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GOABSTRACT

An analytic solution for high-energy heavy ion transport assuming

straightahead and velocity conserving interactions with constant nuclear cross

reactions is given in terms of a Green's function. The series solution for the Green's

function is rapidly convergent for most practical applications. The Green's function

technique cart be applied with equal success to laboratory beams as well as to galactic

cosmic rays allowing laboratory validation of the resultant space shielding code.
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Several approaches to the solution of high energy heavy ion propagation

have been developed (1-12) over the last 20 years. All but one (5) have assumed the

straightahead approximation and velocity conserving interactions. Only two

(5, 8) have incorporated energy-dependent nuclear cross sections. The approach by

Curtis et al. (I) for a primary ion beam represented the first generation secondary

fragments as a quadrature over the collision density of the primary beam. Allkofer

and Heinrich (2) used an energy multigroup method in which an energy-

independent fragmentation transport approximation was applied within each

energy group after which the energy group boundaries were moved according to

continuous slowing down theory (-dxdE). Chatterjee et al. (3) solved the energy-

independent fragment transport equation with primary collision density as a source

and neglecting higher-order fragmentation. The primary source term extended only

to the primary ion range from the boundary. The energy-independent transport

solution was modified to account for the finite range of the secondary fragment ions.

Wilson (4) derived an expression for the ion transport problem to first order (first-

collision term) and gave an analytic solution for the depth-dose relation. In ref. 5,

the more common approximations used in solving the heavy ion transport

problem were examined. The effects of conservation of velocity on fragmentation
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and the straightahead approximation are found to be negligible for cosmic ray

applications. Solution methods for representing the energ'y-dependent nuclear cross

sections are developed. Letaw et al. (6) approximate the energy loss term and ion

spectra by simple forms for which energy derivatives are evaluated explidtly (even

if approximately). The resulting ordinary differential equations in position are

solved analytically similar to the method of Allkofer and Heinrich (2). This

approximation results in a decoupling of motion in space and change in energy. In

Letaw's formalism, the energy shift is replaced by an effective attenuation factor.

Wilson adds the next higher-order (second collision) term (7). This term was found

to be very important in describing 670 MeV/amu 2°Ne beams. The three-term

expansion of ref. 7 was modified to include the effects of energy variation of the

nuclear cross sections (8). The integral form of the transport equation (5) was

further used to derive a numerical marching procedure to solve the cosmic ray

transport problem (9). This method can easily include the energy-dependent

nuclear cross sections within the numerical procedure. Comparison of the

numerical procedure (9) with an analytical solution to a simplified problem (10)

validates the solution technique to about 1 percent accuracy. Several solution

techniques and analytic methods have been developed for testing future numerical

solutions to the transport equation (11, 12). More recently, an analytic solution for



the laboratory ion beam transport problem has been derived assuming a

straightahead approximation, velocity conservation at the interaction site, and

energy-independent nuclear cross sections (13).

In the above overview of past developments, the applications split into two

separate categories according to a single ion species with a single energy at the

boundary versus a broad host of elemental types with a broad continuous energy

spectrum. Techniques requiring a representation of the spectrum over an array of

energy values require vast computer storage and computation speed for the

laboratory beam problem to maintain sufficient energy resolution. On the other

hand, analytic methods (5, 9) are probably best applied in a marching procedure (9)

which again has within it a similar energy resolution problem. This is a serious

limitation since we require a final HZE code for cosmic ray shielding which has been

validated by laboratory experiments. In the present paper, we examine new

methods which appear to overcome these difficulties.

The HZE Transport Problem

In moving through extended matter, heavy ions lose energy through

interaction with atomic electrons along their trajectories. On occasion, they interact

violently with nuclei of the matter producing ion fragments moving in the forward

direction and low energy fragments of the struck target nucleus. The transport
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equations for the short-range target fragments can be solved in closed form in terms

of collision density (ref. 5). Hence, the projectile fragment transport is the

interesting unsolved problem. In previous work, the projectile ion fragments were

treated as if all went straightforward. We continue with this assumption herein,

noting that an extension of the beam fragmentation model to three dimensions is

being developed (ref. 14).

With the straightahead approximation and the target secondary fragments

neglected (ref. 5), the transport equation may be written as

a S'_(E)+crj _j(x,E)= _ mjkakq_k(x,E)
aE k>j

where _i (x, E) is the flux of ions of type j with atomic massAj at x moving along the

x-axis at energy E in units of MeV/amu, o i is the corresponding macroscopic nuclear

absorption cross section, Sj (E) is the change in E per unit distance, and mjk is the

fragmentation parameter for ion j produced in collision by ion k. The range of the

ion is given as

E !

Ritz) Jo

The solution to equation (1) is to be found subject to boundary specification at x = 0

(2)

and arbitrary E as
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Cj(0, E) = Fj (E) (3)

Usually Fj (E) is taken as an incident laboratory ion beam spectrum or the cosmic ray

spectrum.

It follows from Bethe's theory that

AjZ_2
for which

_Zp 

The subscript p refers to proton. Equation (5) is quite accurate at high energy and

(4)

(5)

only approximately true at low energy because of electron capture by the ion which

effectively reduces its charge, higher-order Born corrections to Bethe's theory, and

nuclear stopping at the lowest energies. Herein, the parameter vi is defined as

Vj= Zj2/Aj (6)

so that

vjRj(E)= vk R k CE) (7)

Equations (6)and (7)are used in the subsequent development, and the energy

variationin vjisneglected. The inversefunctionof P_ (E)isdefined as

E=Rj'[RjcE)] (s)

and plays a fundamental role subsequently.
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Impulse Response

One form of Green's function is the impulse response corresponding to a 5-

like source term at the boundary. We therefore seek a solution of

O s__) + oj OjM(x,E, E')= Y_mj__kC_ (x,E;Z')
3E k

where the boundary condition is

G_M(0, E; Z') = _jM_ _" E') (10)

for which transport solution may be written as

0j(x,E)=_ Jo GJM (x'E; E') FM (E') dE' (11)
M

The solution to equations (9) and (10) is straightforward, even if tedious (4, 7, 13) and

is arrived at using the method of characteristics (15). The solution is expressed as a

series as

GjM (x, E; E') = _ r,(i) (x, E; E')"'jM
i

where

G(O) (x, E; E')
jM

r

=__t__exp(-ojx)5jM5[
sj (E)

x + Rj (E)- R M (E') ]

(12)

(13)



G(:) (x, E; E')jM =_l_mj McrM vj
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1 }
so long as

V-M-M[RM(E')'x]<Rj('E)<_; M.RM(E')'xvj

where

(14)

(15)

V M + Vj x]- 2VM RM(E') - [Rj(E)+11' VM-Vj VM Vj
(16)

Otherwise _.(1) (x, E; E') is zero. After a complicated but straightforward
"-'jM

manipulation, a similar result may be obtained r': (2) (x, E; E') as
"jM

G(2) Z cr;_ O'kM vj V -(:rM XM1-O"k Xld -O'j Xjl
jM (x, E; E') = ........ e -e

k (E)IvM-vkl L
-o"M XMu -Ork x_ -Oj xju

(17)

where XMu, Xku, XMp and xkn are values of X M and x k evaluated at the corresponding

upper and lower limits of xj and

XM --[VM RM (E')-Vk (Rk (E)+ x) + (Vk-Vj)Xj]/ (VM -Vk)

Xk :[VM (RM (E)+ x)- VM RM (E')" (VM- Vj) Xj]/(VM - Vk)

(18)

(19)



The requirements that xM and xk be bounded by the interval 0 to x-xj yields

0

vk[ Rk _) + x ]- VMRM0_')

Vk - Vj

t<xj<

/
x

VM[ R M (E) + x ]- v M R M (E')

v M -vj

(20)

as the appropriate limiting values in equation (17) when v M > v k > v i . In the above

brace, we always choose the most restrictive value for the limit. The requirement of

equation (20) also implies the result that

_ {_M__-x}_____<_, {."__' ,,_c_'_-_ x/./
(21)

as the range over which the result of equation (17) is not zero. In the event that

Vk > VM > Vj, then

/
0

VM[RMrE) + x ]- VMRMrE')

VM - Vj
<x_<

As a result of equation (22)

} { ,}R_I[VMRMOE')-x <E<R_ RMOE')-_MX
|Vk

x

Vk[ R k (E) + x]- v M R M (E')

vk - vj

(22)

(23)

In the event that v M > vj > v k, it follows that
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I X

0<xj_< VM [ RM (E) + x _ RM ('E')] / (VM. Vj)

[vMR__E')- vkR_CE)-vkx]/%- v_)

(24)

where the lesser of the three values in the brace is used as the upper limit of xj for

which G (2) of equation (17) is not zero. As a result of equation (24)

R_[ RMCE') x]<E<D't[VMRM('E')-x]
" - -- LXk t Vk

(25)

Note that

r (Vk v j)

(VM- Vk)t.

](vM- v j)
oM - /

(VM - _k ) (3"k3

(26)

Higher-order terms are similarly derived. Approximate expressions have been

obtained as

G(n) (x, E; E') =
jM

k. h,.-. h.2

where

(Yjk(YkjI ... (Yjn-2 M

Ejl =
Wk

g (j,k,jl...,jn.2.M) /CEju- E9)

V M > V k > Vj

V k > V M > Vj

V M > Vj > V k

(27)

(28)

and

I
V M > V k > Vj

V k > V M > Vj

V M > Vj > V k

(29)



and the g-functions of n + 1 arguments are defined as

g (Jl) = exp (- rrj, x)

g (Jl,j2,..-j,,j,+l) =g (jl,j2...,jn-l.j_)-g (Jl, j2"",ja-t,j,+l)
(_j.., - Oj.

11

(30)

(31)

The expression for c, (n) given by equation (27) is taken as zero unless"-'jM

Ejl _<E < Eju (32)

Portions of the Green's function are shown for incident 2°Ne beams at

E' = 600 MeV/amu at x = 20 cm in figures 1 to 3. The contribution from G a) is

shown as the solid curve, G _1) + G (2) is shown as the dash-dot curve, and

G¢1) + G _2)+ G _3) is shown as the dashed curve. The dash-double-dot curve

representing the inclusion of G (4) in the sum can hardly be distinguished signifying

convergence to a high degree of accuracy. A fuller presentation of the Green's

function for I60 fragments is _ven in figure 4, and a presentation of the _2C Green's

function is given in figure 5. From the present result, the solution for any arbitrary

boundary condition may be found using equation (11).

Although the present formalism presents a closed form solution for the more

common form of the HZE propagation problem, many tasks remain before the HZE

propagation problem is adequately solved. The inclusion of energy-dependent

nuclear cross sections is known to be very important in obtaining accurate solutions
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to some problems (16). Treating the momentum spread of the fragments is more

complicated for the higher-order terms. The inclusion of the light fragment spectra

is a difficult challenge (I7). Finally, the three-dimensional aspects of the problem

have only partially been treated (I4). Even these shortcomings of the HZE

propagation problem remain without the mention of uncertainties in nuclear cross

sections (18) or atomic/molecular cross sections. Clearly much work remains.



References

13

.

.

.

.

.

.

S. B. Curtis, W. R. Doherty, and M. C. Wilkinson, Study of Radiation

Hazards to Man on Extended Near Earth Missions. NASA CR-1469,

Washington, D.C., 1969.

O. C. Allkofer and W. Heinrich, Attenuation of Cosmic Ray Heavy Nuclei

Fluxes in the Upper Atmosphere by Fragmentation. Nuclear Physics B71,

429 (1974).

A. Chatterjee, C. A. Tobias, and J. T. Lyman, Nuclear Fragmentation in

Theraputic and Diagnostic Studies with Heavy Ions. In Spallation Nuclear

Reaction and Their Applications (B.S.P. Shen and M. Merker, Eds.) Reidel,

Dordrecht/Boston, 1977.

J'. W. Wilson, Depth dose relations for heavy ion beams. Virginia Journal of

Science _ 136 (1977).

5. W. Wilson, Analysis of the Theory of High-Energy Ion Transport. NASA

TND-8381, Washington, D.C., 1977.

J. Letaw, C. H. Tsao, and R. Silberberg, Matrix Methods of Cosmic Ray

Propagation. In Composition and Origins of Cosmic Rays (M. M. Shapiro,

Ed.), Reidel, Dordrecht/Boston, 1983.



o

o

o

10.

11.

12.

13.

14

]'. W. Wilson, Heavy Ion Transport in the Straightahead Approximation.

NASA TP-2178, Washington, D.C., 1983.

J. W. Wilson, L. W. Townsend, H. B. Bidasaria, W. Schimmerling,

M. Wong, and ]'. Howard, 2°Ne Depth-dose Relations in Water. Health

Physics 46, 1101 (1984).

J. W. Wilson, and F. F. Badavi, Methods in Galactic Heavy Ion Transport.

Radiation Research 108, 231 (1986).

J. W. Wilson and L. W. Townsend, A Benchmark for Galactic Cosmic-Ray

Transport Codes. Radiation Research _ 201 (1988).

B. D. Ganapol, L. W. Townsend, and J'. W. Wilson, Benchmark Solutions for

the Galactic Ion Transport Equations: Energy and Spatially Dependent

Problems. NASA TP-2878, Washington, D.C., 1989.

L. W. Townsend, B. D. Ganapol, and J'. W. Wilson, Benchmark Solutions for

Heavy Ion Transport Code Validation. 37th Annual Meeting of the

Radiation Research Society, Seattle, WA, March 18-23, 1989.

J. W. Wilson, S. L. Lamkin, H. Farhat, B. D. Ganapol, and L. W. Townsend,

A Hierarchy of HZE Transport Approximations. NASA TM- ___, 1989.



14.

15.

16.

17.

18.

15

W. Schimmerling, J'. Howard, M. Rapkin, and M. Wong, The Propagation of

Relativistic Heavy Ions in Multielement Beam Lines. Medical Physics 13,

217 (I986).

J. W. Wilson and S. L. Lamkin, Perturbation Theory in Charged Particle

Transport. Nuclear Science and Engineering 57, 292 (1975).

L. W. Townsend and J'. W. Wilson, An Evaluation of Energy-Independent

Heavy Ion Transport Coefficient Approximations. Health Physics _ 409

(1988).

J. W. Wilson, L. W. Townsend, J. E. Nealy, S. Y. Chun, B. S. Hong, W. W.

Buck, S. L. Lamkin, B. D. Ganapol, F. Khan, and F. Cucinotta, BRYNTRN: A

Baryon Transport Code. NASA TP-2887, Washington, D.C., 1989.

L. W. Townsend and J. W. Wilson, Nuclear cross sections for hadronic

transport. Trans. Am. Nud. Soc. 5_fi,6271 (1988).



16

FIGURE CAPTIONS

Fig. 1- Sequenceof approximations of the I70 flux spectrum after 20 cm of water

for first order (-), second order (-. -), third order (---), and fourth order (.... )
theories.

Fig. 2- Sequence of approximations of the 160 flux spectrum after 20 cm of water

for first order (-), second order (-. -), third order (-), and fourth order (.... )

theories.

Fig. 3 - Sequence of approximations of the 12C flux spectrum after 20 cm of water

for first order (-), second order (-. -), third order (--), and fourth order (.... )

theories.

Fig. 4- Green's function for 160 flUX spectrum response to a 600 MeV/amu 2°Ne

flux at the boundary.

Fig. 5 - Green's function for 12C flux spectrum response to a 600 MeV/amu 2°Ne

flux at the boundary.
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