime, the distortion ceaus in (2) can be simplified tal,, + ds1pso +

dsops1 + psips2. Hence the objective function (1) can be simplified to

ES ds[) + dslPsZ + d32p51 + Ps1Ps2- (6)

C. End-to-End Packet Loss

1) Wired networks: For wired networks, the communication channels can be asgumbe noise-free.
We consider the packet loss due to the end-to-end delay opdloket exceeds some deadline (in
second).

At each link, assume the packets from sources are storeduewecand transmitted in a first-in-first-out
(FIFO) fashion. Assume only the destination drops the pask®se end-to-end delay exceeds deadline.

The end-to-end delay is dominated by the delay at the bettlehinks [11]. We focus on the core network,



where it is reasonable to assume Poisson arrivals of paakeimch link. Assume each lirikin addition

to the MD traffic we are interested in, thereusg bps background traffic. Assume all the packets are of
the same length, then the queuelis D/1 queue; assume the packet size is various, then the queue can
be assumed a&//M /1 queue [17].

The end-to-end delay tail probability for descriptienis

psi = F(yi, 1 € L(si)) = maxer,si) explf (m1)], 0

wherey; is the MD traffic on link{, F and f are functions. The end-to-end delay tail probability is a
function in the traffic load of all the links on the path. Notet in equation (7) we use the bottleneck
delay tail probabilitymax;c(s;) exp[f(y)] to approximate the delay tail of the entire path because the
end-to-end delay is dominated by the delay at the bottletiakk [11]. For M /M /1 queue, functionf
takes the form off = —uA(1 — p) andexp(f) is the delay tail probability of the queue [17], and for
M/D/1 queuef ~ —2uA(1—p)(1+(1—p)/3) [24], wherep is the service rat€’;/ K (in packets/second,
where K is the average packet length) apds the load(y; + w;)/C; at link . We have done extensive
numerics which are not presented in here that suggest suap @@ approximation is reasonable.

2) Wireless networks: For wireless networks, we consider the packet loss due teliahle wireless
links.

Assume that the adaptive channel coding is used, simildr@p After link [ receives the data of sources
from the upstream link, it first decodes it to extract the infation data of the source and encodes it
again with its own coding raté, where the coding rate is defined by the ratio of the inforaratiata rate

> i 2sesiq) Tsib at the input of the encoder to the transmission dataatat the output of the encoder,

0r=7> ZsESi(l) r5ib/ Cl, (8)

whereb is the number of samples per second.

The bit error probability of descriptiosy at link [ can be defined as an increasing function of the coding
rate 6,. An exact characterization of this function is difficult. Wever, an upper bound using an error
exponent function can be fouRdError probability of descriptiors: at link [ is [19] p.i; > %2‘N(RO‘91)
where N is the block length andz, is the information-theoretic capacity of the link.

For a packet of length' bits, assuming the bits are independent, the packet erayapility of

2This bound is applicable for the fast fading case when the transmissimeiiseveral fade intervals. In the high SNR regime, this bound
can be used for the case where we have a random quasi-static fadimgettas well.



descriptionsi at link [ is py; = 1—(1—p.;)%, where for smalp,;, it can be approximated as; ~ Kp;.
The end-to-end packet error probability for descriptions p,; = 1 — HleL(si)(l — psir)- Assuming that

the error probability of each link is small, we can approxiena,; as

Psi R D ier(si) Psit = D e rsi L2~ N(Ro=61) (9)
whered, is defined in (8).

[11. JOINT RATE-DISTORTION ADAPTATION AND CONGESTIONCONTROL FORWIRED NETWORKS

This section develops the optimal resource allocation neavhetworks. To minimize the total distortion,
each source may increase its rate,; and decrease distortiafy;, but the increased rate may increase
the load of the links on its path, hence the link may be comgkshe packet loss may be increased and
the total distortion may be increased. There is an intritrigideoff between the rate-distortion adaptation
at the sources and the congestion control at the links. Westigate the optimal resource allocation by

jointly optimizing the rate-distortion adaptation and gestion control.

A. Optimization Problem
The optimization problem is
minimize ) D,
subject to pg; = exp(f(y;,l € L(si))),Vs,i=1,2

Y= Z?:l ZsiGSz’(l) rgi-b < Cp—wp, Vi
variables dyo, ds;, 7si, Psi, Y1, Vs, 1 = 1,2, VI,

(10)

together with the constraints of distortion-rate regiol, (8here D, is in (2). The first constraint is for
the packet loss, and the second is the flow constraint.

This problem is a non-convex optimization problem. All trenstraints on the distortions are in convex
form (since the distortion-rate region is convex), but tloastraint for packet loss may not be convex
because the functiori may not be convex iny, the objective function is in non-convex form because
there are products of variables with negative coefficieimtshe following, we discuss how to tackle this

non-convex optimization problem.

B. Distortion

We consider the distortion in high-rate regime given by {8)e distortion formula (5) is not convex in

E.;. But if for every sources it is known whethemin(Fy;, Ey) is Eg or Ey, the distortion formula is



10

convex inFEy;, and the optimization problem is a convex optimization if aygply log change of variable
to variablep and if the functionf for packet loss is convex ip. We propose to randomly choose the
ordering of £;; and F,; for each user and therefore specifically choose which path carries thiwichaal
description with lower distortion. From our numerical seglthis choice does not seem to significantly

affect the resulting total distortion.

C. Packet Loss

For M/D/1, function f in the packet loss expression (7) is not convexirmfo make it convex iny,

we approximate it byf(y;) ~ —%((Jl — w; — y;) because bottleneck has a large load in general.

With the additional log change of variable o
Psi = exp(my;), mg <0,

optimization problem (10) then becomes

minimize Y 272Fsaems2 4 27 2Ea2ema
JeMsteMmsz | 9—2(rs1+rs2—min(Es1,Es2))
subject to E,; € [0,7),Vs, i =1,2
(11)
ms; > f(y),Vs,i=1,2,1 € L(s1)
Z?:1 ZsiéSi(l) rsitb <y — ElyZZ’VZ
variables F;, rq, mg,y, Vs, 1 =1,2,VI,
wherey;, < C; — w;. The inequality of the last constraint is because the olgdunction is decreasing
in r. To make the problem (10) strictly convex in we add—¢y? to the right hand side of the last
constraint, where; is a small number such thaty? is small compared witly,.
Given the ordering ofE,; and E,, for every users, the optimization problem (11) is a convex
optimization. By the standard dual decomposition approd®), [we propose the following distributed

algorithm where each source and each link solve their owbleno with only local information.

D. Distributed Algorithm

Distributed Algorithm 1:

In each iterationt, by solving the following problem (12) overE,;, s, ms;), for each description

i, each sources determines its distortion exponefi,;(¢), ratery(t) and packet loss exponent,;(t)
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that maximize its net utility based on the prices(t), ., (t)) in the current iteration. Furthermore, by
price update equation (13), the source adjusts its offerexg per unit traffic load reduction for each
description and each link on its path for the next iteration.

Source problem and delay price update at source s:

Source problem ovefEy;, 4, ms;):
mlnlmlze 2*2(7‘51+7'527min(Esl7Es2)) + 272E516m52

+2—2E52 eMsl | oMl gMs2

. (12)
= D2 Dten(siy PsitMsi + 032, msiv™ (1)
subject to E,; € [0,7y),i = 1,2
wherev*i(t) = >ier(si) vi(t) s the end-to-end congestion price at iteration
Price update:
pair(t +1) = lpsia(t) + alt) fy)]", 1€ Lisi), (13)

wherea(t) is the step size, an@]* = max(a,0).

Concurrently at each iteratian by solving problem (14) ovey,, each link/ determines its total traffic
y(t) that maximize the ‘net revenue’ of the network based on theepr In addition, by price update
equation (15), the link adjusts its congestion price pet tate for the next iteration.

Link problem and congestion price update at link I:

Link problem overy;: _
minimize ' (t) f(y1) — vi(y — ey?)

subject to y; < C) — wy,

(14)

where ! (t) = Z?Zl ZsieSz‘(l) s (t) is the aggregate traffic load reduction price paid by souusisg
link 1.

Price update:
n(t+1) = [n(t) + a®)(r' ()b — n(t) + ay?)]™, (15)

whererl(t) = 37 > _sicsiq) Tsi 1S the aggregate number of bits per sample of all the sounsdsb [

at iterationt, «(t) is the step size, anf]|* = max(a,0).

To getv*i(t), ©'(t) andr!(t), a message passing procedure similar to the one in [19] ideded he
step sizen(t) satisfieslim, .., a(t) = 0 andlim; .., >_._, a(i) = oo.

After the above dual decomposition, the following result && proved using standard techniques from
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the convergence analysis of the distributed gradient dhgor

Theorem 1: Given the ordering ofF,; and E,, for each users, the optimization problem (11) is a
convex optimization. By Algorithm 1, dual variablest) and(t) converge to the optimal dual solutions
v* and ¢* and the corresponding primal variablgs, r*, m* andy* are the globally optimal primal
solutions of this convex optimization problem.

Proof: Since strong duality holds for the primal problem and its lamge dual, we solve the dual

problem through distributed gradient method and recovemptimal optimizers from the dual optimizers.
The algorithm is a gradient projection algorithm for duablgem. The proof uses the results of [4] and

is similar to that given in [19] and we omit the details. [ ]

IV. JOINT RATE-DISTORTION ADAPTATION AND CHANNEL CODING ADAPTATION FORWIRELESS

NETWORKS

This section discusses the optimal resource allocationiialess networks. Different from wired net-
works, wireless networks can have link failure because etitreliable radio communication environment
such as path loss and channel fading, which adds on the eba#idor the resource allocation in wireless
networks. This brings another design knob, the channelngodihich adds protection (redundancy) for
the source information, into our design space. The packstdoe to exceeding the deadline as discussed
in wired network can be incorporated, but for simplicityyén@ve mainly consider the packet loss due to
unreliable wireless links. We assume the redundancy addédkato protect the source information is
adaptive.

To minimize the total distortion, each sourgemay increase its rate,; and decrease the distortion
ds;, but the increased rate may increase the incoming infoomadif the links on its path, hence the
redundancy that the channel coding can add may be reduaeénthito-end packet loss probability may
be increased and the total distortion may be increased.eTisean intrinsic tradeoff between the rate-
distortion adaptation at the sources and the channel coallagtation at the links. We try to utilize
the diversity in networks [6], [7]. The optimal resourceoathtion by jointly optimize the rate-distortion

adaptation and channel coding adaptation is investigated.

A. Optimization Problem

Similar to the wired case, we consider the distortion-rateigh-rate regime. The optimization problem

is
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minimize 3, 272z mmin(Ean Fiz)) 4 9=2F0 pmez
49 2Bs2pms1 4 omst gMms2

subject to Ey; € [0,74),Vs,i=1,2
ms; > 10g[> 1 r (i) Ko-N(Ro=0)] Vs i =1,2

Zi ZseSi(l) rgb < 6,0,V

variables FE;, ry,mg;, 0;,Vs, i =1,2,VI.

(16)

This problem is to minimize the total distortion. The firsinstraint is for the rate-distortion region, the
second denotes a performance bound on the packet loss, alirth is the flow constraint.

Given the ordering of,; and E,, for every users, problem (16) is a convex optimization. The second
constraint is convex because log-sum-exp function is cankience problem (16) can be solved in a

centralized way for its unique optima.

B. Distributed Algorithm

Although problem (16) is in convex form given the ordering 6§; for every users, the distributed
algorithm cannot be readily derived because the secondraorss not separable, though it can be written
ase™ > 37 ;. 5 2 V%) which is separable, but not in convex form.

To derive distributed algorithm, we consider relaxationtleé second constraint. The packet error
probability >, ;) 527V~ can be upper bounded Hy.(si)|5 2V Fomaxeren %), which may be
conservative, but it still captures the major characterist the error probability. Therefore, the second

constraint in problem (16) is replaced by
Mai > Bei — N(log 2)(Ro — 60,),Vs,i = 1,2,VI (17)

where3,; = log(|L(si)| %) are constants.
Compared with problem (11) in wired network, problem (16)hathe second constraint replaced by
(17) has the same structure as (11). The distributed atgoris readily derived and proved to converge

to the optima, which is similar to Algorithm 1 and the detal® omitted.

V. A NETWORK WITH TWO PARALLEL LINKS

In this section we consider a simple topology of two pardilgks each with capacity” shared by
S users, as shown in Fig. 1. This is done to build intuition foe structure of the resource allocation

solution.
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A. Model and analysis

In this network, since there are only two paths available aohesource-destination pair, there is no
further choice in the routing resources. Therefore our@sdkis in examining how this completely shared
resource gets allocated among the users. We do this for watdorks in Section V-A.1 and for wireless
networks in V-A.2.

1) Wired networks. We consider two cases, (i) the capacity scales with the numbaserssS, say,
the capacity being'C; (ii) the capacity is fixed to bé&.

We define a measure of how mup#ative redundancy is added in the source coding as,

min(Esl,E'sz)7 Vs. (18)

Ts1+Ts2
The following lemma (which is proved in the Appendix) is udeh understanding the behavior of the
resource allocation with packet size and the number of users
Lemma 1. Consider the following optimization problem,
minimize e~ (2log2)(r+r2—B) | —(2log2)A—h+(2log2)ars
e~ (21082)B p—h+(2log2)ar

_'_672h+(2 log 2)a(ri+r2)
(19)
subjectto A € [0,m], B € [0,12],B< A

0<rm <RO0O<ry <R
variables 1,79, A, B,
where R is a positive constant; and o are functions ofR where e "+2lg2eri 1 asy, — R for
i = 1,2. Denote the optima ag,r;, A*, B*).
(i) If the following condition (20) holds, the®*=0,

a > 1+2‘/5. (20)
(i) If o < Y5, and if B* € (0, min(r;,73)), then
B* = &—2‘; log(1 + a — a?) — log(a) 21)
1+2a log(1+ «) + 1+_2h
iy = % log(1+a —a?) — 1+a log(c) 22)

3+4a
1+2a log(1 +a) + (1+a)+(1+2a‘)h:
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where the parameters and o are assumed to makB* andr; + r} feasible.

Observation: If & is not a function ina, if & > 0.1 andh > 2, by (21) and (22),B*/(r; +r3) is
decreasing inv. If h = am wherem is a positive constant, it > 0.1 andm > 3, by (21) and (22),
B*/(ry 4+ r3) is decreasing inv. This can be easily checked by plotting the curves.

For the case of users sharing a two-parallel-link network and all the usernang the same distortion
ordering F,; > FE,,Vs, the optimization problem (11) is the same as (19) in Lemmwaith specifica

andh. For the case of the link capacity scaling with say, beingSC, o andh are both related t,

__abAS _c
= K(@loga)’ h=af, (23)

wherea is some constanta(= 2 in this work), b is samples/sec) is maximum allowable delay (sec)
and K is bits/packet. While for the case of no capacity scalimdeeps the same, batis not related to

S,

__ abAS _ aAC
O = Fonpgay V= K (24)

Applying Lemma 1 (i) leads to Proposition 1 which gives a sidfit condition on the parameters such
that MD has the same performance as SR, under the high-rateeregsumption (5). Considét users
using MD coding, in the setting of point-to-point two paedllinks each with capacityC' bits/second or
capacity being”' available for MD flows where' is a constant, where each description takes one link
respectively. Assume the delay tail probabilityeigo(—a(p — A)A) wherep and A are the packet service
rate and arrival rate (in packets/second) respectivelg some constant) is the maximum allowable
delay (in second). Assume all the users have the same dstanderingFE,; > F,, Vs.

Proposition 1. If

0205 > (14 V/5)log 2, (25)

whereb is the number of samples transmitted per second /&nd the number of bits per packet, then
in high-rate regime, MD has the same distortion performagx&R.

Note that all the statement in Proposition 1 is under the -négé assumption (5).

2) Wireless networks: When S users sharing the links, assuming all the users have the datoetion
ordering F;; > FEy,Vs, scaling the capacity witlt does not change the formulation of problem (16),
while if the capacity does not scale up with the packet loss is affected 8y

Similar to wired network, we have Proposition 2, under thghhiate assumption (5). Considgrusers

using MD coding, in the setting of point-to-point two paedllinks each with capacity’ bits/second
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available for MD flows, where each description takes one liegpectively. Assume the packet loss
probability is 9-N(-"5") where N is the block length of channel coding,is the number of samples
transmitted per second and is the number of bits per sample for descriptioPAssume all the users
have the same distortion orderitdg, > E,,, Vs.

Proposition 2: If
NE > 145 (26)

then in high-rate regime, MD has the same distortion perforte as SR.

B. Numerical examples

Assume the background traffic is 50% of the total capacity ianithe figures in this section, capacity
refers to the capacity available for MD flows (total capacriinus background traffic).

1) Wired networks: Assume the number of samples transmitted per secane-i$00, 000, the maximal
allowable end-to-end queueing delayAs= 0.2 s.

a) Sngle user: For single user case, the performance comparison of MD, SRsiaigle description
(SD) is shown in Fig. 3. For SD, the traffic is split equally tettwo links, while for MD and SR, each
description takes one link. Our main focus is to compare M@ &R. SD is here only for a baseline
reference. Fig. 3 shows that the distortion decreases aacitapncreases. In general, MD is better
than SR and SR is better than SD. As packet size decreasedistbgion decreases, and SR performs
more similarly to MD, and when packet size goes up to sometp&8R has the same performance as
MD (SR=MD). Intuitively, when packet becomes small, the acesten is less likely to happen and the
gueueing delay is reduced, hence the packet loss becomdisasiiahe extreme case is that for zero
packet loss we have SR=MD.

More precisely, by the distortion formula and packet lossniga, the distortion decays at a speed of
r(2log 2) exponentially, while delay tail increases at a speed(6£2) exponentially where: is the rate,
a IS a positive constant (in this work, = 2). By the tradeoff in rate-, these parameters can affect the
operating point of MD to be close SR or away from SR.

The condition (25) yields that if{ < 17,833, then SR=MD. Figure 3 shows that condition (25) can
give a very good estimation on the packet size for SD=MD.

b) Multiple users: From (23) and (24), the delay tail increases at a speec(—”%@—s) exponentially.

Since we have seen smaller packet sizecan push the operating point moving towards SR, we expect
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that largerS can have the same effect. To see the performance with regpéctFig. 4(a)-4(c) are for
the case of capacity bein§C, and Fig. 5(a)-5(c) are for the case of capacity b&ihgAssuming all the
users use SR or general MD, Fig. 4(a), 4(b), 5(a), 5(b) shawdiktortion and distortion performance
gap between SR and MD for differet Indeed, the performance gap decreaseS axreases.

In Fig. 4(c) and Fig. 5(c), assuming all the users use gemiglthe rate-distortion operating points for
users are investigated, by measuring the relative reduyddm®), which captures whether the sources are
likely to be opportunistic or conservative. For SR, the reéatedundancy is zero becausén(F;;, Fy,)
is zero. From Fig. 4(c) and Fig. 5(c), it is clear that as thenber of users sharing the same resource
increases, the optimal operating points are moving tow&fdswhich means opportunistic approach is
becoming optimal.

Applying Observation based on Lemma 1 (i), it can be easily understood that tlaivelredundancy
decreases as the number of us€rscreases for both cases of scaling the capacity or no gcalin

Given packet sizd< = 80,000 bits, the condition (25) gives us SR=MD # > 4.47, which can be
checked by Fig. 4(a), 5(a) that SR=MD f6r= 5. Again, the condition (25) gives a very good guideline.

2) Wireless networks: For a wireless network as in Fig. 1, the performances are showig. 7-8(c). It
can be seen in Fig. 7 that as the block lengtlof the channel coding increases, the packet loss decreases,
the distortion decreases, and the performance gap betwkRen® MD decreases. Suppose the capacity
does not scale up with user numlferthe packet loss increases at a speed(é#) exponentially where
r is the rate. Since a large¥ can push the operating point moving towards SR, we expectldnger
S can have the same effect. Indeed, the results in Fig. 8@Q)sBlow that asS increases the users are

more likely to operate at SR tuples.

VI. RESULTS FOR GENERAL NETWORKS

In order to understand the behavior for general networks ave lhun experiments on several networks.
The numerical results presented in this section are repi@see of the observations made on them. In
general networks, the multiple paths are not completelyeshamong the users as was done in Section V.
Therefore, the operating points become more complicatél avidistribution of user population having
low and high redundancy. However, for when the network grawd each user shares resources with
many other users, our numerics suggest that the populatiorsdioitards lower redundancy, suggesting

a similar behavior as Section V.
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For instance, consider a network with 14 links as shown in Eigguppose each link has same capacity.
Suppose there are 10 users=(0), using paths (in terms of link order) (1 4; 2 5), (3 4; 9), 2 3), (5
7; 3 6), (9 10, 6 11), (10, 8 11), (11 12; 13), (7 13, 14), (6 1344, 16; 9 8), respectively. Faf = 20
and S = 30, each user in 10 users case is replaced by 2 and 3 users,tiesgec

Figure 6(a) shows the distortion comparison, assumindnalusers use SR or general MD, for different
S. As S increases, the gap between SR and MD reduces. Assumingealisérs use general MD, Fig.
6(b) shows the fraction of the users operating at SR, whereyng that a user operates at SR we mean
that its relative redundancy (18) is less than 0.001. As ket size decreases, or @sncreases, more
and more users are operating at SR. We have investigated reh&orks and similar phenomenon can
be seen for general networks.

Figure 9(a) and Fig. 9(b) are for the 14-link wireless netwdkgain, it can be seen that when many
users share the resource, the user population tends toveavds redundancy (opportunistic) operating

points.

VIlI. CONCLUSIONS

In this paper we have studied how competing MD coded streamesaict in a resource constrained
network. The framework is based on the availability of npiéirouting paths and NUM formulation with
end-to-end distortion measuring user utility function.

Though the exact delay dynamics of networks is hard to madalyze, numerics suggest that our
approximation captures the behavior of the asymptoticydiglh This modeling then allows us to develop
distributed algorithms, which can be implemented in neksofThis in itself is an important step in
deploying real-time MD service with competing flows in a befort network.

In addition to these distributed algorithms, we also gaiaezhitectural insight into the value of MD
coding when many users share a network. In particular ifséme resources are shared bif the users,
both analysis and numerics suggest that SR coding may beisnffito achieve the full flexibility of
general MD coding. However, when the users have disparatesacto network resources, we could
have groups of users using different operating points oiouarredundancy. Our distributed algorithms
automatically adapt to these diverse scenarios and chbeseotrect operating points. We believe that
this is the first step in understanding the important quastiohow competing MD flows can co-exist in
an unreliable network. Several extensions can be investigacluding use of arbitrary number of MD

descriptions per flow, implementation in real networks, ancdn.
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APPENDIX

Proof of Lemma 1.
Proof: (i) It is easy to see thatl* = r}. Letting z = r; + 5, the objective function can be written as
a function in(ry, z, B), denoted ag"(ry, z, B). If r{ =0, thenA* =0, B* = 0. If r; =0, thenB* = 0.
It is easy to check tha#”|._..z > 0 by the assumption that "*(2s2eri — 1 asy; — R for i = 1,2. If
ri > 0 andr} > 0, since the objective function is strictly convexn and z, there exist unique optima

i € (0,2) andz* € (rf,2R) where 55 =0,

_ OF
o =0and %>

From 55 = 0 we haveellos2)(mritalzmm)) — ((los2)(=Brar) _a Plugging this to%L = 0 yields
—e(2log2)(=2+B) | e*he@log?)(*B*a“)li—Za + e72he(log2)ezg — (), and since the last term is positive, and
(20) gives usl‘f;—z > 1, we havee(?1082)(==+8) > o=he(Zlog2)(=Btar) ‘which is exactly the same &5 > 0,
meaning the objective function is strictly increasingBn henceB* = 0.

(i) If B* € (0,min(r},r5)), since the objective function is strictly convex B\, there exists a unique
optima B* at 2£|5. = 0. From (i), if 7} > 0 andr; > 0 there exist unique optima € (0, z{) and 2* €

(ri,2R) where 5&

_ oF
o =0and3

.+ = 0. Equations]%; = 0 and 3£ = 0 give us—z+ B = —h— B+ar,
a(l+a)
1+a—a? —h.

Solving these for( B, z, ;) yields (21) and (22). [

and—r,+a(z—r1) = —B+ar;+log 7. Plugging these t%g = 0yields—B+ar, = az+log
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Fig. 1. A 2-link network.

Fig. 2. A 14-link network.
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