4,532 research outputs found

    A simultaneous planar laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of thin liquid-film flows

    Get PDF
    AbstractA simultaneous measurement technique based on planar laser-induced fluorescence imaging (PLIF) and particle image/tracking velocimetry (PIV/PTV) is described for the investigation of the hydrodynamic characteristics of harmonically excited liquid thin-film flows. The technique is applied as part of an extensive experimental campaign that covers four different Kapitza (Ka) number liquids, Reynolds (Re) numbers spanning the range 2.3–320, and inlet-forced/wave frequencies in the range 1–10Hz. Film thicknesses (from PLIF) for flat (viscous and unforced) films are compared to micrometer stage measurements and analytical predictions (Nusselt solution), with a resulting mean deviation being lower than the nominal resolution of the imaging setup (around 20μm). Relative deviations are calculated between PTV-derived interfacial and bulk velocities and analytical results, with mean values amounting to no more than 3.2% for both test cases. In addition, flow rates recovered using LIF/PTV (film thickness and velocity profile) data are compared to direct flowmeter readings. The mean relative deviation is found to be 1.6% for a total of six flat and nine wavy flows. The practice of wave/phase-locked flow-field averaging is also implemented, allowing the generation of highly localized velocity profile, bulk velocity and flow rate data along the wave topology. Based on this data, velocity profiles are extracted from 20 locations along the wave topology and compared to analytically derived ones based on local film thickness measurements and the Nusselt solution. Increasing the waviness by modulating the forcing frequency is found to result in lower absolute deviations between experiments and theoretical predictions ahead of the wave crests, and higher deviations behind the wave crests. At the wave crests, experimentally derived interfacial velocities are overestimated by nearly 100%. Finally, locally non-parabolic velocity profiles are identified ahead of the wave crests; a phenomenon potentially linked to the cross-stream velocity field

    Techno-economic evaluation of reducing shielding gas consumption in GMAW whilst maintaining weld quality

    Get PDF
    A new method of supplying shielding gases in an alternating manner has been developed to enhance the efficiency of conventional gas metal arc welding (GMAW). However, the available literature on this advanced joining process is very sparse and no cost evaluation has been reported to date. In simple terms, the new method involves discretely supplying two different shielding gases to the weld pool at predetermined frequencies which creates a dynamic action within the liquid pool. In order to assess the potential benefits of this new method from a technical and cost perspective, a comparison has been drawn between the standard shielding gas composition of Ar/20%CO2, which is commonly used in UK and European shipbuilding industries for carbon steels, and a range of four different frequencies alternating between Ar/20%CO2 and helium. The beneficial effects of supplying the weld shielding gases in an alternating manner were found to provide attractive benefits for the manufacturing community. For example, the present study showed that compared with conventional GMAW, a 17 per cent reduction in total welding cost was achieved in the case of the alternating gas method and savings associated with a reduction in the extent of post-weld straightening following plate distortion were also identified. Also, the mechanical properties of the alternating case highlighted some marginal improvements in strength and Charpy impact toughness which were attributed to a more refined weld microstructure

    High Accuracy Fuel Flowmeter, Phase 1

    Get PDF
    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation

    Application of laser Doppler velocimeter to chemical vapor laser system

    Get PDF
    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity

    Cardiovascular instrumentation for spaceflight

    Get PDF
    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration

    A Correlation-Based Optical Flowmeter for Enclosed Flows

    Get PDF
    A low-cost flowmeter would be very useful in a wide variety of monitoring situations. This article discusses the development of such a flowmeter based on optical components and its testing with water in an enclosed flow system. The sensor consisted of two sets of LEDs and phototransistors spaced 4 cm apart, monitoring the optical properties of the fluid at upstream and downstream locations, respectively. A small amount of dye was injected into the flow, which caused a change in the optical properties of the fluid at both locations. The time required for this change to move from the upstream to the downstream locations was determined using the biased estimate of the cross-covariance between the upstream and downstream signals. The velocity was then calculated using this time difference and the known distance between the locations. Tests were conducted at fluid velocities from 0.125 to 4.5 m s-1, and separate results were calculated using phototransistors located 45° and 180° from the LEDs. The mean percent error was between 5% and 0% for individual measurements using the 180° phototransistors at velocities from 0.5 to 4.5 m s-1 and between 2% and -8% for measurements using the 45° phototransistors in the same velocity range. Error increased when the velocity was reduced to 0.5 m s-1 and was greater than 20% at 0.125 m s-1 for both sets of phototransistors. A regression model was developed to correct the velocity estimate. This regression model was validated by conducting an independent test of the sensor under the same conditions. After using the regression model for calibration, errors in the validation set were between 9.1% and -5% for the 180° phototransistors and between 10.5% and -3.6% for the 45° phototransistors for the entire velocity range tested (0.125 to 4.5 m s-1). Finally, the cross-correlation coefficient for each measurement was calculated to determine the degree of similarity between the signals recorded by the phototransistors at the upstream and downstream locations. The cross-correlation coefficient was higher at lower velocities and higher for measurements using the 180° phototransistors

    Corrosion of niobium-1 percent zirconium alloy and yttria by lithium at high flow velocities

    Get PDF
    Lithium corrosion of niobium zirconium alloys and yttrium oxides at high flow velocitie

    The mapping of velocity profiles in a three generation lung model using Particle Image Velocimetry flow analysis techniques

    Get PDF
    The intent of this thesis was to develop an understanding for the particle flow characteristics in the human lung by examining particle flow profiles in a three generation lung model. To develop this understanding, experimentally derived flow profiles were compared to analytical solutions, where applicable, and Computational Fluid Dynamics (CFD) generated models for validation of both the CFD model and the experimental set-up. Validation of flow velocities in a three generation model could contribute significantly to the medical industry as a better understanding of particle behavior in the lung could lead to more accurate treatment of certain diseases and better prediction of health effects of inhaled contaminants. Particle flow in a three generation lung model was studied using a technique known as Particle Image Velocimetry (PIV). PIV involves passing a widely dispersed laser beam through a flow field of specifically sized and fluorescently colored particles. These fluorescent particles are photographed by a high-speed camera under high magnification. These images are then digitally sent to VisiFlow analysis software where each particle\u27s flow path is mapped and converted, through a cross-correlation technique, into a vector field, from which the velocity profiles can be derived. Following successful interpretation of the experimentally derived velocity profiles, a comparison was drawn between the experimentally collected data and the anticipated result based on an existing CFD model. This comparison served to not only validate the experimental test set-up but also to validate the CFD model. A favorable correlation between the experimental results and the CFD results provided confidence that a valid solution for flow profiles was achieved. Achieving a valid experimental result was dependent on many factors. The ability of the test setup to accurately produce flow profiles was measured using less complicated and easily calculated models. In doing so, confidence was developed that current scientific, analytical and experimental practices and procedures were accurately eliminating or minimizing sources of error and ultimately providing an accurate solution. As a result, not only was a valid experimental model derived but a thorough understanding of proper laboratory techniques was achieved

    The use of ultrasound for detecting particles suspended in lubricant and hydraulic fluids

    Get PDF
    Imperial Users onl
    corecore