301 research outputs found

    Energy-Efficient Design for Downlink Cloud Radio Access Networks

    Get PDF
    This work aims to maximize the energy efficiency of a downlink cloud radio access network (C-RAN), where data is transferred from a baseband unit in the core network to several remote radio heads via a set of edge routers over capacity-limited fronthaul links. The remote radio heads then send the received signals to their users via radio access links. We formulate a new mixed-integer nonlinear problem in which the ratio of network throughput and total power consumption is maximized. This challenging problem formulation includes practical constraints on routing, predefined minimum data rates, fronthaul capacity and maximum RRH transmit power. By employing the successive convex quadratic programming framework, an iterative algorithm is proposed with guaranteed convergence to a Fritz John solution of the formulated problem. Significantly, each iteration of the proposed algorithm solves only one simple convex program. Numerical examples with practical parameters confirm that the proposed joint optimization design markedly improves the C-RAN's energy efficiency compared to benchmark schemes.This work is supported in part by an ECR-HDR scholarship from The University of Newcastle, in part by the Australian Research Council Discovery Project grants DP170100939 and DP160101537, in part by Vietnam National Foundation for Science and Technology Development under grant number 101.02-2016.11 and in part by a startup fund from San Diego State University

    Wireless Virtual Multiple Antenna Networks for Critical Process Control: Protocol Design and Experiments:

    Get PDF
    Wireless telemetry systems for remote monitoring and control of industrial processes are now becoming a relevant topic in the field of networked control. Wireless closed-loop control systems have stricter delay and link reliability requirements compared to conventional sensor networks for open-loop monitoring and call for the development of advanced network architectures. By following the guidelines introduced by recent standardization, this paper focuses on the most recent technological advances to enable wireless networked control for tight closed-loop applications with cycle times below 100 ms. The cooperative network paradigm is indicated as the key technology to enable cable replacing even in critical control applications. A cooperative communication system enables wireless devices placed at geographically separated locations to act as a virtual ensemble of antennas that creates a virtual multiple-antenna-distributed system. A proprietary link-layer protocol/based on the IEEE 802.15.4 physical layer has been developed and tested in an indoor environment characterized by non-line-of-sight (NLOS) propagation and dense obstacles. The measurements obtained from the testbed evaluate experimentally the benefits (and the limitations) of cable replacing in critical process control

    An overview of the CPRI specification and its application to C-RAN-based LTE scenarios

    Get PDF
    The CPRI specification has been introduced to enable the communication between radio equipment and radio equipment controllers, and is of particular interest for mobile operators willing to deploy their networks following the novel cloud radio access network approach. In such a case, CPRI provides an interface for the interconnection of remote radio heads with a baseband unit by means of the so-called fronthaul network. This article presents the CPRI specification, its concept, design, and interfaces, provides a use case for fronthaul dimensioning in a realistic LTE scenario, and proposes some interesting open research challenges in the next-generation 5G mobile network.The authors would like to acknowledge the support of projects CRAMnet (grant no. TEC2012-38362-C03-01) and EU H2020 5G-Crosshaul Project (grant no. 671598) to the development of this work.European Commissio

    5G optimized caching and downlink resource sharing for smart cities

    Get PDF

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Full-Duplex Cloud Radio Access Network: Stochastic Design and Analysis

    Get PDF
    Full-duplex (FD) has emerged as a disruptive communications paradigm for enhancing the achievable spectral efficiency (SE), thanks to the recent major breakthroughs in self-interference (SI) mitigation. The FD versus half-duplex (HD) SE gain, in cellular networks, is however largely limited by the mutual-interference (MI) between the downlink (DL) and the uplink (UL). A potential remedy for tackling the MI bottleneck is through cooperative communications. This paper provides a stochastic design and analysis of FD enabled cloud radio access network (C-RAN) under the Poisson point process (PPP)-based abstraction model of multi-antenna radio units (RUs) and user equipments (UEs). We consider different disjoint and user-centric approaches towards the formation of finite clusters in the C-RAN. Contrary to most existing studies, we explicitly take into consideration non-isotropic fading channel conditions and finite-capacity fronthaul links. Accordingly, upper-bound expressions for the C-RAN DL and UL SEs, involving the statistics of all intended and interfering signals, are derived. The performance of the FD C-RAN is investigated through the proposed theoretical framework and Monte-Carlo (MC) simulations. The results indicate that significant FD versus HD C-RAN SE gains can be achieved, particularly in the presence of sufficient-capacity fronthaul links and advanced interference cancellation capabilities
    • …
    corecore