11,236 research outputs found

    Antigenic and biochemical characterization of bovine rotavirus V1005, a new member of rotavirus serotype 10

    Get PDF
    Bovine rotavirus (BRV) V1005 is serologically distinct from rotavirus serotypes 1, 2, 3, 4, 5, 6, 8 and 9. BRV V1005 showed cross-reactions with BRV B223, the American prototype of serotype 10 rotavirus, and with BRV E4049, a British serotype 10 isolate. BRV V1005 was, however, not neutralized by four monoclonal antibodies directed against VP7 of BRV B223. Two-way cross-reactions were observed between BRV V1005 and a reassortant rotavirus containing the VP4 from BRV UK. In addition the major tryptic cleavage product of VP4, VP5*, from BRV V1005 is indistinguishable by peptide mapping and its isoelectric point from the homologous protein of BRV UK, but is clearly different from VP5* of BRV NCDV. The peptide map of VP7 from BRV V1005 differed from that obtained for VP7 of BRV U

    Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions

    Get PDF
    The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required

    A closed form solution to HZE propagation

    Get PDF
    An analytic solution for high energy heavy ion transport assuming straightahead and velocity conserving interactions with constant nuclear cross reactions is given in terms of a Green's function. The series solution for the Green's function is rapidly convergent for most practical applications. The Green's function technique can be applied with equal success to laboratory beams as well as to galactic cosmic rays allowing laboratory validation of the resultant space shielding code

    Development of a polyclonal competitive enzyme-linked immunosorbent assay for detection of antibodies to Ehrlichia ruminantium

    Get PDF
    A polyclonal competitive enzyme-linked immunosorbent assay (PC-ELISA) is described for detection of antibodies to Ehrlichia (Cowdria) ruminantium by using a soluble extract of endothelial cell culture-derived E. ruminantium as the antigen and biotin-labeled polyclonal goat immunoglobulins as the competitor. For goats, the diagnostic sensitivity and specificity were both 100% with a cutoff of 80% inhibition (80 PI), with detection of antibodies for 550 days postinfection. For cattle, diagnostic sensitivity and specificity were 86 and 100%, respectively, with a cutoff of 50 PI and 79 and 100% with a cutoff of 70 PI. Cross-reactions with high-titer experimental or field antisera to other Ehrlichia and Anaplasma species were observed at up to 68 PI in cattle and up to 85 PI in sheep, and therefore to exclude these cross-reactions, cutoffs of 70 PI for bovine serology and 85 PI for small-ruminant serology were selected. Application of the PC-ELISA to bovine field sera from South Africa gave a higher proportion of positive results than application of the murine macrophage immunofluorescent antibody test or indirect ELISA, suggesting a better sensitivity for detection of recovered cattle, and results with bovine field sera from Malawi were consistent with the observed endemic state of heartwater and the level of tick control practiced at the sample sites. Reproducibility was high, with average standard deviations intraplate of 1.2 PI and interplate of 0.6 PI. The test format is simple, and the test is economical to perform and has a level of sensitivity for detection of low-titer positive bovine sera that may prove to be of value in epidemiological studies on heartwater

    Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis

    Get PDF
    BACKGROUND: Canine leishmaniasis (CanL) is a severe chronic disease caused by Leishmania infantum and transmitted by sand flies of which the main vector in the Western part of the Mediterranean basin is Phlebotomus perniciosus. Previously, an immunochromatographic test (ICT) was proposed to allow rapid evaluation of dog exposure to P. perniciosus. In the present study, we optimized the prototype and evaluated the detection accuracy of the ICT in field conditions. Possible cross-reactions with other hematophagous arthropods were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was optimized by expressing the rSP03B protein in a HEK293 cell line, which delivered an increased specificity (94.92%). The ICT showed an excellent reproducibility and inter-person reliability, and was optimized for use with whole canine blood which rendered an excellent degree of agreement with the use of serum. Field detectability of the ICT was assessed by screening 186 dogs from different CanL endemic areas with both the SGH-ELISA and the ICT, and 154 longitudinally sampled dogs only with the ICT. The ICT results corresponded to the SGH-ELISA for most areas, depending on the statistical measure used. Furthermore, the ICT was able to show a clear seasonal fluctuation in the proportion of bitten dogs. Finally, we excluded cross-reactions between non-vector species and confirmed favorable cross-reactions with other L. infantum vectors belonging to the subgenus Larroussius. CONCLUSIONS/SIGNIFICANCE: We have successfully optimized the ICT, now also suitable to be used with whole canine blood. The test is able to reflect the seasonal fluctuation in dog exposure and showed a good detectability in a field population of naturally exposed dogs, particularly in areas with a high seroprevalence of bitten dogs. Furthermore, our study showed the existence of favorable cross-reactions with other sand fly vectors thereby expanding its use in the field

    Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins

    Get PDF
    The human serine proteases granzymes A and B are expressed in cytotoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme A and granzyme B proteins were produced in bacteria, purified and then used to raise specific mouse monoclonal antibodies. Seven monoclonal antibodies (mAb) were raised against granzyme A, which all recognized the same or overlapping epitopes. They reacted specifically in an immunoblot of interleukin-2 (IL-2) stimulated PBMNC with a disulfide-linked homodimer of 43 kDa consisting of 28 kDa subunits. Seven mAb against granzyme B were obtained, which could be divided into two groups, each recognizing a different epitope. On an immunoblot, all mAb reacted with a monomer of 33 kDa protein. By immunohistochemistry, these mAb could be used to detect granzymes A and B expression in activated CTL and NK cells. The availability of these mAb may facilitate studies on the role of human cytotoxic cells in various immune reactions and may contribute to a better understanding of the role of granzmes A and B in the cytotoxic response in vivo
    corecore