6,830 research outputs found

    The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study

    Get PDF
    High-level brain function such as memory, classification or reasoning can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear sub-threshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with non-linear, conductance-based synapses. Emulations of these networks on the analog neuromorphic hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm ...Comment: 20 pages, 10 figures, supplement

    When do correlations increase with firing rates in recurrent networks?

    Get PDF
    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix

    Stochasticity from function -- why the Bayesian brain may need no noise

    Get PDF
    An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform probabilistic computing, be they biological or artificial

    The Effect of Nonstationarity on Models Inferred from Neural Data

    Full text link
    Neurons subject to a common non-stationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished, with machine learning techniques, provided the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a non-stationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the non-stationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as function of their rank (Zipf plots) are well-explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the non-stationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.Comment: version in press in J Stat Mec

    The Ising Model for Neural Data: Model Quality and Approximate Methods for Extracting Functional Connectivity

    Full text link
    We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we extract the optimal couplings for subsets of size up to 200 neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two of these methods- inversion of the TAP equations and an approximation proposed by Sessak and Monasson- are remarkably accurate. Using these approximations for larger subsets of neurons, we find that extracting couplings using data from a subset smaller than the full network tends systematically to overestimate their magnitude. This effect is described qualitatively by infinite-range spin glass theory for the normal phase. We also show that a globally-correlated input to the neurons in the network lead to a small increase in the average coupling. However, the pair-to-pair variation of the couplings is much larger than this and reflects intrinsic properties of the network. Finally, we study the quality of these models by comparing their entropies with that of the data. We find that they perform well for small subsets of the neurons in the network, but the fit quality starts to deteriorate as the subset size grows, signalling the need to include higher order correlations to describe the statistics of large networks.Comment: 12 pages, 10 figure

    Cortical Spike Synchrony as a Measure of Input Familiarity

    Get PDF
    J.G.O. was supported by the Ministerio de Economia y Competividad and FEDER (Spain, project FIS2015-66503-C3-1-P) and the ICREA Academia programme. E.U. acknowledges support from the Scottish Universities Life Sciences Alliance (SULSA) and HPC-Europa2.Peer reviewedPostprin
    • …
    corecore